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Abstract: Insecticides are enormously important to industry requirements and market demands in
agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of
food, environment and all living things through various mechanisms of action. Concern about the
environmental impact of repeated use of insecticides has prompted many researchers to develop
rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides.
In this regards, optical sensors are considered as favorable methods for insecticides analysis because
of their special features including rapid detection time, low cost, easy to use and high selectivity and
sensitivity. In this review, current progresses of incorporation between recognition elements and
optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on
insecticide chemical classes, including the range of detection and limit of detection. Additionally,
this review aims to provide powerful insights to researchers for the future development of optical
sensors in the detection of insecticides.

Keywords: insecticides; optical sensor; recognition element

1. Introduction

Pesticides are chemical categories that have been designed to protect crops by pre-
venting, destroying, repelling or mitigating any pests [1]. There are many different types of
pesticides in industries such as insecticides, rodenticides, herbicides, fungicides, biocides
and similar chemicals [2]. They are categorized according to their chemical forms and
the types of pests that they kill [3]. The first major synthetic class of pesticides that has
been widely used is insecticide [4]. According to United States Environmental Protection
Agency, insecticide is commonly used in the agricultural, industrial applications, pub-
lic health, commercial applications and households. A variety of different insecticides
such as organophosphates, carbamates, neonicotinoids, pyrethroids or pyrethrins and
organochlorines are classified according to their chemical classes [5].

Today, organophosphates account for around 50% of the chemical pesticides used in
controlling the pests. The chemical organophosphates work by disrupting an enzyme in
the body called acetylcholinesterases that control the nerve signals in the pest’s body [6].
Carbamates insecticides also play a similar mode as organophosphates. Although they
have a similar mechanism of action to that of acetylcholinesterase (AChE) inhibition (phos-
phorylation by organophosphates and carbamylation by carbamates), organophosphates
can bind to AChE irreversibly, meanwhile carbamates bind to AChE reversibly [7]. In
addition, the toxicity of carbamates is similar to that of organophosphate pesticides with a
duration typically less than 24 h [8]. In addition, neonicotinoids are a fairly new type of
insecticide that have been used over the last 20 years to control a variety of pests, especially
sap-feeding insects such as cereal aphids and root-feeding grubs. Like nicotine, neoni-
cotinoids work effectively by binding to nerve cell receptors that normally respond to the
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neurotransmitter acetylcholine. When neonicotinoids over-excite neurons at high doses, it
might lead to epileptic symptoms, cell death or inactivation of the nerve cells [9]. In compar-
ison, neonicotinoids are less toxic to birds and mammals compared to organophosphates
and carbamates [10]. Subsequently, the uses of pyrethrins have increased rapidly with the
declining use of organophosphates, carbamates and neonicotinoids. Pyrethrin is a botanical
insecticide derived from chrysanthemum flowers. It became a popular insecticide for the
control of agricultural pests. Apart from that, pyrethrin can also fight mosquito-borne
diseases. It works by altering nerve function, in the target insect pests which can causes
paralysis in, and finally resulting in death. The small quantity used of pyrethrins for the
pests controls making them competitively cost-effective [11]. To increase the pyrethrin’s
stability on sunlight exposure, the chemical structure of pyrethrin has been modified and it
is called pyrethroid [12]. Lastly, organochlorines insecticides have also been used exten-
sively in agriculture and mosquito control. The major difference between pyrethrin and
organochlorine is the way it works to kill insects. Organochlorine compounds work on
insects by opening the sodium ion channel in insect neurons or nerve cells, spontaneously
causing them to spasm, fire and eventually die [13,14].

Despite insecticide usefulness in many industries, excessive use of it can give a
pernicious impact on the environment and ecosystem. It can cause air pollution, water
pollution, soil pollution, food and water contamination that will pose a great danger to
the human body [15]. This happened because insecticides were secreted into the soils and
groundwater that may end up in drinking water. Additionally, the spray of insecticides
can drift and pollute the air that can enter the body by inhaling aerosols, dust and vapor,
whereas oral exposure to the insecticides can be happened during the consume of food
and water or direct contact with the skin [16]. Over time, the chemical will bio-accumulate
in the body. The effects of insecticides on human health depend on the toxicity of the
chemicals and the exposure period [17]. The simplest examples that have high risk with
this toxicity are farm workers and their families. They will experience the greatest exposure
to agricultural insecticides through direct contact [18]. The effects from the exposure can
be mild skin irritation, tumor, genetic changes, birth defects, diarrhea, blood and nerve
disorders, endocrine disruption, immune system disruption, coma or death [16]. Figure 1
briefly shows exposure to insecticides impose danger on humans.
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Due to the negative impacts of insecticides, various analytical optical methods for the
determination of insecticides were reported in this research literature. These particularly
involve optical methods such as fluorescence, colorimetric, surface enhanced Raman
scattering (SERS), surface plasmon resonance (SPR), chemiluminescent strategies and
more. This review also particularly emphasizes the recognition elements engaged in
the analytical methods. Recognition element is also known as target receptor that is in
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charge of identifying particular analytical targets [19]. Enzymes, antibodies, aptamers
and molecularly imprinted polymers (MIPs) are examples of the recognition elements in
this literature. A lot of recognition elements have been introduced in the development of
optical methods for the detection of insecticides since it is able to enhance the sensitivity of
the optical sensors.

2. Optical Sensors

Optical sensors are developed based on various technologies of optical phenomena,
which are the result of the correlation of an analyte with the receptor part [20]. This may
be further subdivided according to the type of optical properties such as reflectance, ab-
sorbance, refractive index, fluorescence, luminescence and the light scattering [21]. As there
are large numbers of different optical principles that exist, many optical methods have been
introduced and are used for a lot of applications. Optical sensors also have proven to be very
easy, fast and low-cost approach [22]. For the detection of insecticides, the most favorable
optical methods among researchers are fluorescence, colorimetric, SERS, SPR and chemilu-
minescence. This article focuses on the contact-based optical methods with the recognition
elements involved. The comparative analysis of the advantages and disadvantages of these
optical techniques had been discussed further by Anas et al. (2018) [23].

2.1. Fluorescence

Fluorescence technique is one of the most widely used methods to identify insecticides
that are simple to use and have a high sensitivity and selectivity [24]. In addition, it
is also widely used for biomedical [25], environmental monitoring [26], food protection
and quality control [27,28]. In this method, spectrofluorophotometer can generate the
signal shift and be observed by the naked eye on-site [29]. Different types of recognition
elements and materials have been used in the manufacturing of fluorescence sensors,
including enzymes [30], semiconductor nanomaterials [31], metal nanomaterials [32],
carbon materials [33] and noble metal [34], as it can enhance the sensitivity of the sensor.

2.2. Colorimetric

The colorimetric sensing technique has been proven to be an efficient analytical sensing
of metallic cations, anions, drugs, pesticides, organic dyes and other toxic pollutants due to
its easy fabrication [35], high sensitivity and selectivity [36], quick detection [37], as well as
easy naked-eye sensing [38]. Since the colorimetric involved quantification of color from
the reaction, then converting reaction behavior into visual color change is the key challenge
for colorimetric platform manufacturing. Gold nanoparticles (AuNPs) have been widely
used as a promising signal transducer in the development of a colorimetric sensor for the
detection of insecticides.

2.3. Surface Enhanced Raman Scattering

Surface enhanced Raman scattering (SERS) relies on molecules adsorbed on a rough-
ened metallic surface of gold, silver or copper or their nanoparticle to enhance inelastic
scattered light. The chemical content of different molecular species can be distinguished
by Raman spectroscopy through the collection of molecular vibrations, i.e., Raman spec-
troscopy [39]. High sensitivity, of the detection coupled with high selectivity in SERS,
opens up a wide range of SERS spectroscopy applications such as biomedical diagnosis
and environmental monitoring [40,41].

2.4. Surface Plasmon Resonance

Surface plasmon resonance (SPR) strategy has drawn great attention as an economical,
label-free tool because of its ability to detect target compounds in high sensitivity, real-time
manner and rapid detection [42–48]. The Kretschmann configuration-based SPR method
works by detecting the resonance in the form of charge density oscillations between
the analyte and a metal thin film [49–55]. At two dielectric media interfaces, any metal
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holding a large number of free electrons such as gold, silver, copper and aluminum is
positioned [56–58]. However, gold is the most stable and sensitive metal compared to
others, so it is very suitable to be used as a metal film [59–65]. SPR will occur under
complete conditions of internal reflection when plane-polarized light hits the gold-coated
film prism [66–68]. Then it will detect the reflected beam for processing. Various types of
prepared thin films can give different refractive indices that then will affect the resonance
intensity [69–73]. This method has been widely applied in food control, environmental
monitoring and drug delivery with outstanding repeatability and reproducibility [74–81].
Due to their superior performance, SPR sensor is gaining more attention in detecting
insecticides. Typically, SPR uses antibodies as receptors to catch their target. Enzymes and
nanoparticles have also been introduced in enhancing the sensitivity of this sensor.

2.5. Chemiluminescence

Chemiluminescence method does not involves light excitation since the energy of
a chemical reaction caused by a luminescence reagent is excited by the material [82].
This method have a good sensitivity and specificity, high stability of reagents and their
conjugates and is cost-effective, making it an excellent method for the food analysis and
diagnosis of disease [83,84]. This method has been successfully used in the identification
of insecticides, based on the advantages already described by integrating them with
recognition elements such as antibodies, enzymes and nanoparticles.

2.6. Others

Apart from the above mentioned methods, there are some other optical methods
reported that have been used to detect insecticides, such as electrochemiluminiscence,
photoluminescence, phosphorescence, luminescence, liquid chromatography–mass spec-
trometry (LC-MS/MS), competitive fluorescence-linked immunosorbent assays (cFLISA),
enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA) and high
fundamental frequency quartz crystal microbalance (HFF-QCM). These methods will also
be explained briefly in the literature.

3. Recognition Elements

In general, an optical sensor contains a recognition element that can interact specifically
with the specific target and the part of the transducer used to signal the binding event [85].
Thus, the selection of the recognition element depends on the target analyte and the
recognition element must have a high binding affinity and stability for the target [86].
Recognition elements may be enzymes, antibodies, aptamers and molecularly-imprinted
polymers (MIPs) that interact with the analyte to generate a signal using optical sensors.

3.1. Enzymes

The enzymatic optical sensors have greatly offer high selectivity and sensitivity for
both identification and quantification of target analyte [87]. Mostly, insecticides have been
used in the past as the inhibitors of enzyme activity or substrates that play an important
role in enzymatic reactions, indirectly inducing the signal response to the optical sensor. As
expected, the specificity of enzyme can increase the effectiveness of optical sensor to detect
insecticides accurately [88,89]. In this review, the most popular enzymes that have been
exploited extensively for the enzymatic detection of insecticides are acetylcholinesterase
(AChE) and organophosphate hydrolase (OPH) with few records of other enzymes, such
as butyryl cholinesterase (BChE), alkaline phosphatase (ALP), choline oxidase (ChOx),
horseradish peroxidase (HRP), tyrosinase (TYR), trypsin (TRY) and streptavidin.

3.2. Antibodies

Nowadays, antibodies as bio-recognition elements have been widely used as a poten-
tial alternative method for immunoassay for the analysis of insecticides detection [90]. It is
also used for the manufacture of immunosensors in the clinical and biochemical sectors [91].
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Polyclonal, monoclonal and recombinant antibodies have been frequently used for insecti-
cide detection. Due to the very high equilibrium association constants, these antibodies
can recognize antigens sensitively [92,93]. With the development of nanomaterials and
nanotechnology, new and wide opportunities have been brought in the development of
optical immunosensors with this recognition element.

3.3. Aptamers

Aptamer is a single nucleic acid molecule with nucleobases synthesized in vitro with-
out the need for animal or cell culture [94]. Compared to natural antibodies, aptamers are
usually simpler and low cost to synthesize as well as having a good stability in sustain-
able to repetitious renaturation denaturation [95]. Aptamers have a high affinity in the
nanomolar to picomolar range to their targets with dissociation constant (Kd) values [96].
In addition, aptamers usually recognize and bind to corresponding targets directly as
“lock-and-key” through molecular shape complementarities, stacking of aromatic rings,
electrostatic and van der Waals interactions as well as hydrogen bonding, which make their
detection much more effective and convenient [97,98].

3.4. Molecularly-Imprinted Polymers

Molecularly-imprinted polymers (MIPs) are recognition elements called plastic an-
tibodies with specific recognition capacity [99]. MIPs can be easily prepared by in situ
co-polymerization of functional monomers around a template molecule [100]. As a result
of its high stability and remarkable mechanical properties, MIPs have also been widely
used to improve the efficacy of separation and sensitivity of detection in sensor develop-
ment [101]. Furthermore, MIPs have great potential to be used as tailor-made polymers in
the fabrication of biosensors, especially if the biological recognizers (enzymes and antibod-
ies) are not available. Based on the advantages mentioned, MIPs are gaining attention in
the development of drug delivery, biosensor and environmental remediation [102,103].

3.5. Others

Apart from the above recognition elements, metal nanomaterials as recognition units
and nanoquenchers have also proven to be an attractive approach to improve the per-
formance analysis of insecticide detection. Specific coordination property between metal
and insecticide can enhance recognition selectivity, thus provide new insights into the
development of insecticide detection systems [104]. Additionally, the introduction of ligand
replacement system has also been used for sensitive insecticide analysis in “turn-off-on”
mode [105]. Furthermore, some novel fluorescence detection techniques and technolo-
gies have been skillfully exploited for insecticide detection based on the direct use of
fluorophore as recognition and response elements [106]. This strategy can avoid the modi-
fication process, save reaction time and also simplify the detection steps.

4. Various Classes of Insecticides Detection by Optical Sensors

Insecticides have been commonly used in agriculture, medicine, industry and by
consumers over the last few years. The release of untreated effluents from these industries
into the ecosystem will lead to the accumulation of toxic insecticides, thus endangering both
humans and the environmental [107]. As a result of that, a good detection device such as
an optical sensor is essential to identify these insecticide residues in the environment. In
this context refer, a well-structured article was written based on optical sensors associated
with recognition elements categorized by different insecticides classes. The percentages of
various classes of insecticide detection based on optical sensors are summarized in Figure 2.
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4.1. Organophosphates

Different organophosphates (OPs) compounds have structural similarities within
classes. All OPs share one thing in common. They all have a phosphorus atom and a
characteristic phosphoryl bond (P = S). Essentially, OPs are esters of phosphoric acid
with varying combinations of oxygen, carbon, sulfur or nitrogen attached. For sure, the
chemistry of these compounds is much more complex and classification is so confounding.
Complexity in classification of OPs arises due to different side chains attached to the
phosphorus atom and the position at which the side chains are attached [108]. Throughout
this journal, the term organophosphates is used as a generic term to include all the organic
compounds containing phosphorus. There are 8 types of OPs detection by optical sensor.
Therefore, Figure 3 briefly presents its classes based on side chains and other elements
attached to the phosphorus atom consequently.
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4.1.1. Phosphates

There are several categories of phosphates that detected by optical sensors such as
paraoxon, dichlorvos, methyl paraoxon, paraoxon ethyl, mevinphos, monocrotophos, tetra-
chlorvinphos and dibrom. All categories have different functions and applications. In
medical it can be used as ophthalmologic anti-glaucoma treatment [109,110]. Other appli-
cations are to control a broad range of insecticides in agriculture [111–113], household [114]
and stored product [115–117]. For methyl paraoxon, it is oxidization from methyl parathion
by solar irradiation and it is very toxic compared to methyl parathion [118].

Previous research has shown that paraoxon is one of the first phosphate groups to be
involved in an optical sensor-based OPH enzyme. The first work presented by Constan-
tine et al. (2003) fabricated polyelectrolyte architecture and composed the chitosan and
OPH polycations along with thioglycolic acid-capped cadmium sellenide-quantum dots
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(TGA-capped CdSeQDs) as the polyanion. The system works both to detect the presence of
paraoxon and to detoxify it by using OPH [119]. The development detection of paraoxon
with OPH bioenzyme expanded with cadmium sellenide-zinc sulfide (CdSe(ZnS)) core-shell
QDs by Ji et al. in 2005 as a novel biosensor. By electrostatic interaction between negatively
charged QDs surfaces and the positively charged protein side chain and ending groups
(-NH2), the OPH was coupled to (CdSe)ZnS core-shell QDs. Figure 4 is the proposed scheme
for the formation of OPH/QDs bioconjugates [120].
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On the other hand, the detection of paraoxon-based AChE enzymes started in 2009
by Hossain et al. that developed a reagentless bioactive paper-based solid-phase biosen-
sor. The assay strip consisted of AChE paper support and idophenyl acetate (IPA) chro-
mogenic substrate. In this work, malathion, carbaryl and bendiocarb have also been
investigated [121]. Another work by Zheng et al. (2011) used the layer by layer (LbL)
assembly technique to combine the optical transducer of cadmium tellurite (CdTe) semicon-
ductor QDs with AChE enzymes, resulting in a highly sensitive paraoxon and parathion
detection biosensor in vegetables and fruits based on the mechanism of enzyme inhibi-
tion [122]. In the following year, Zhang et al. (2012) described the fluorescence method by
using AChE to modulate the gap between an AuNPs and the N,N-dimethyldodecylamine
N-oxide (DDAO). They found that DDAO is an inhibitor of reversible mixed type-I AChE.
DDAO binds to the anionic peripheral site and penetrates through inhibition kinetics
test and molecular docking analysis into the active gorge site of AChE. The nanobiosen-
sor has a high sensitivity to tacrine and paraoxon and exhibits different efficiencies of
reduction for the two forms of inhibitors as well [123]. In the same year, Gao et al. (2012)
reported a sensitive and selective method for the detection of paraoxon based on Mn:ZnSe
d-dots-AChE-H2O2 fluorescence quenching system. In this work, AChE is able to hy-
drolyze choline into acetycholine (ACh). Subsequently, to produce H2O2, ChOx oxidizes
choline [124,125]. The enzyme-generated H2O2 can quench the fluorescence of Mn:ZnSe
d-dots. Figure 5 depicts the basic operation of an OPs biosensor with AChE enzyme.

In the following year, Fu et al. (2013) demonstrated s colorimetric method for OPs
detection using Cu(I)-catalyzed click chemistry as the colorimetric signal amplification
mechanism between the AChE-ATCl system and azide-terminal alkyne-functionalized
AuNPs as the colorimetric probe. In this study, the paraoxon LOD result was obtained at
3.634 nM [126]. Luan et al. (2016) presented fluorescence method and fabricated LbL mi-
croarrays of QDs and AChE in the detection of paraoxon and parathion [127]. Subsequently,
Wu et al. (2017) synthesized chlorophyll-derived tunable fluorescence emission carbon
quantum dots (CQDs). The fluorescence emission can be effectively quenched by AuNPs
via fluorescence resonance energy transfer (FRET). Thiocholine, formed by the hydrolysis of
BChE from ATCI, might induce the aggregation of AuNPs and the corresponding recovery
of the fluorescence emission quenched by FRET. OPs were able to irreversibly inhibit the
catalytic activity of BChE, so the recovery effect was minimized. Figure 6 illustrates the
schematic of probing inhibition and reactivation AChE using AuNPs [128].
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In order to enhance the sensor sensitivity, a label-free bioplatform was developed
by Li et al. (2018) for the sensitive detection of OPs via dual-mode (fluorometric and
colorimetric) channels based on AChE-controlled quenching of fluorescence CDs [129]. In
2019, Wu et al. fabricated a fluorescence sensor based on BSPOTPE-SiO2–MnO2 sandwich
nanocomposites with AChE enzyme. Thiocholine (TCh) from ATCh by the hydrolysis of
AChE, can “turn on” the fluorescence sensor in the detection of paraoxon [130].

Several attempts have been made to detect paraoxon by using other enzymes like
eggshell membrane and tyrosinase. In Xue et al.’s work (2016) used CdTeQDs and bi-
enzyme-immobilized eggshell membranes for the determination of paraoxon and parathion
pesticides. Increasing amounts of OPs have led to a decrease in enzymatic activity and
thus to a decrease in H2O2 production, which is capable of quenching CdTeQDs fluores-
cence [131]. The modified CdTeQDs by using 5,10,15,20-tetre(4-pyridyl)porphyrin) (TPyP)
significantly increased the sensitivity to detect paraoxon [132]. In 2017, Yan et al. developed
a fluorescence method for the quantitative detection of OPs via TYR enzyme-controlled
quenching of gold nanoclusters (AuNCs). With the presence of OPs, TYR activity was
inhibited, resulting in the fluorescence recovery of AuNCs [133].

Another study of phosphate class-based enzymatic detection is dichlorvos. As one
of the most popular enzymes, AChE has been exploited extensively by fabricated with
QDs based fluorescence method for the diclorvos and other insecticide detection [134–136].
Han et al. (2012) proposed a chromogenic platform based on recombinant drosophila
melanogaster acetylcholinesterase (R-DmAChE) as the enzyme and indoxyl acetate as the
substrate for the rapid study of dichlorvos, omethoate, carbofuran and methomyl. The
well-established assay has the capabilities of both qualitative measurements by naked eyes
and quantitative analysis by the LOD colorimetric reader of diclorvos at 0.136 µM [137].
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In a recent year, Tsagkaris et al. (2020) developed AChE-based LC-MS/MS method to
confirm the analytical performance of the assay towards paraoxon, dichlorvos, chlorpyrifos,
aldicarb, carbofuran and carbofuran-3 hydroxy [138].

In order to simplify the preparation of the material, Wang et al. (2019) reported QDs
without incorporation with any enzyme to detect dichlorvos. In this study, the paper-based
fluorescence visualization sensor is produced by combining double QDs with high-activity
nanoporphyrins (QDs-nanoporphyrin), and used dichlorvos, demeton and dimethoate in a
“turn-off-on” detection mode to achieve specific detection and analysis of OPs [139].

Another study showed that using nanoparticles with AChE enzyme-based colorimet-
ric method in the detection of methyl paraoxon and acephate can provide high sensitiv-
ity [140,141]. In the detection methyl paraoxon, Sahub et al. developed the pesticide sensor
by graphene quantum dots (GQDs) and AChE with ChOx-based photoluminescence. How-
ever, in this approach, the LOD for methyl paraoxon obtained was not as sensitive as the
previous study [142].

For the detection of paraoxon-ethyl class using the AChE enzyme, Zhang et al. (2014)
demonstrated a novel type of dual emitting probe by using intrinsic dual-emission man-
ganese doped zinc sulfide nanocrystal (ZnS NCs) via turn-on and ratiometric fluorescence.
Significantly, the dual-emitting probe had been used to fabricate paper-based test strips
for visual detection of paraoxon-ethyl, trichlorfon and chlorpyrifos residues as low as
1.800 µM [143]. Yang et al. (2018) produced from a human plasma sample of 70 µL post-
exposures to simultaneously measure both BChE activity and the total amount of BChE
(including an inhibited and active enzyme). The idea of this technique is based on the
capability of the BChE monoclonal antibody (MAb) to act as both a capture antibody and
a detection antibody. The immobilized BChE MAb on the test line was able to identify
paraoxon-ethyl [144]. Detection of paraoxon-ethyl by using carbon dots had been inves-
tigated by Chang et al. (2017). The fluorescence probe adopted carbon dots as a sensing
receptor that has been synthesized in-house via simple acid carbonization of sucrose. This
sensing protocol achieved LOD of 0.220 ± 0.020 µM and a dynamic linear range of up to
5.80 mM [145].

The detection for mevinphos and diazinon had been reported by Chen et al. (2010).
They developed capillary electrophoresis-laser induced fluorescence (CE/LIF) with QDs.
Through the formation of a silane coupling mercaptopropyltrimethoxysilane network, a
novel technique to immobilize QDs on the inside capillary surface was created [146]. For
the detection of tetrachlorvinphos, Marcos et al. (2014) investigated colorimetric method
by immobilized HRP enzyme in a polyacrylamide gel. The HRP-H2O2 technique was used
to measure the pesticides. The sensor can be used for a minimum of 15 days and reacts
to tetrachlorvinphos linearly with a detection limit of 0.200 µM [147]. The detection of
monocrotophos, methyl parathion and dimethoate was reported in the same year. Long
et al. (2014) developed novel nanosensor between NaYF4:Yb,Er UCNPs and AuNPs for
monocrotophos and methyl parathion pesticides based on FRET. The detection mechanism
is based on the fact that AuNPs inhibit the activity of AChE, which catalyzes hydrolysis
of ATC into TCH, by quenching the fluorescence of UCNPs and OPs. In this research, the
detection limit of monocrotophos was obtained at 10.305 nM [148].

As expected, by integrating enzyme specificity, great success was achieved in fabricat-
ing colorimetric and fluorescence sensors for highly accurate OPs detection. As one of the
most popular enzymes, AChE has been exploited extensively for the enzymatic detection of
phosphates since 2009. The chronological order of optical sensors for phosphates detection,
together with their sensing performance is summarized in Table 1.
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Table 1. Chronological order of optical sensors for phosphates detection.

Type of
Phosphates Method Material Range of Detection LOD Year References

Paraoxon Photoluminescence chitosan-CdSeQDs/OPH 0–1.000 µM 1.000 µM 2003 [119]
Paraoxon Photoluminescence (CdSe)ZnSQDs-OPH 0.010–10.000 µM 0.010 µM 2005 [120]

Paraoxon Colorimetric IPA/sol-gel derived silica
inks-AChE 0–10.000 µM 1.000 nM 2009 [121]

Mevinphos Fluorescence CdTe/CdS coreshell QDs 0.892–124.917 µM 0.714 µM 2010 [146]
Paraoxon

Fluorescence CdTeQDs-AChE - 2.750 pM
2011 [134]Dichlorvos 2.090 pM

Paraoxon Fluorescence PAH/CdTeQDs-AChE - 0.011 nM 2011 [122]
Dichlorvos Colorimetric indoxyl acetate-R-DmAChE 4.525 pM–0.453 µM 0.136 µM 2012 [137]
Paraoxon Fluorescence AuNPs/DDAO-AChE - 0.400 µM 2012 [123]
Paraoxon Phosphorescence Mn:ZnSe d-dots–H2O2-AChE - 0.013 nM 2012 [124]

Methyl-paraoxon Colorimetric Fe3O4/MNP-AChE/CHOx - 10.000 nM 2013 [140]
Paraoxon Colorimetric ATCl/AuNPs-AChE 3.634–363.376 nM 3.634 nM 2013 [126]

Dichlorvos Fluorescence QDs-AChE/ChOx 4.490–6780 nM 4.490 nM 2013 [135]
Tetrachlorvinphos Colorimetric oxyferryl-HRP - 0.200 µM 2014 [147]

Paraoxon-ethyl Fluorescence Mn-ZnS nanocrystal/AChE 0–100.000 µM 1.800 µM 2014 [143]
Paraoxon Phosphorescence Mn-ZnSQDs/AChE - 0.100 pM 2014 [125]

Monocrotophos Fluorescence NaYF4:Yb,Er/UCNPs-AChE 0.009–89.606 nM 10.305 nM 2015 [148]
Paraoxon Fluorescence CdTeQDs - 4.300 pM 2016 [131]

Methyl-paraoxon
Colorimetric PAA-CeO2/AChE - 0.108 µM

2016 [141]Dichlorvos 0.035 M
Paraoxon Fluorescence TPyP-CdTeQDs 9.090 pM–1.090 µM 3.150 pM 2016 [132]
Parathion Fluorescence QDs-AChE - 3.433 nM 2016 [127]
Paraoxon

Fluorescence QDs-AChE/ChOx 0.001–0.01 µM 0.050 µM 2017 [136]Dibrom
Diclorvos

Paraoxon-ethyl Fluorescence carbon dots - 0.220 ± 0.020 µM 2017 [145]

Paraoxon Fluorescence carbon quantum
dots-AChE/CHOx 0.182–181.688 nM 0.182 nM 2017 [128]

Paraoxon Fluorometric gold nanocrystal-TYR - 0.363 nM 2017 [133]
Diclorvos

Photoluminescence
graphene quantum
dots-AChE/ChOx

0.453–45.253 µM 0.778 µM
2018 [142]Methyl-paraoxon 0.340 µM

Paraoxon-ethyl Colorimetric and
fluorometric monoclonal antibody-BChE 0–7.170 nM 0.100 nM 2018 [144]

Paraoxon Fluorescence carbon dots-AChE 0–1.817 nM 0.472 nM 2018 [129]
Diclorvos Fluorescence QDs-nanoporphyrin 45.253–90.506 nM 45.253 nM 2019 [139]
Paraoxon Fluorescence BSPOTPE-SiO2-MnO2-AChE 3.634–362.358 nM 3.634 nM 2019 [130]
Paraoxon

LC–MS/MS AChE - 5.087 nM
2020 [138]Diclorvos 23.021 pM

where LOD is limit of detection. ATCI: azide-terminal alkyne-functionalized, BSPOTPE: 1,2-Bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-
diphenylethene, CdS: cadmium sulfide, CdSe: cadmium selenide, CdTe: cadmium tellurite, DDAO: N,N-dimethyldodecylamine N-oxide,
CeO2: cerium(IV) oxide, LC-MS/MS: Liquid chromatography tandem mass spectrometry, LSPR: localized surface plasmon resonance, Mn:
manganese, MNP: magnetic nanoparticles, MnO2: manganese(IV) oxide, MOF: metal organic frameworks, IPA: indophenyl acetate, PAA:
peroxyacetic acid, PAH: poly(allylamine hydrochloride), R-DmAChE: recombinant Drosophila melanogaster acetylcholinesterase, SiO2:
silicon dioxide, TPyP: tetra(4-pyridyl)porphyrin, UCNPs: upconventional nanoparticles, ZnS: zinc sulfide.

4.1.2. Phosphonates

Triclorfon and dipterex are part of the phosphonates family that can be detected by
optical sensors. Trichlorfon is used for control cockroaches, crickets, silverfish, bedbugs,
fleas, cattle grubs, flies, ticks, leaf miners and leaf hoppers [149]. Dipterex is effective in
monitoring leaf eating insects and fruit flies. Therefore, trichlorfon and dipterex come in
wettable powder to be used as a foliar spray on vegetables and ornamental sorers against
insects and leaf eating caterpillars [150].

Initially, the development of phosphonates detection in trichlorfon started in 2014 [143].
Then, in the following year, He et al. (2015) developed a nanoparticle-based chemilumines-
cence sensor array for the detection of dipterex. This chemiluminescence sensor array is
focused on the simultaneous use of the triple-channel properties of the chemiluminescence-
intensive luminol-functionalized silver nanoparticle (Lum-AgNPs) and H2O2 chemilu-
minescence system. The chemiluminescence sensor array could identify dipterex and
chlorpyrifos as low as 80.134 µM and 68.456 µM, respectively [151].
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Subsequently, Trichlorfon detection was got attention from Shen et al. (2016) by using
the AChE enzyme. Shen and co-workers developed a new fluorescent probe with 1, 8-
naphthalimide dye, quaternary ammonium salt with a boronate group that is water-soluble.
The detection assay consisted of the probe, ChOx and AChE, which requires catalyzing
ACh by ChOx and AChE to generate H2O2 and increase the sensitivity of the fluorescence
probe. The probe displays the LOD for trichlorfon, methyl parathion and acephate were
0.018 nM, 1277 pM and 0.066 nM, respectively [152].

In a recent year, Dowgiallo et al. (2019) reported the SERS method coupled with
colloidal AuNPs. The results presented indicate that this method is a potentially useful tool
for identifying trichlorfon, chlorpyrifos, phosmet, coumaphos, methomyl, carbofuran,
permethrin and transfluthrin with high sensitivity [153]. Further studies sensors for
phosphonates detection are summarized in Table 2 with chronologically order.

Table 2. Chronological order of optical sensors for phosphonates detection.

Type of
Phosphonates Method Material Range of Detection LOD Year References

Trichlorfon Fluorescence Mn-doped ZnSNCs/AChE 0–100.000 µM 1.800 µM 2014 [143]
Dipterex Chemiluminescence Lum-AgNP 0–80.134 µM 80.134 µM 2015 [151]

Trichlorfon Fluorescence 1, 8-naphthalimide/AChE-ChOx - 0.018 nM 2016 [152]
Trichlorfon SERS AuNPs 0.388–27.978 µM 3.885 µM 2019 [153]

where LOD is limit of detection. Lum-AgNP: luminol-functionalized silver nanoparticles, Mn: manganese, SERS: surface enhanced Raman
scattering, ZnSNCs: zinc sulfide nanocystals.

4.1.3. Phosphorothiotes (s =)

Optical detection of the phosphorothiotes (s =) groups can be divided into 12 cate-
gories: methyl parathion, chlorpyrifos, parathion, diazinon, trizophos, quinalphos, deme-
ton, fenirothion, coumaphos, fenthion, chlorpyrifos methyl and primiphos methyl. These
groups are used to control insects and destroy a broad range of pests, especially in agri-
culture and crops such as fruits [154,155], vegetables [156–158] and flowers [159,160]. It is
also used to protect household [161] and livestock [162] from insects, act as acarida [163],
against ectoparasites in mammalian [164] and as Triatoma control (insects that involved in
the transmission of Chagas disease in the Americas) [165].

There are a large volume of published studies describing the optical detection of
phosphorothiotes (s =) especially in the detection of methyl parathion. Many studies
demonstrated that the use of AChE enzyme-based materials can enhance the sensitivity of
the optical sensor. In the work reported by Tran et al. (2012), the fabrication of fluorescence
biosensors for pesticide detection was developed from the CdSe, CdTeQDs, AChE and
ATCh. The activity of enzyme is directly inhibited by pesticides and able to detect methyl
parathion at lower concentration [166]. In the same year, Hai et al. (2012) reported the
development of AChE enzyme composed of QDs to detect pesticides conjugated together
with MIPs. ATCh was used in this biosensor as an indicator for the function of the
AChE enzymes, as it is a very powerful hydrolyte with AChE enzymes present [167]. In
the following year, a new highly sensitive and selective electrochemiluminescence assay
biosensor based on target-induced signal for OPs detection was developed by Liang et al.
(2013), whereby the intelligent integration of graphene nanosheets (GNs), CdTeQDs and
AChE enzymatic reaction produces a hybrid biofunctional AChE-GNs-QDs as cathodic
ECL emitters for OPs sensing. The detection limit was found to be as low as 0.228 nM [168].
Figure 7 shows the illustration for the principal of signal on electrochemiluminescence
biosensor for determination of OPs by using AChE-QDs-GNS-GCE. The LOD was further
lowered down to 0.039 pm by enzymatic reaction of self-assembly modulation of gold
nanorods (AuNRs) to incorporate with colorimetric assays [169].
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Several studies have been published to describe the identification of methyl parathion
using OPH, trypsin and HRP/ALP enzymes. Yan et al. (2014) constructed a sensitive
fluorescence probing strategy for methyl parathion detection based on ET between p-
nitrophenol and CdTeQDs in cetyltrimethylammonium bromide (CTAB) by using OPH
enzyme [170]. In order to enhance the sensor sensitivity, Yan et al. (2015) reported a novel
fluorescence sensor using trypsin (TRY) enzyme to detect methyl parathion based on the
IFE between AuNPs and radiometric fluorescence-quantum dots (RF-QDs). The inhibition
efficiency of methyl parathion for trypsin activity was evaluated as low as 68.386 nM by
measuring the fluorescence of RF-QDs [171]. Figure 8 shows the fluorescent detection of
OPs through the inner-filter effect of gold nanoparticles on RF-QDs-TRY.
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In 2017, Shu et al. prepared a novel bifunctional antibody (BfAb) that could identify
methyl parathion and imidacloprid via hybrid hybridomas technique [172]. For the quan-
titative detection of pesticide residues, a multiplexed immunochromatographic test strip
based on a time-resolved chemiluminescence strategy was developed using BfAb as the
sole recognition reagent. HRP and ALP were used as the chemiluminescence probes to
label the pesticide haptens as the proposed method. The two chemiluminescence reactions
catalyzed by the enzymes were activated simultaneously by injection of coreactants after
the labelled haptens competed with pesticides to bind with the BfAb immobilized on the
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test strip [173]. The chemiluminescence reaction kinetics-resolved MIA strategy for methyl
parathion and imidacloprid detection is presented in Figure 9.
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A simple and sensitive fluorescent sensor based on L-tyrosine methyl ester function-
alized carbon dots (Tyr-CDs) and tyrosinase system was developed in 2015 by Hou et al.
for the detection of methyl parathion. The LOD was obtained at 0.048 nM [174]. In the
same year, Yan et al. (2015) synthesized fluorescence probe based on near-infrared CuInS2-
QDs and Pb2+ for methyl parathion detection. Due to the competitive binding of Pb2+

and mercaptopropionic acid to QDs, the fluorescence intensity of copper indium sulfide
(CuInS2)-QDs had been quenched in the presence of Pb2+ [175]. In 2017, Kashani et al.
proposed fluorescence method by using molybdenum disulfide (MoS2)-QDs [176]. Metal
nanoparticles-based SERS method has also been explored [177,178]. AuNPs with excellent
reproducibility and stability were used to generate the substrate. The paper-based substrate
was then applied to detect the standard solution of methyl parathion on apple, whose
detection limit was down to 0.004 µM. Figure 10 shows a schematic of paper-based SERS
substrate on the fruit peel surface [179].
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Another study showed that the AChE enzyme is appropriate in the detection of chlorpyri-
fos. However, this work has not been much reported, as studies using enzymes in the optical
detection of chlorpyrifos are still in their early stages. In 2018, Xie et al. developed graphitic
carbon nitride (g-C3N4) as a fluorescent probe and AuNPs as a colorimetric probe [180].

Throughout 2010, QDs have been widely used to detect chlorpyrifos. Zou et al. (2010)
described a portable fluorescent sensor that integrates an immunochromatographic test
strip assay (ITSA) with a QDs label and a test strip reader for biomonitoring of chlorpyrifos.
In this work, 3,5,6-trichloropyridinol (TCP) is used to demonstrate the immunosensor’s
performance as a model analyte [181]. Next, Zhang et al. (2010) reported CdTeQDs surface
coordination-originated FRET and a basic ligand-replacement turn-on mechanism for
highly sensitive and selective chlorpyrifos pesticide detection [182].

In the same year, Chen et al. (2010) reported cFLISA method based on QDs as the
fluorescence label coupled with Ab2 for the detection of chlorpyrifos in drinking wa-
ter [183]. However, Chen et al. (2010) modified the development of cFLISA based on QDs-
streptavidin (SA). In order to improve the sensitivity of QDs-SA-cFLISA, 3-mercaptopropyl
acid stabilized CdTeQDs and SA made via the active ester process. The work significantly
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increased the sensitivity [184]. The schematic diagram of the QDs-SA-cFLISA method
procedure in this research is shown in Figure 11.
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A previous study also reported the use of antibody and MIPs in the detection of
chlorpyrifos-based SPR method. By using a two-channel SPR biosensor, Mauriz et al. (2007)
performed multi-analyte detection of pesticides which in this design enables chlorpyrifos,
carbaryl and DDT to be determined through different formats of immobilization by using
each monoclonal antibody [185]. Yao et al. (2013) reported magnetic-MIPs nanoparticles
to amplify SPR response and increase the detection sensitivity in SPR spectroscopy [186].
In 2018, Lertvachirapaiboon et al. demonstrated chlorpyrifos detection using an SPR-
enhanced photoelectrochemical sensing system [187]. Recently, an SPR biosensor based
on an oriented antibody assembly was reported by Li et al. (2019) for the rapid detection
of chlorpyrifos residue in agricultural samples. In this study, Staphylococcal protein A
(SPA) was covalently bounded to the sensor surface with subsequent binding through
its Fc region of the antibody in an oriented fashion. The experimental procedure in this
analysis is shown in Figure 12 [188].
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The expansion of chlorpyrifos detection in optical sensors had also been developed
with the use of metal nanoparticles [151]. In chlorpyrifos analysis, popular trend by
using metal nanoparticles-based SERS method has received a lot of attention from re-
searchers [189–191]. This method showed potential for on-site environmental monitoring
applications. However, due to the competitive adsorption substrates that occur when
multiple analytes are present, SERS studies have been limited to detect fewer than five
pesticides simultaneously per time [153].

In 2018, Ouyang et al. synthesized g-C3N4/BiFeO3-NCs by a facile one step sol-gel
combustion method and employed as a peroxidase-like catalyst. The nanocomposites were
used as a colorimetric-chemiluminescent dual-readout immunochromatographic assay
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(ICA) for the multiplexed detection of chlorpyrifos and carbaryl residues based on the
catalytic activity on the luminol-H2O2 reaction. The LOD of 0.930 nM was obtained [192].

Parathion is another phosphorothioate (s =) that attracts the attention of researchers.
Few researchers have reported on the identification of parathion using the enzyme based
QDs [127,131,136]. The work presented by Zheng et al. (2011) integrated the optical
transducer of CdTe semiconductor QDs with the AChE and phenylalanine hydroxylase
(PAH) enzyme by the LbL assembly technique. The LOD obtained was 0.011 nM [122]. In
order to enhance the sensitivity, Zheng et al. (2011) modified a nanostructured biosensor
by AChE and ChOx enzymes with the same technique. The LOD has been improved down
to 0.001 nM [134].

Detection parathion by using antibody had been reported by Kumar et al. (2016).
They explored the feasibility of the nanocrystal metal organic framework [Cd(atc)(H2O)2]n
(NMOF1) as a biosensor for the specific recognition of parathion. The luminescence of
the NMOF1/anti-parathion complex then was tested for parathion detection. The results
showed that effective and stable anti-parathion bioconjugate signals by parathion had an
effect on its selectivity and sensitivity [193].

In the subsequent years, Zhao et al. (2012) prepared QDs-based MIPs composite
nanospheres via a facile and versatile ultrasonication-assisted encapsulation method. The
QDs MIP nanospheres were successfully applied to the direct fluorescence quantification
of diazinon on the basis of fluorescence quenching through template analytes (diazinon)
rebinding into the recognition cavities in the polymer matrixes. This novel technique
can selectively and sensitively detect diazinon in water down to 0.164 µM [194]. In the
following year, the detection of diazinon was expanded using the AChE enzyme by Yi et al.
(2013). In this work, a novel label-free SiQDs-based photoluminescence (PL) sensor was
developed for ultrasensitive parathion, diazinon and carbaryl detection. The LOD obtained
for parathion and diazinon were 0.112 nM and 0.222 nM, respectively [195]. Figure 13
shows SiQDs-based sensor for detection of pesticides.
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On the other hand, Chang et al. (2016) proposed AChE activity in the detection di-
azinon. They investigated a simple paper-based fluorescence sensor (PFS) based on the
aggregation induced emission (AIE) effect of tetraphenylethylene (TPE) and the addition
reaction capability of maleimide. Meanwhile, the AChE activity and OPs were obtained,
respectively [196]. In a recent year, Wang et al. (2019) developed a highly sensitive upcon-
version fluorescence biosensor for the detection of diazinon based on an AChE modulated
fluorescence ‘off-on-off’ strategy. As a result of an energy transfer effect, the luminescence
of synthesized UCNPs could be strongly quenched by Cu2+. The enzymatic hydrolyzate
(thiocholine) could seize Cu2+ from the UCNPs-Cu2+ mixture after the addition of AChE
and ATCh, resulting in the quenched fluorescence being activated [197].
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For the detection of trizophos, there have been advancements in the use of antibodies,
metal nanoparticles and enzymes-based colorimetric method [198,199]. The combination
of antibodies and metal nanoparticles has shown the highest sensitivity and selectivity in
detecting trizophos [200]. Other researchers also documented the identification of phos-
phorothiotes (s =) such as chlorpyrifos methyl, quinalphos, primiphos methyl, demeton
and fenirothion [139]. Wang et al. (2014) proposed a novel LFIA focused on three competi-
tive immunoreactions for the simultaneous identification of the pesticides imidacloprid,
chlorpyrifos-methyl and isocarbophos. This approach based on the three red channels to
detect imidacloprid, chlorpyrifos-methyl and isocarbophos, respectively (three test lines
dispensed with various capture reagents). The LOD for chlorpyrifos-methyl was obtained
at 0.310 µM [201]. In 2016, the colorimetric sensor array consisting of citrate-capped 13 nm
AuNPs was introduced by Kashani et al. to detect and discriminate several OPs such as
chlorpyrifos, primophos-methyl, fenamiphos and imidacloprid. With pattern recognition
techniques, including hierarchical cluster analysis (HCA) and linear discriminant analy-
sis (LDA), the aggregation induced spectral modifications of AuNPs upon OPs addition
had been analyzed. The LOD for chlorpyrifos and primiphos methyl were 0.685 µM
and 0.786 µM, respectively [202]. Figure 14 presents the illustration of AuNPs-based
colorimetric sensor.
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Recently, the SPR study for the identification and determination of the OPs pesticide
fenitrothion using an optical fiber sensor was performed by Kant et al. (2020). A thin layer
of silver for plasmon generation was deposited on the unclad silica optical fiber core. This
was followed by the deposition of a sensing surface comprising a layer of nanoparticles of
tantalum(V) oxide sequestered in a rGO nano-scaled matrix. In this investigation, the LOD
of 38.000 nM was achieved [203]. Although functionalization of metal nanoparticles for
the detection of phosphorothiotes (s =) has been explored and proven to be of potential,
their detection capability is still in its early stages. Further studies of phosphorothiotes (s =)
detection by optical sensors are presented in chronological framework as shown in Table 3.

Table 3. Chronological order of optical sensors for phosphorothiotes (s =) detection.

Type of
Phosphorothiotes

(s =)
Method Material Range of Detection LOD Year References

Chlorpyrifos SPR monoclonal antibody 0.051–0.154 nM 0.143 nM 2007 [185]
Chlorpyrifos cFLISA CdTe/QDs-streptavidin - 10.839 nM 2010 [183]
Chlorpyrifos Fluorescence QDs/TCP 0–2.852 nM 2.852 nM 2010 [181]
Chlorpyrifos Fluorescence CdTeQDs 0.100–10.000 nM 0.100 nM 2010 [182]
Chlorpyrifos cFLISA QDs/antibody 43.355–586.155 nM 143.187 nM 2010 [184]

Diazinon Fluorescence (CdTe/CdS) QDs 0.329–98.571 µM 0.394 µM 2010 [146]

Methyl parathion SERS AuNPs/mono-6-thio-b-cyclodextrin
with mono-6-thio-b-cyclodextrin - 0.300 µM 2010 [177]

Parathion Fluorescence PAH/CdTeQDs-AChE 0.100–1.000 µM 0.011 nM 2011 [122]
Parathion Fluorescence CdTeQDs-ChOx/AChE - 0.001 nM 2011 [134]
Diazinon Fluorescence QDs-MIP 0.164–1.971 µM 0.164 µM 2012 [167]

Methyl parathion Fluorescence CdSe/CdTeQDs-AChE 0.190–37.992 µM 0.190 µM 2012 [166]
Methyl parathion Photoluminescence CdSe/ZnSe 2MI/ZnS 8MI-QDs-AChE 0.190–30.394 nM 0.190 µM 2012 [137]

Parathion
Diazinon Photoluminescence SiQDs-AChE/ChOx 25.712 pM–2.571 µM

24.610 pM–2.461 µM 0.112 nM 0.222 nM 2013 [195]

Methyl parathion Electrochemiluminescence GNs-CdTe/QDs-AChE 0–0.570 µM 0.228 nM 2013 [168]
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Table 3. Cont.

Type of
Phosphorothiotes

(s =)
Method Material Range of Detection LOD Year References

Chlorpyrifos SPR Fe3O4@PDA NPs-AChE 0.001–10.000 µM 0.760 nM 2013 [186]
Chlorpyrifos Fluorescence Mn-ZnS NCs 0–100.000 µM 1.800 µM 2014 [143]

Methyl parathion Fluorescence CdTeQDs/
CTAB-OPH - 68.386 nM 2014 [170]

Chlorpyrifos-
methyl LFIA monoclonal antibody 0.310–18.605 µM 0.310 µM 2014 [201]

Methyl parathion Fluorescence NaYF4:Yb,Er/UCNPs-AChE - 2.545 pM 2015 [148]
Methyl parathion Fluorescence tyrosinase-carbon dots 0.100 nM–0.100 mM 0.048 nM 2015 [174]
Methyl parathion Fluorescence CdTeQDs- Trypsin - 68.386 pM 2015 [171]

Chlorpyrifos Chemiluminescent Lum-AgNP 0–68.456 µM 68.456 µM 2015 [151]
Methyl parathion Fluorescence CuInS2QDs-Pb2+ 0.100–38.000 µM 0.060 µM 2015 [175]

Methyl parathion Chemiluminescence bispecific monoclonal
antibody-HRP/ALP - 1.254 nM 2015 [172]

Methyl parathion Colorimetric gold nanorods-AChE 0.120–40.000 pM 0.039 pM 2015 [169]
Chlorpyrifos
Primophos-

methyl
Colorimetric AuNPs - 0.685 µM 0.786 µM 2016 [202]

Parathion Fluorescence CdTeQDs - 4.300 pM 2016 [131]
Methyl parathion

Chlorpyrifos SERS AuNPs 0–9.878 nM 0–7.416
nM 9.878 nM 7.416 nM 2016 [189]

Diazinon Fluorescence AIE/TPE-maleimide-AChE 0.986–1.643 nM 1.643 nM 2016 [196]
Methyl parathion Fluorescence 1, 8-naphthalimide-AChE/ChOx - 1.277 pM 2016 [152]
Trizophos Methyl

parathion Colorimetric Antibody/AuNPs - 0.064 nM 3.115 nM 2016 [198]

Parathion Fluorescence QDs-AChE - 3.433 µM 2016 [127]

Parathion Fluorescence [Cd(atc)(H2O)2]n (NMOF1)-anti
parathion 3.433 nM–3.433 µM 3.433 nM 2016 [193]

Trizophos Colorimetric GAA-MPA-AuNPs 0.500–500.000 µM 0.080 µM 2016 [199]
Chlorpyrifos SERS popcorn like AuNPs 1.000–6.250 µM 1.000 µM 2017 [190]

Methyl parathion Fluorescence MOS2-QDs - 0.3229 µM 2017 [176]
Methyl parathion Chemiluminescent bifunctional antibody- HRP/ALP - 0.220 nM 2017 [173]

Parathion Fluorescence CdSe/ZnS QDs-AChE/ChOx - 0.050 µM 2017 [136]
Trizophos Colorimetric AuNPs /mcAbs - 0.045 nM 2017 [200]

Chlorpyrifos Fluorescence g-C3N4/AuNPs-AChE - 6.900 pM 2018 [180]

Chlorpyrifos Colorimetric and
chemiluminescent dual-g-C3N4/BiFeO3 - 0.930 nM 2018 [192]

Chlorpyrifos SPR TiO2/P3HT/AuNPs 0.010–16.000 µM 7.500 nM 2018 [187]
Chlorpyrifos SPR staphylococcal protein A 0.713–142.617 nM 15.973 nM 2019 [188]
Chlorpyrifos
Coumaphos SERS AuNPs 0.003–28.523 µM

0.002–27.566 µM
28.523 µM 0.002

µM 2019 [153]

Diazinon Fluorescence UCNPs/Cu2+- AChE 0.033–164.285 nM 0.164 nM 2019 [197]
Demeton Fluorescence QDs-nanoporphyrin 38.709–77.418 nM 38.709 nM 2019 [139]

Chlorpyrifos LC–MS/MS AChE - 37.080 nM 2020 [138]
Methyl parathion SERS silver nanoparticles-Al2O3 - 1.000 fM 2020 [178]

Chlorpyrifos SERS silver nitrate 1.000 mM–1.000 nM 1.000 nM 2020 [191]
Methyl parathion SERS AuNPs - 0.004 µM 2020 [179]

Fenirothion SPR tantalum(V) oxide nanoparticles 0.250–4.000 µM 0.038 µM 2020 [203]

where LOD is limit of detection. AIE: aggregation induced emission, Al2O3: aluminum oxide, ATCH: acetylthiocholine iodide, BiFeO3:
bismuth ferrit nanocomposites, CdS: cadmium sulfide, CdSe: cadmium selenide, CdTe: cadmium tellurite, cFLISA: competitive fluorescence-
linked immunosorbent assay, CTAB: cetyltrimethylammonium bromide, CuInS2: copper indium sulfide, GAA: guanidineacetic acid,
g-C3N4: graphitic carbon nitrite, HQO: 2-hydroyquinoxaline, LC-MS/MS: liquid chromatography–mass spectrometry, LSPR: localized sur-
face plasmon resonance, Lum-AgNP: luminol-functionalized silver nanoparticle, MAbs: monoclonal antibody, MPA: 3-mercaptopropinonic
acid, MPDE: methyl parathion degrading enzyme, MWCNT: multi-walled carbon nanotubes, NCs: nanocrystal, PAH: poly(allylamine
hydrochloride), TCP: 3, 5, 6-trichloropyridid, TPE: tetraphenylethylene, TPPS4: tetrakis(4-sulfonatophenyl)porphyrin, UCNPs: upconven-
tional nanoparticles, ZnSe: zinc selenide, ZnS: zinc sulfide.

4.1.4. Phosphorothioates (S-Substituted)

As for now, there are 4 classes of phosphorothioates (s-substituted) that can be detected
using optical sensors, i.e., omethoate, prefonofos, malaoxon and azamethiphos. All of
these have separable basic functions in protecting variety of crops and home garden from
insects [204–206]. It also can be used as antiparasitic medicine in fish farming [207] and in
buildings, stores and warehouses to control flies and cockroaches [208,209].

Detection of omethoate has been extensively studied using optical sensors since
2012 [137]. Dou et al. then developed a fluorescence method by using gold-based nanobea-
con probe for the first time in 2015 to detect omethoate and isocarbophos pesticides [210].
In 2020, Zhang and the team found a colorimetric sensor to detect omethoate with the
concentration of 0.390 nM based on ALP-induced silver metallization on the surface of
gold nanorods (AuNRs) [211].
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For prefonofos detection, Dong et al. (2012) developed an SPR sensor by using MIP
ultrathin films as sensing material and anchored on a gold chip by surface-initiated radical
polymerization [212]. The gold surface was first modified by 11-mercaptoundecanoic
acid to form self-assembled monolayer (SAM). The LOD obtained was 0.964 pM [213].
Optical detection of profenofos has been expanded with omethoate detection in 2016. Tang
et al. (2016) proposed the fluorescence by synthesized CdTe/CdS core–shell QDs with
broad-specificity DNA aptamers. In this study, QDs was first conjugated by an amidation
reaction with the AMO, which is partly complementary to profenofos, omethoate and
isocarbophos pesticides DNA aptamer. Then the DNA aptamer was incubated with QDs-
labeled amino-modified oligonucleotide (QDs-AMO) to form duplex QDs-AMO-aptamer.
The LODs for profenofos and omethoate were 0.100 µM and 0.230 µM, respectively [214].
The latest study in 2020 by Abdelhameed et al. presented MOFs as an excellent material for
chemical species sensors. Eu-IRMOF-3-EBA was built up via post-synthetic modification
of IRMOF-3 with ethylbenzoylacetate followed by coordination with Eu3+ ions, and the
LOD has been successfully lowered down to 0.002 nM [215].

The optical detection of azamethiphos has been investigated by Bhasin et al. recently
(2020) through fluorescence technique where the rather higher LOD of 50.000 µM was
achieved [216]. The phosphorothioates (s-substituted) detection by the optical sensors
presented in Table 4 is arranged in chronological order.

Table 4. Chronological order of optical sensors for phosphorothioates (s-substituted) detection.

Type of
Phosphorothioates

(S-Substituted)
Method Material Range of Detection LOD Year References

Omethoate Colorimetric indoxyl acetate-R-DmAChE 4.691–46.907 µM 29.551 µM 2012 [137]

Profenofos SPR SAM/ 2,2-azobis (2-amidinopropane)
hydrochloride 0.003–0.268 nM 0.964 pM 2012 [213]

Omethoate Fluorescence gold-based nanobeacon 0.268–26.800 µM 2.350 µM 2015 [210]
Profenofos SPR MIPs-Ag - 0.007 nM 2016 [212]
Profenofos

Fluorescence CdTe/CdS-QDs (AMO-aptamer) - 0.100 µM
0.230 µM 2016 [214]Omethoate

Malaoxon Fluorescence QDs-AChE/ChOx - 0.050 µM 2017 [136]
Omethoate Colorimetric silver metallization of AuNRs-ALP - 0.390 nM 2020 [211]
Profenofos Luminescent Eu-IRMOF-3-EBA - 0.002 nM 2020 [215]

Azamethiphos Fluorescence
8-((E)-((thiophen-2-yl)methylimino)methyl)-
7-hydroxy-4-methyl-2H-chromen-2-one (L)

to copper (II) ion
0–50.000 µM 50.000 µM 2020 [216]

where LOD is limit of detection. AuNRs: gold nanorods, AMO: amino-modified oligonucleotide, CdSQDs: cadmium sulfide quantum dots,
CdTe: cadmium tellurite, EBA: ethylbenzoylacetate, Eu: europium, MOF: metal organic framework, R-DmAChE: recombinant Drosophila
melanogaster acetylcholinesterase.

4.1.5. Phosphorodithioates

This section includes several examples of phosphorodithioates class such as malathion,
dimethoate, phosmet, ethion, posalone, carbophenothion, azinphos methyl, ethoprophos
and methidathion. Randomly, the application for all these insecticides are used for
mosquito control [217], control a variety of insects that attack fruits, vegetables, land-
scaping plants and shrubs and also act as acarida [218,219]. It also can be used on pets to
control ticks and insects, such as fleas and ants [220–228].

The research for this class has been started back in 2015 where Meng et al. reported
a colorimetric method based on the irreversible inhibition of AChE activity to detect
malathion with the sensitivity of 0.303 µM [229]. Another attempt by Biswas et al. (2016)
used gold nanorods as enzyme mimetics, where a slightly lower sensitivity, i.e., 0.005 mM
was obtained [230]. The detection of malathion without involving any enzymes was also
started in 2015. Carlos et al. first developed SERS to detect malathion in the peels of
tomatoes and Damson plums by multivariate curve resolution, and the LOD obtained was
0.372 µM [231]. Singh et al. (2017) used colorimetric assay with palladium-gold nanorod as
nanozyme where the LOD has been lowered to 181.621 nM [232].



Sensors 2021, 21, 3856 19 of 39

For optical detection of phosmet residues, Lina et al. (2017) synthesized a PDs-Ab probe
by coupling phosmet antibody with PDs based on poly [2-methoxy-5-(2-ethylhexyloxy)-1,
4-(1-cyanovinylene-1, 4-phenylene)] to obtain the LOD of 0.126 nM [233]. Cakir et al. (2019)
investigated SPR sensor chip nanofilms using MIPs of P(EGDMA-MATrp) for the detection of
dimethoate with concentration as low as 0.037 nM [234]. The chronological development of
phosphorodithioates detection by optical sensors is presented in Table 5.

Table 5. Chronological order of optical sensors for phosphorodithioates detection.

Type of
Phosphorodithioates Method Material Range of Detection LOD Year References

Malathion Colorimetric IPA/sol-gel derived silica inks-AChE 0–10.000 µM 0.001 µM 2009 [121]
Malathion SERS MCR-WALS 0.372–37.232 µM 0.372 µM 2015 [231]
Malathion Colorimetric dithiobis-nitrobenzoic acid-AChE 0–24.216 µM 0.303 µM 2015 [229]

Dimethoate Fluorescence NaYF4:Yb,Er/UCNPs-AChE 0.009–87.237 nM 0.292 nM 2015 [148]
Malathion Colorimetric gold nanorods- HRP 0.003–1.816 mM 0.005 mM 2016 [230]
Malathion Colorimetric palladium-gold 0.003–605.404 nM 181.621 nM 2017 [232]
Malathion Fluorescence QDs-AChE/ChOx 0.001–0.100 µM 0.05 µM 2017 [137]

Phosmet Fluorescence
PDs/Ab based poly

[2-methoxy-5-(2-ethylhexyloxy)-1,
4-(1-cyanovinylene-1, 4-phenylene)]

0.007–0.126 nM 0.126 nM 2017 [233]

Carbophenothion

SERS AuNPs

0.003–29.167 µM 0.292 µM

2019 [153]
Malathion 0.003–30.270 µM 0.327 µM
Phosalone 0.003–27.188 µM 2.717 µM
Phosmet 0.003–31.515 µM 0.315 µM

Dimethoate Fluorescence QDs-nanoporphyrin 0.044–0.630 µM 0.044 µM 2019 [139]
Dimethoate SPR P(EGDMA-MATrp) 0.040–4.360 nM 0.033 nM 2019 [234]

Ethion Luminescent Eu-IRMOF-3-ethylbenzoylacetate - 0.003 nM 2020 [215]

where LOD is limit of detection. DMOAP: dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, Eu: europium, GNRs:
gold nanorods, GOPs: (3-glycidyloxypropyl)trimethoxysilane, IPA: idophenyl acetate, LC: liquid crystal, LSPR: localized surface plas-
mon resonance, MCR-WALS: multivariate curve calibration-weighted alternating least square, MOF: metal organic framework, PDDA:
polyelectrolyte polydiallydimethylammonium chloride, PDs: polymer dots, UCNPs: upconventional nanoparticles.

4.1.6. Phosphoramidates

Phosphoramidates are used to control a wide variety of nematode (round worm)
pests [235]. Nematodes can live as parasites on or within a plant. They may be free living or
associated with cyst and root-knot formations in plants [236]. Fenamithion and fenamiphos
are the types of phosphoramidates that can be detected using optical sensors [202]. The
optical detection work was started in 2009, where Qu et al. developed fluorescence spec-
troscopic technique using supramolecular nano-sensitizers combining of CdTeQDs and
p-sulfonatocalix[4]arene [237]. Then, Cui et al. (2011) produced rhodamine B (RB) modified
RB-AgNPs-based fluorescence and colorimetric probe to detect fenamithion with a better
LOD of 10.000 nM [238]. Chronological phosphoramidates detection by optical sensors is
tabulated in Table 6.

Table 6. Chronological order of optical sensors for phosphoramidates detection.

Type of
Phosphoramidates Method Material Range of

Detection LOD Year References

Fenamithion Luminescence CdSeQDs -p-sulfonatocalix[4]arene 0–100.000 µM 0.012 µM 2009 [237]

Fenamithion Fluorescence and
colorimetric RB-AgNPs - 10.000 nM 2011 [238]

Fenamiphos Colorimetric AuNPs - 0.247 µM 2016 [202]

where LOD is limit of detection. AuNPs: gold nanoparticles, CdSeQDs: cadmium tellurite quantum dots, RB-AgNPs: rhodamine-silver
nanoparticles.

4.1.7. Phosphoramidothioates

The classes of phosphoramidothioates that can be detected by optical sensors are
methamidophos, isocarbophos and acephate [136,201,210,214]. They are highly active, sys-
temic insecticide/acaricide/avicide residual OPs with contact and stomach effect [239]. The
applications are to control a variety of leaf-eating and soil insects in crops. It is capable of
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managing different forms of pests such as aphids, spider mite, borers and rollers [240,241].
The mode of action this insecticide in insects and mammals are to reduce the activity of
necessary enzyme for the functioning of the nervous system called AChE [242]. Most of
the sensing systems discussed so far have been based on this enzyme because its abil-
ity to recognize insecticides molecules by inhibited the enzyme activity with present of
insecticides. Its effectiveness is proven in detecting phosphoramidothioates with the low-
est LOD [152]. The chronological details of phosphoramidothioates detection by optical
sensors are presented in Table 7.

Table 7. Chronological order of optical sensors for phosphoramidothioates detection.

Type of
Phosphoramidothioates Method Material Range of Detection LOD Year References

Methamidophos Colorimetric indoxyl acetate-R-DmAChE - 223.955 µM 2012 [136]
Acephate Colorimetric Fe3O4(MNP)-AChE/ChOx - 0.005 mM 2013 [140]

Isocarbophos LFIA monoclonal antibody 0.346–20.740 µM 0.346 µM 2014 [201]
Isocarbophos Fluorescence gold-based nanobeacon - 0.035 µM 2015 [210]

Acephate Fluorescence 1, 8-naphthalimide-AChE/ChOx - 0.006 nM 2016 [152]
Isocarbophos Fluorescence CdTe/CdS-QDs(aptamer) - 0.170 µM 2016 [214]

where LOD is limit of detection. CdS: cadmium sulfide, CdTe: cadmium tellurite, MNP: magnetic nanoparticle, R-DmAChE: recombinant
Drosophila melanogaster acetylcholinesterase.

4.1.8. Phosphonofluoridates

In phosphonofluoridates, only sarin has been reported to be detected by optical
sensor. It is a chemical warfare agent and it is known as a nerve agent, which is the most
dangerous and fast acting nerve agents [243]. They are similar to OPs insecticides in terms
of how they act and what kind of harmful effects they cause [244]. Sarin is also known
as GB [245]. Detection of sarin by using the AChE enzyme expanded with the detection
of soman and paraoxon [140]. Sun et al. (2011) developed a colorimetric sensing system
based on the catalytic reaction of AChE and the aggregation of LA capped AuNPs for
OPs nerve agents. In this technique, the LOD for soman, sarin and paraoxon in a spiked
fruit sample were obtained as low as 15.000 pM, 28.200 pM and 0.452 mM [246]. Like
previously mentioned, enzyme-based sensors can also be conjugated with other support
platforms such as QDs [122], fluorophore dye [123] and graphitic carbon nitride [192].
Phosphonofluoridates detection by optical sensor chronologically is presented in Table 8.

Table 8. Chronological order of optical sensor for phosphonofluoridates detection.

Type of Phosphonofluoridates Method Material Range of Detection LOD Year References

Sarin Colorimetric LA-AUNPs-AChE 28.200–225.000 pM 28.200 pM 2011 [246]
Sarin Colorimetric Fe2O3-MNPs-AChE - 1.000 nM 2013 [140]

where LOD is limit of detection. Fe2O3: iron(III) oxide, MNPs: magnetic nanoparticles, LA: lipoic acid.

4.2. Carbamates

Classification of pesticides by carbamates (CMs) is simpler as compared with organophos-
phates (OPs). Since certain CMs have structural similarities to the neurotransmitter ACh
and thus induce direct stimulation of ACh receptors in addition to the inactivation of AChE.
Carbamates are considered to be safer than OPs insecticides that irreversibly inhibit AChE
that can cause more severe cholinergic poisoning [108]. However, CMs and OPs insecticides
are frequently used in combination, with the goal of achieving synergistic interaction and
controlling a wide range of insects, including those resistant. Hence, exposure to numerous
pesticides for the ecosystem as well as humans and animals is inevitable [247]. The application
for carbamates is to destroy infectious or ingested insects [248,249], mites and nematodes in
variety of crop [250,251]. It also can used to control aphids, thrips, midges, mosquitoes, larvae,
soil insects, spider mites in ornamentals, fruits, vines and grasslands [252–255].
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Optical detection of carbamates started with detection of methomyl classes in 2007.
Li et al. developed luminescent and stable CdTeQDs in sol-gel-derived composite silica
spheres and coated with 5,11,17,23-tetra-tert-butyl-25,27-diethoxy-26,28-dihydroxycalix
[4]arene(C[4]/SiO2/CdTe) via the sol-gel technique in aqueous media and the LOD ob-
tained was 0.08 µM [256]. For carbofuran, it started in 2009 where Guo et al. examined
the simultaneous detection of carbofuran and triazophos with two gold-based lateral-flow
strips (strip A and strip B). This study showed that the LOD for carbofuran and triazophos
were 32.000 µM and 4.000 µM, respectively [257]. The optical detection of carbaryl started
in 2005. Mauriz et al. studied carbaryl using a portable immunosensor based on SPR tech-
nology in natural water samples. The assay was based SAM immobilized with monoclonal
antibody. The detection limits obtained was 6.858 mM [258]. The detection of carbaryl has
been further developed by Sun et al. (2013) where they combined the intriguing optical
properties with the inherent zeta potential induced instability properties of p-amino ben-
zenesulfonic acid (PABSA)-AuNPs, based on colorimetric method for detection of carbaryl.
The LOD was successfully lowered to 0.250 µM. Figure 15 represents the illustration of
carbaryl sensor based on PABSA-AuNPs [259].
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A few years later, Zhang et al. (2015) developed a fluorescence sensor based on QDs
and with specific recognition for CdSe/ZnS QDs@MIPs. The method developed was
simple and efficient for detecting carbaryl with a detection limit of 0.147 µM [260]. Recently,
Chiner et al. (2020) developed piezoelectric immunosensors based on high fundamental
frequency quartz crystal microbalance (HFF-QCM) for detection of carbaryl and DDT in
honey. The biorecognition was based on competitive immunoassays using monoclonal
antibodies as specific immunoreagents in the conjugate-coated format. The LOD obtained
was 0.248 nM [261]. Shahdost-farda et al. (2020) established a fluorescence method for
the detection of carbaryl in Iranian apple using CdTeQDs nanoprobe with the LOD of
0.596 nM [262]. Another biosensor based on the fluorescence approach for determining
carbaryl was also reported in 2020. In this study, the researchers prepared B, N-doped
CQDs by hydrothermal method. It was found that the florescence of CQDs could be
effectively quenched by AuNPs. The fluorescence response with the LOD obtained was
0.298 nM [263]. In the same period, Minh and co-workers constructed a biosensor based on
colorimetry to determine carbaryl. The research involved synthetization of Ag@rGO by a
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simple photochemical process with the GO nanosheets as both stabilizing and reducing
agent. This system could susceptibly detect carbaryl with the lowest concentration of
42.000 nM [264].

There were only a few studies of detection for metolcarb, aldicarb and carbendazim.
Zeng et al. (2015) synthesized NOC4 by clicking on a microstructured Au surface and using
contact angle measurements to exhibit selective macroscopic recognition of metolcarb. In
this study, the LOD was obtained for metolcarb at 0.100 µM [265]. In 2019, Chen et al. syn-
thesized AuNPs-based SERS methods for the detection and quantification of carbendazim
in Oolong tea with the LOD of 0.523 µM [266]. Consequently, Li et al. (2019) investigated
an SPR biosensor for the carbendazim using Au/Fe3O4 nanocomposite as an amplifying
label on the surface the carboxymethyldextran-coated gold layer of the sensor. The surface
was further modified with a monoclonal antibody to detect carbendazim. Immobilized
Au/Fe3O4 nanocomposites on the SPR biosensor enhance the SPR curve through an in-
tensity change, which increases the sensitivity down to 2.301 nM. Figure 16 shows the
illustration of the principle SPR technology by Au/Fe3O4 nanocomposites coupled with
antibody [267].
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However, the use of AChE enzyme in the detection of carbamates is not as much
as OPs [121,137,138,195]. Most recently, researchers are exploring the potential of
metal nanoparticles, antibodies and MIPs for the development of carbamates detec-
tion [151,153,185,192,234]. Chronological timeline of carbamates detection by optical
sensors is tabulated in Table 9.
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Table 9. Chronological order of optical sensors for carbamates detection.

Type of Carbamates Method Material Range of Detection LOD Year References

Carbaryl SPR SAM/mAbs - 6.858 mM 2005 [258]
Carbaryl SPR mAbs 0.089–0.268 nM 0.248 nM 2007 [185]

Methomyl Fluorescence C[4]/SiO2/CdTe - 0.080 µM 2007 [256]
Carbofuran

LFIA
anti-carbofuran 0–128.000 µM 32.000 µM

2009 [257]Trizophos anti-trizophos 0–32.000 µM 4.000 µM
Bendiocarb

Colorimetric idophenyl acetate-AChE 0–10.000 nM
0.001 µM

2009 [121]Carbaryl 10.000 nM
Carbofuran

Colorimetric indoxyl acetate-R-DmAChE 0.005–45.197
µM0.006–61.648 µM

27.118 µM
2012 [137]Methomyl 1.726 µM

Carbaryl Photoluminescence SiQDs-AChE/ChOx 0.037–3722.29 nM 0.037 nM 2013 [195]
Carbaryl Colorimetric PABSA-AuNPs 0.100 nM–1 mM 0.250 µM 2013 [259]
Carbaryl Fluorescence CdSe/ZnSQDs - 0.147 µM 2015 [260]

Metolcarb Fluorescence NOC4 0.100 nM–1.000 mM 0.100 µM 2015 [265]

Carbaryl
Chemiluminescent Lum-AgNP

0–4.970 µM 4.970 µM
2015 [151]0–108.472 µM 108.472 µMCarbofuran

Carbaryl Colorimetric and
chemiluminescent dual-g-C3N4/BiFeO3 0.005–0.298 µM 0.164 nM 2018 [192]

Carbofuran SERS AuNPs
0.005–45.197 µM 0.904 µM

2019 [153]0.006–61.648 µM 0.123 µMMethomyl
Carbendazim SERS AuNPs 0–52.305 µM 0.523 µM 2019 [266]
Carbofuran SPR P(EGDMA-MATrp) - 0.032 nM 2019 [234]

Carbendazim SPR AuNPs- Fe3O4/mAbs 0.262–784.572 nM 2.301 nM 2019 [267]
Aldicarb

Carbofuran Carbofuran-3
hydroxy
Carbaryl

Liquid
Chromatography

Tandem Mass
Spectrometry

AChE

- 0.039 µM

2020 [138]
- 0.007 µM
- 5.901 pM
- 0.007 µM

Carbaryl HFF-QCM mAbs 0.497 pM–4.970 nM 0.248 nM 2020 [261]
Carbaryl Fluorescence CdTeQDs - 0.596 nM 2020 [262]
Carbaryl Fluorescence CQDs-AuNPs-AChE 0.994–745.453 nM 0.298 nM 2020 [263]
Carbaryl Colorimetric silver reduced-graphene oxide 0.100–50.000 µM 42.000 nM 2020 [264]

where LOD is limit of detection. CdSe: cadmium selenide, c[4]/SiO2/CdTe: 5, 11, 17, 23-tetra-tert-butyl-25, 27-diethoxy-26, 28-
dihydroxycalix[4]arene/ silicon dioxide/cadmium tellurite, g-C3N4/BiFeO3: graphitic carbon nitrite/bismuth ferrite nanocomposite, HFF-
QCM: high fundamental frequency quartz crystal microbalance, LFIA: lateral flow immunoassay, Lum-AgNP: luminol-functionalized silver
nanoparticles, NOC4: naphthol-appended calix[4]arene, P(EGDMA-MATrp): ethylene glycol dimetacrylate-N-metacryloyl-(L)-tryptophan
methyl ester-p, R-DMAChE: recombinant Drosophila melanogaster acetylcholinesterase, Re(I)-NCS-Pt(II): [Re(4,4′-di-tert-butyl-2,2′-
bupryridine)(CO)3(NCS)], SERS: surface-enhanced Raman spectroscopy, SiQDs: silicon quantum dots, PABSA: 4-acetamidobenzenesulfonyl
azide, ZnSQDs: zinc selunide quantum dots.

4.3. Neonicotinoids

The EPA classifies neonicotinoids as both toxicity class II and class III agents and is
labelled with the signal term “Warning” or “Caution.” These insecticides are more specifi-
cally toxic to insects than to mammals because neonicotinoids block a specific neuronal
pathway that is more prevalent in insects than in warm-blooded animals [268]. Thus, the
use of neonicotinoids such as acetamiprid, thiacloprid, imidacloprid and chlorothalonil
are increasing throughout the year in controlling insects. Usually neonicotinoid is used in
agriculture. It is a wide-spectrum pesticide that can be used on plants, from leafy vegetables
and fruit trees to ornamental plants [269]. Specifically it can be used in seed treatment
and managing crops disease [270]. Other than that, neonicotinoids can be used to control
insects in households and prevent sucking insects on pets [271]. It is an effective element
for controlling a wide range of pests that are otherwise difficult to control [272].

Optical detection of Neonicotinoids was started in 2014 for the acetamiprid classes
where Weerathunge et al. investigated the colorimetric biosensing assay to integrate with
the intrinsic peroxidase-like nanozyme activity of high affinity GNPs [273]. In the following
year, Yang et al. developed the heminfunctionalized reduced graphene oxide (hemin-
rGO) composites in the colorimetric method. [274]. For the next reporting period, a novel
aptamer-based nanosensor was reported by Hu et al. (2016) for the detection of acetamiprid
using FRET between NH2-NaYF4:Yb, holmium silica dioxide (Ho@SiO2) UCNPs and
AuNPs [275]. In the same year, Lin et al. (2016) constructed a novel turn-on sensor for
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quantification and imaging of acetamiprid. The ZnS:Mn-aptamer acetamiprid aptamer-
modified probe was obtained by conjugating ZnS:Mn QDs with the acetamiprid binding
aptamer. Multi-walled carbon nanotubes (MWCNTs) dependent on FRET between ZnS:Mn-
Aptamer and MWCNTs have been switched off by the fluorescence of the probe [276].

Several attempts have been made to detect acetamiprid by using AuNPs. Xu et al.
(2011) developed a method based on the strong interaction of the cyano group of ac-
etamiprid with AuNPs for the identification of the insecticide acetamiprid [277]. Then,
Shi et al. (2013) developed an aptamer-based colorimetric method for highly sensitive
acetamiprid detection, taking advantage of the sensitive target-induced color changes that
occurred during AuNP aggregation from interparticle plasmon coupling [278]. Next, Yan
et al. (2014) investigated the sensing approach based on the inner filter effect (IFE) of
AuNPs on RF-QDs for the visual and fluorescent detection of acetamiprid. AuNPs that are
based on IFE could quench the photoluminescence intensity of RF-QDs [279]. A few years
later, Qi et al. (2016) reported chemiluminescence sensing for detection of acetamiprid
based on the high binding affinity of aptamer to target and the relevance between the
morphology of AuNPs and its catalytic effect in the presence of H2O2 and luminol to
stimulate chemiluminescence generation. The proposed pesticide residue sensing platform
showed a high acetamiprid sensitivity with a detection limit of 62.000 pM [280]. Schematic
illustration of the proposed chemiluminescence assay for acetamiprid detection is shown
in Figure 17. In the same year, Tian et al. investigated the impact of shortening aptamer
sequences on acetamiprid colorimetric detection using aptamer-wrapped AuNPs [281]. In
2020, Qi et al. constructed by the direct and receptive response to the aptamer structure
shift induced by acetamiprid of positively charged gold nanoparticles (+) AuNPs [282].
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tion [280].

Several studies have revealed the detection of acetamiprid by using AChE and strep-
tavidin. In 2013, Hai et al. presented the new findings of the biosensor made from
surface-modified quantum dots of AChE enzymes for optical pesticide detection. In this
analysis, CdTe, CdSe/ZnS and CdSe/ZnSe/ZnS-thick shell QDs are new to the QDs de-
scribed. The findings showed that all the QDs in the biosensor are fit for the position of
transducers. Streptavidin-AChE QDs are used in biosensors as a substrate for pesticide
detection. Methyl parathion and acetamiprid are the pesticides used in this work. The
ATCh is used as an indicator of the activity of the AChE enzyme. Through this study, the
LOD was 4.491 nM [283]. Abnous et al. (2016) described the insecticide acetamiprid by an
aptamer-based fluorescence. It is based on the target induced release from the aptamer/CS
conjugate of the fluorescence in-labelled complementary strand of the aptamer (CS) double
stranded DNA (dsDNA). Three types of nanoparticles were used with opposite effects on
the fluorophore (FAM). These include Streptavidin-coated AuNPs, single-walled carbon
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nanotubes (SWNTs) and silica nanoparticles (SiNPs). The assay was highly selective for
acetamiprid and has a LOD as low as 127.000 pM [284].

Optical detection of thiacloprid and imidacloprid was began by Li et al. (2014) where
they developed a bi-enzyme tracer direct dc-ELISA based on anti-imidacloprid and anti-
thiacloprid antibodies. Under the optimized conditions, the LODs for thiacloprid and
imidacloprid were obtained at 0.017 µM and 0.008 µM, respectively [285]. In recent year,
Tan et al. (2020) applied monoclonal antibody 4D9, colloidal gold (CGN) and time-resolved
fluorescence nanobeads (TRFN), respectively, to develop a LFIA for imidacloprid detection
in the present work [286]. Lastly, Zhao et al. (2020) proposed a paper-based SERS ampli-
fied by virtues of multi-layered plasmonic coupling amplification. The SERS multi-layer
was constructed by 3D silver dendrites (SD)/ electropolymerized molecular identifiers
(EMIs)/AgNPs sandwich hybrid with multiple hot spots and a strong electromagnetic field
in nanogaps. This fabricated SERS paper chips demonstrated impressive specificity and
ultrahigh sensitivity in the detection of imidacloprid, with a LOD as low as 0.110 nM [287].
This section demonstrates nanoparticles for neonicotinoids detection-based sensors can be
promising and cost efficient techniques. Neonicotinoids detection by optical sensors based
on the chronological order is presented in Table 10.

Table 10. Chronological order of optical sensors for neonicotinoids detection.

Type of
Neonicotinoids Method Material Range of

Detection LOD Year References

Acetamiprid Luminescence CdTeQDs and p sulfonatocalix[4]arene 0–1000.000 µM 0.034 µM 2009 [237]
Acetamiprid Colorimetric AuNPs 0.660–6.600 µM 0.044 µM 2011 [277]
Acetamiprid Fluorescence CdSe/ZnSe/ZnS QDs-AChE 0.225–44.910 nM 4.491 nM 2013 [283]
Acetamiprid Colorimetric AuNPs-ABA 0.075–7.500 µM 0.005 µM 2013 [278]
Acetamiprid Colorimetric AuNPs 0.449–44.910 µM 0.449 µM 2014 [273]
Thiacloprid

ELISA
Anti-thiacloprid 0–0.723 µM 0.017 µM

2014 [285]Imidacloprid Anti-imidacloprid 0–0.228 µM 0.008 µM
Acetamiprid Fluorescence AuNPs 0.112–22.455 µM 75.448 µM 2014 [279]
Imidacloprid Chemiluminescence bispecific monoclonal antibody-HRP/ALP - 0.001 µM 2015 [172]
Acetamiprid Colorimetric hemin-reduced graphene oxide 0.100–10.000 µM 40.000 nM 2015 [274]
Acetamiprid Fluorescence NH2-NaYF4: Yb, Ho@SiO2/UCNPs/GNPs - 0.003 µM 2016 [275]
Acetamiprid Fluorescence ZnS:Mn-aptamer and MWCNTs 0–150.000 nM 0.700 nM 2016 [276]
Acetamiprid Fluorescence AuNPs/SWNTs/SiNPs-streptavidin 0–1000.000 nM 127.000 pM 2016 [284]
Imidacloprid Colorimetric AuNPs-AChE 0.156–1.565 µM 0.939 µM 2016 [202]
Acetamiprid Chemiluminescence AuNPs 0.800 nM–0.630 µM 62.000 pM 2016 [280]
Acetamiprid Colorimetric AuNPs 0–50.000 µM 0.400 µM 2016 [281]
Imidacloprid Chemiluminescent bispecific antibody-HRP/ALP - 0.227 nM 2017 [173]
Acetamiprid Colorimetric AuNPs - 0.560 nM 2020 [282]
Imidacloprid LFIA monoclonal antibody 0–78.229 pM 78.229 pM 2020 [286]
Imidacloprid SERS AgNPs 0–0.110 nM 0.110 nM 2020 [287]

where LOD is limit of detection. CdSe: cadmium telluride, CdTe: cadmium selenide, ELISA: enzyme-linked immunosorbent assay, LFIA:
lateral flow immunoassay, Mn: manganese: MWCNTs: multi-walled carbon nanotubes, SiO2: silicon dioxide, UCNPs: upconventional
nanoparticles, ZnS: zinc sulfide, ZnSe: zinc selenide.

4.4. Pyrethroids/Pyrethrins

Synthetic pyrethroids/pyrethrins are commonly used because of their selective insecti-
cidal action, rapid biotransformation and excretion by the class catabolism mechanism and
their surrounding environment and the broad-spectrum pest control agents in agricultural
production. The use of these insecticides also leads to devastating effects for humans [288].
There are a variety of applications to control a wide range of pests. It is primarily used to
handle the various insects and mites that infest fruit plants, vegetables and other crops [289].
They also can regulate plagues include aphids, beetles from Colorado and larvae from
butterflies [290]. They also can be used in against cockroaches, fleas and termites in houses
and other buildings [291–293].

The earliest study in optical detection of pyrethroids/pyrethrins classes is cyhalothrin.
In 2010, Li et al. reported the MIPs-based fluorescence nanosensor which is developed
by anchoring the MIPs layer on the surface of silica nanospheres embedded CdSeQDs
via a surface molecular imprinting process [294]. In 2016, MIPs-SiO2-based fluorescence
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was reported by Wang et al., which could detect λ-cyhalothrin in water samples quickly
and effectively [295]. In the same year, Wei et al. developed fluorescence method by
using octadecyl-4-vinylbenzyl-dimethyl-ammonium chloride (OVDAC) as a surfactant to
transfer aqueous CdTeQDs to detect λ-cyhalothrin [296].

Previous research has shown that the detection of cyphenothrin was started by Ren
et al. (2014). They fabricated MIPs material and successfully utilized it to develop a
QDs-based MIPs-coated composite for selective recognition of the template cyphenothrin
as highlighted in Figure 18 [297]. On the other hand, Xiaou et al. (2015) demonstrated
fluorescence quenching properties of cypermethrin MIPs-QDs. In this analysis as proven
that it is possible to use the ELISA approach based on MIPs-QDs to successfully detect
residual cypermethrin [298]. In this section, MIPs have been widely reported to be able to
detect pyrethins/pyrethroids at high sensitivity and selectivity. However, this technique
also has some drawbacks that will discuss further. The details about pyrethroids/pyrethrins
detection by optical sensors are presented in Table 11 by chronological order.

Sensors 2021, 21, x FOR PEER REVIEW 28 of 42 
 

 

by using octadecyl-4-vinylbenzyl-dimethyl-ammonium chloride (OVDAC) as a surfactant 
to transfer aqueous CdTeQDs to detect λ-cyhalothrin [296]. 

Previous research has shown that the detection of cyphenothrin was started by Ren 
et al. (2014). They fabricated MIPs material and successfully utilized it to develop a QDs-
based MIPs-coated composite for selective recognition of the template cyphenothrin as 
highlighted in Figure 18 [297]. On the other hand, Xiaou et al. (2015) demonstrated fluo-
rescence quenching properties of cypermethrin MIPs-QDs. In this analysis as proven that 
it is possible to use the ELISA approach based on MIPs-QDs to successfully detect residual 
cypermethrin [298]. In this section, MIPs have been widely reported to be able to detect 
pyrethins/pyrethroids at high sensitivity and selectivity. However, this technique also has 
some drawbacks that will discuss further. The details about pyrethroids/pyrethrins detec-
tion by optical sensors are presented in Table 11 by chronological order. 

 
Figure 18. The preparation of MIPs-coated QDs [297]. 

Table 11. Chronological order of optical sensors for pyrethroids/pyrethrins detection. 

Type of Pyrethroids/Pyrethrins Method Material Range of Detection LOD Year References 
Cyhalothrin Fluorescence MIPs-CdSe/SiO2 0.100–1000.000 μM 0.101 μM 2010 [294] 

Cyphenothrin Fluorescence MIPs-Mn doped ZnS QDs 0.100–80.000 μM 9.000 μM 2014 [297] 
Cypermethrin ELISA MIPs-QDs - 0.003 μM 2015 [298] 

Cyhalothrin Fluorescence SiO2-MIPs 0–1.500 μM 
10.260 

nM 
2016 

[295] 

Cyhalothrin Fluorescence OVDAC/CdTeQDs 0.100–16.000 μM 0.030 μM 2016 [296] 
Permethrin 

SERS AuNPs 
0.002–25.557 μM 0.002 μM 

2019 
[153] 

Transfluthrin 0.002–26.943 μM 2.694 μM 
where LOD is limit of detection. CdSe: cadmium telluride, CdTe: cadmium selenide, ELISA: enzyme-linked immuno-
sorbent assay, Mn: manganese, MIP: molecular imprinted polymer, OVDAC: octadecyl-4-vinylbenzyl-dimethytammo-
nium, SiO2: silicon dioxide. 

4.5. Organochlorines 
Organochlorines (OC) pesticides are commonly used as synthetic pesticides all over 

the world. They belong to a group of derivatives of chlorinated hydrocarbons with broad 
applications in the chemical industry and agriculture. They are acknowledged for their 
high toxicity, slow degradation and bioaccumulation. Although some of the OC com-
pounds in developing countries have been banned, the use of these agents still increased 
[299,300]. The application of organochlorine are to fight malaria, typhus and the other 
insect-borne human diseases [301]. Another application was used to treat scabies and lice. 
It is also used in agriculture for controlling pest on variety of crops [302,303]. In house-
holds, it can be used in mothproofing to clothes and carpets [304]. In the optical detection 
of OC, antibody is one of the recognition elements that have been selected as reported 
before for others insecticide detection. The use of this antibody usually required for spec-
ificity considerations [185,263,305]. Only Kubackova et al. (2015) identified the OC pesti-
cides aldrin, endosulfan, lindane and dieldrin using SERS by functionalized metal nano-
particles [306]. Chronological range of OC detection by optical sensors to the present day 
is presented in Table 12. 

Table 12. Chronological order of optical sensors for organochlorines detection. 

Figure 18. The preparation of MIPs-coated QDs [297].

Table 11. Chronological order of optical sensors for pyrethroids/pyrethrins detection.

Type of
Pyrethroids/Pyrethrins Method Material Range of Detection LOD Year References

Cyhalothrin Fluorescence MIPs-CdSe/SiO2 0.100–1000.000 µM 0.101 µM 2010 [294]
Cyphenothrin Fluorescence MIPs-Mn doped ZnS QDs 0.100–80.000 µM 9.000 µM 2014 [297]
Cypermethrin ELISA MIPs-QDs - 0.003 µM 2015 [298]
Cyhalothrin Fluorescence SiO2-MIPs 0–1.500 µM 10.260 nM 2016 [295]
Cyhalothrin Fluorescence OVDAC/CdTeQDs 0.100–16.000 µM 0.030 µM 2016 [296]
Permethrin

SERS AuNPs
0.002–25.557 µM 0.002 µM

2019 [153]Transfluthrin 0.002–26.943 µM 2.694 µM

where LOD is limit of detection. CdSe: cadmium telluride, CdTe: cadmium selenide, ELISA: enzyme-linked immunosorbent assay, Mn:
manganese, MIP: molecular imprinted polymer, OVDAC: octadecyl-4-vinylbenzyl-dimethytammonium, SiO2: silicon dioxide.

4.5. Organochlorines

Organochlorines (OC) pesticides are commonly used as synthetic pesticides all over
the world. They belong to a group of derivatives of chlorinated hydrocarbons with broad
applications in the chemical industry and agriculture. They are acknowledged for their high
toxicity, slow degradation and bioaccumulation. Although some of the OC compounds in
developing countries have been banned, the use of these agents still increased [299,300].
The application of organochlorine are to fight malaria, typhus and the other insect-borne
human diseases [301]. Another application was used to treat scabies and lice. It is also
used in agriculture for controlling pest on variety of crops [302,303]. In households, it
can be used in mothproofing to clothes and carpets [304]. In the optical detection of
OC, antibody is one of the recognition elements that have been selected as reported
before for others insecticide detection. The use of this antibody usually required for
specificity considerations [185,263,305]. Only Kubackova et al. (2015) identified the OC
pesticides aldrin, endosulfan, lindane and dieldrin using SERS by functionalized metal
nanoparticles [306]. Chronological range of OC detection by optical sensors to the present
day is presented in Table 12.
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Table 12. Chronological order of optical sensors for organochlorines detection.

Type of Organochlorines Methods Materials LOD Year References

DDT SPR anti-DDT monoclonal antibody (LIB-DDT5.25) 0.141 nM 2007 [185]
Dieldrin

SERS
alkyl dithiol-functionalized metal

nanoparticles-induced plasmonic hot spots

0.123 µM

2015 [306]
Aldrin 0.418 µM

Endosulfan 3.534 µM
Lindane 0.830 µM

DDT HFF-QCM anti-DDT monoclonal antibody 0.068 nM 2020 [261]

where LOD is limit of detection. HFF-QCM: high fundamental frequency quartz crystal microbalance, SERS: surface enhanced Raman
scattering, SPR: surface plasmon resonance.

5. Analysis and Conclusions

In the past decades, the wide application of insecticides in the agriculture industry has
caused negative impacts in human health through various mechanisms of action. In order
to achieve a good solution to this problem, highly sensitive detection of insecticides residues
is very important. Based on the review provided, optical sensors such as fluorescence,
colorimetric, SERS, SPR and chemiluminescence have attracted tremendous attention
from researchers to be used for the detection of insecticides. Refering to the work that
has been discussed, the stability and accuracy of this optical sensor can be improved by
identifying the appropriate recognition system for the selected analyte. For instance, the
bi-enzyme cascade catalytic format has the advantage of multi-signal amplification that
greatly enhances the sensitivity of the sensor. In addition, using monoclonal, polyclonal
and recombinant antibody against a particular target also can enhance sensitivity and
selectivity. Furthermore, in detecting pesticides, MIPs was reported to have advantages as
artificial receptors in the QDs and it causes high affinity in the reaction phase. The use of
aptamers is also considered to have high stability and sensitivity in identifying insecticides.

Although these optical methods have shown good performance in detecting insec-
ticides when incorporated with recognition elements, there are still many sustainable
challenges that need to be tackled in the region. In particular, most of these optical sen-
sors studies remain in laboratory research and are not used in practical applications. The
challenges from the surrounding environment such as temperature and pH can affect the
stability of the enzyme and antibody during the recognition events that can cause poor and
slow reactions. MIPs are also commonly susceptible to matrix interferences and sometimes,
the synthesis process and extraction of template molecules are quite complicated. For
aptamers, it is often hampered by a sluggish chemical and biological reaction. Further-
more, aptamers require appropriate care to maintain their stability. Therefore, any future
projects that will be developed should also concentrate specifically on overcoming the
challenges above.

Further studies may try to use metal nanomaterials that are suitable for certain insec-
ticides since they are cheaper, easy to handle and synthesize. In addition, studies on the
optical properties and the ability of this composite in the detection of insecticides are very
limited and infancy. Corresponding to the conventional method mentioned, SPR proposed
an economical, label-free detection method showing ease operation and rapid detection
compared to other optical methods. It is envisaged that the metal nanomaterials-based
SPR sensing, will exhibit excellent selectivity and sensitivity in detection insecticides from
nano to femto. Therefore, insecticide residues in the environment can be determined by
this method, providing the potential for broad application in real samples in the future.
This approach also prevents the presence of unstable enzymes and complicated chemical
modifications or synthesis of antibodies, MIPs and aptamers making it more feasible and
cost-effective. For additional information, Table 13 summarizes and compares examples of
recognition elements and metal nanoparticles that were used to detect insecticides based
on optical methods with the lowest LOD achieved to date.
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Table 13. Insecticide detection based on optical sensors with the lowest LOD.

Optical Method Insecticides Materials LOD References

Fluorescence Dichlorvos CdTeQDs-AChE 0.0021 nM [134]
Colorimetric Sarin lipoic acid-AuNPs-AChE 0.0282 nM [246]

SERS Imidacloprid AgNPs 0.1100 nM [287]
SPR Carbofuran P(EGDMA-MATrp) 0.0320 nM [234]

Chemiluminescence Acetamiprid AuNPs 0.0620 nM [280]
where LOD is limit of detection. Al2O3: aluminum oxide, AChE: acetylcholinesterase, AgNPs: silver nanoparticles,
AuNPs: gold nanoparticles, CdTeQDs: cadmium telurrite quantum dots, P(EGDMA-MATrp): ethylene glycol
dimetacrylate-N-metacryloyl-(L)-tryptophan methyl ester-p, SERS: surface enhanced Raman scattering, SPR:
surface plasmon resonance.
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