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Revealing the effect of seed 
phosphorus concentration 
on seedling vigour and growth 
of rice using mutagenesis approach
Poli Yugandhar1,4, Nallamothu Veronica1,4, D. Subrahmanyam1, P. Brajendra1, 
S. Nagalakshmi1, Akanksha Srivastava1, S. R. Voleti1, N. Sarla1, R. M. Sundaram1, 
Amitha Mithra Sevanthi2, A. K. Singh3 & Satendra K. Mangrauthia 1*

The harvested plant products, specifically, the grains of cereals are major drivers of soil phosphorus 
(P) depletion. However, the breeding or biotechnology efforts to develop low P seeds have not 
been attempted because of possible adverse effects on seedling vigour and crop establishment. 
Several studies have contradictory observations on influence of seed P on seedling vigour. Lack 
of appropriate genetic material has been the major bottleneck in reaching the consensus. In this 
study, we used 30 EMS induced mutants of rice cultivar Nagina22 to understand the role of seed P 
on seedling vigour and associated physiological processes. Seedling vigour, morpho-physiological 
characteristics, acid phosphatases, alpha-amylase, and expression of P transporter genes were 
analyzed in seedlings obtained from seeds of high and low grain P mutants. The study suggests that 
seed P has a significant role on seedling vigour, chlorophyll content and photosynthesis process of 
young seedlings, and P transport from roots. Notably, we identified few mutants such as NH4791, 
NH4785, NH4714, NH4663, NH4614, and NH4618 which showed least influence of low seed P on 
seedling vigour and other metabolic processes. Therefore, these mutants can be used in breeding 
programs aiming for development of low P grains. Also, these and other identified mutants can be 
used to decipher the genetic and molecular mechanisms regulating the differential response of seed P 
on germination, seedling vigour and several other physiological processes influencing the crop growth 
and establishment.

Prevalence of low phosphorus (P) condition is a challenge faced by 30% of the world’s arable soils that reflect on 
the crop  health1. While some parts of the world overuse P fertilizers causing eutrophication of lakes and coastal 
waters, the majority of the developing world has limited access to P fertilizers that lead to poor crop  health2. In 
India, 53% of the soils are categorised as ‘low’ in available P, 30% of the soils as ‘moderate’ and only 12% of soils 
having ‘high’ level of available  phosphorus3.

Phosphorus is considered as a vital nutrient for the growth and development of plants and animals. The sus-
tainable growth of agriculture relies on efficient and economic application of fertilizers, specifically P fertilizers, 
because of finite natural resource in the form of high-grade rock phosphates. The global P cycle is mainly driven 
by loss of P from the field due to soil erosion and its fixation that becomes unavailable to  plants4 and causes sub-
stantial pollution, and removal of soil P in the form of harvested plant  products5. Among the harvested products, 
cereal grains share maximum plant  phosphorus6. Further, it is pertinent to note that P in rice grains is stored 
mainly in the form of phytate, which is considered as an anti-nutrient, limiting the bioavailability of micronu-
trients like iron and  zinc7. Therefore, reducing the P reserves in cereal grains without compromising the yield 
and the seedling vigour in subsequent generation can be one of the most viable strategies to make the agriculture 
sustainable with respect to P  fertilizers5,8. In case of rice, 60–80% of total plant P is reserved in grains at  maturity9.

Breeding for low-P seed trait is not encouraged due to the early studies suggesting that seed P reserves are crit-
ical for seedling vigour, crop establishment and yield as it positively regulates root development, and acquisition 
of growth-limiting resources such as nutrient and  water10–14. However, these studies were challenged by different 
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groups suggesting that external soil P supplementation neutralizes the negative effects of seed P concentration 
on seedling  vigour12,15,16. Therefore, soil P status but not the seed P status may be the major factor influencing 
seedling  vigour8,9,17–19. The major arguments for getting contradictory results were based on the methods and 
materials used for these  studies15,17. The low P seeds obtained from P deficient  soils20–22 or different  environment8 
or hydroponic  methods16 may lead to artefacts in seed quality and impair other parameters, besides the P con-
centration of the seeds. These studies certainly raise scientific questions that need further investigation: (1) Does 
the seed P level have any role in seedling vigour when seeds are sown in soil with sufficient or deficient P? (2) 
Can the depletion of P from soil be reduced by lowering the seed P concentration? (3) Can the mutants that have 
less seed P, but no compromise on seedling vigour be developed to facilitate the breeding programs? In order to 
address these questions, in the present study, using the EMS (ethyl methanesulfonate) induced mutants of rice 
cultivar  Nagina2223,24, we identified the mutants having differential ability to store grain P when grown on low P 
soil condition. Notably, these mutants did not show any difference in grain P concentration when grown in soil 
with normal P levels. Thirty such mutants were used to analyze the effects of seed P concentration on seedling 
vigour and other physiological processes. Few potential mutants showing least effect of seed P concentration on 
seedling vigour and associated traits were identified which can be used in breeding programs aiming to minimize 
the seed P content thereby reducing the soil P depletion.

Material and methods
The plant and seed material. We identified 30 Nagina22 (N22) EMS induced mutants showing differen-
tial grain P levels (when grown in low P soil) after screening of 500 stabilized mutants (at M5 generation) for five 
growing seasons (Kharif 2014, 2015, 2016 and Rabi 2015, 2016). The mutants were screened in low P (P deficient 
plot, Olsen P of 1.8 kg/ha) and normal P (applied with recommended dose of P, Olsen P of 24 kg/ha) field plot 
at ICAR-Indian Institute of Rice  Research25–28. The mutants are named as NH which stands for N22-Hyderabad 
followed by the mutant number. Seeds of 30 mutants and wild type N22 were collected from both low P and 
normal P plots. Among the low P plot harvested seeds, 20 mutants showing grain P > 1.60 mg/g DW were termed 
as high grain P(HGP) while 10 mutants showing grain P < 1.20 mg/g DW were termed as low grain P (LGP) 
mutants. These seeds were sown in 30 cm diameter pots filled with 8 kg normal P soil (Olsen P 24 kg/ha). Fifty 
seeds collected from low P and normal P plots of each mutant were sown in two replications (n = 100). The fol-
lowing observations were recorded at 12 and 24 days of germination except for the fluorescence parameters (Fv/
Fm and ETR), which were recorded on the 24th day. All plant experiments were carried out in accordance with 
the institute guidelines and necessary permission was obtained to collect the rice seeds.

Seedling vigour, dry weight, and root/shoot/grain P content. Root length was measured from the 
base of the shoot/root junction till the tip of the longest root. Shoot length was measured from the base of 
the shoot/root junction till the tip of the longest leaf with a graduated scale and was expressed in cm. Seed-
ling Vigour Index (SVI) was calculated by Seedling vigour index (SVI) = [Mean root length (Lr) + Mean shoot 
length (Ls)] × Percentage of seed germination (GP) Zhao et al.29. The same samples were shifted to a hot air oven 
maintained at 70 °C for 72 h to record the dry weight and utilized for estimation of P content in root and shoot 
samples using the method described by Saheki et al.30. After harvesting, grains were dried under natural condi-
tion for 6 days and same samples were utilized for estimation of P content in grains using the method described 
by  Hanson31.

Chlorophyll content and chlorophyll fluorescence parameters. One gram of leaf tissue was cut 
into pieces, placed in a tube containing 25 ml of 80% acetone, and stored in dark for 2 days. Absorbance of the 
chlorophyll solution was measured using a UV–Vis double beam spectrophotometer (SPECTRASCAN 2600, 
CHEMITO) for chlorophyll a, b, and carotenoids at 663.2, 646.8, and 470 nm, respectively. Chlorophyll fluo-
rescence parameters (Fv/Fm and ETR) were measured using a portable fluorometer (PAM-210, WALZ, EFFEL-
TRICH, Germany) after pre-adapting the leaf samples in dark for 30 min.

Root and shoot acid phosphatase assay. Enzyme activity was measured as described in our previous 
 report28. Enzyme extract was prepared by homogenizing 0.1 g of shoot or root tissue in 5 ml of ice cold 100 mM 
citrate buffer, pH 5.2. The homogenized samples were then centrifuged at 10,000 rpm for 15 min at 4 °C. The 
supernatant was collected and placed in a new tube. The supernatant (0.1 ml) was taken as an enzyme source. 
Reaction mixture (3 ml) consisted 0.5 ml of 10 mM p-Nitrophenol phosphate as substrate, 0.4 ml citrate buffer 
and 0.1 ml of enzyme  extract32. The mixture was incubated at room temperature for 10 min. The reaction was 
terminated by adding 2  ml of 200  mM sodium carbonate. The absorbance of the solution was measured at 
405 nm and the obtained values were converted into nano moles by plotting values against a pNP (p-Nitro-
phenol) standard curve generated with assay reagents. The acid phosphatase activity was expressed in nM of 
p-Nitrophenol released/min/g fresh weight.

Externally secreted acid phosphatase assay. Roots were kept in a small glass beaker containing 
10 mM pNP and incubated at 30 °C for 30 min. Sodium hydroxide (1 ml of 0.25 M) was added to stop the reac-
tion. Absorbance was measured at 412 nm. The values were converted into micromoles by plotting values against 
the pNP standard curve generated with assay  reagents33. The details of method followed for measurement of 
enzyme activity are described in our previous  study28.
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alpha-amylase activity. Germinated rice seedlings at 4 days and 8 days were washed gently with deionized 
double distilled water and cleaned with tissue paper. Seedlings were ground in 10 ml of 0.5 M phosphate buffer 
(pH 6.0) and the homogenate was filtered with double layered muslin cloth and the clear supernatant was used 
as enzyme source. The alpha-amylase activity was carried out as described by  Miller34 with minor modifications. 
Briefly, 1 ml of enzyme extract was added in the reaction mixture comprising sodium acetate buffer (pH 5.6) 
with 1% starch, 1 ml of DNSA (2,4-Dinitro phenol salicylic acid), heating at 90 °C for 5 min followed by cooling 
to room temperature. Absorbance was measured at 540 nm and alpha-amylase activity was calculated by plotting 
the standard curve with known concentrations of maltose.

Gene expression analysis. The total RNA was isolated from the root and shoot tissues by using RNeasy 
Plant Mini Kit (QIAGEN). Later the RNA was quantified by using spectrophotometer (NANODROP ND-1000, 
THERMO FISHER, USA). Normalized RNA (1 µg) was used for cDNA synthesis by using RT2 First Strand Kit 
(QIAGEN). The cDNA was used as a template for qRT-PCR (APPLIED BIOSYSTEMS).

The qRT-PCR reaction mix preparation was followed as described by Manimaran et al.35 with minor modifi-
cations. The 20 µl reaction mixture was prepared by mixing the cDNA with 10 µl of 2× SYBR premix (QIAGEN) 
and 2 µM of gene specific primers. The relative expression levels were calculated as described by Schmittgen 
et al.36. All the qRT-PCR experiments were carried out with three biological replications. The OsActin was used 
as an internal control. The Ct values of tested genes were normalized with the Ct values of the reference gene 
(Actin) as described by Mangrauthia et al.37. To obtain ΔΔCT values, ΔCT of control (seedlings of normal P plot 
seeds) was subtracted from the ΔCT of test samples (seedlings of low P plot seeds). Fold change expression was 
calculated by  2−ΔΔCt. The details of tested genes and primers are given in our previous  report28.

Statistical analysis. The data from the experiments were analyzed by performing ANOVA using a statisti-
cal computer package (Statistix Ver. 8.1). The differences were estimated using the LSD test.

Results
Seeds from 20 HGP and 10 LGP mutants along with the wild type N22 were harvested from low soil P and nor-
mal soil P field plots. Before sowing these seeds, the initial grain P content was estimated in seeds obtained from 
low P (LP) and normal P (NP) conditions. The difference in grain P content was insignificant between NP-HGP 
and NP-LGP mutants. Notably, the grain P content was 27% more in LP-HGP mutants than LP-LGP mutants 
(Fig. 1). The seeds obtained from LP and NP conditions were germinated in normal P soil, and the seedlings 
were designated as LP-HGPS (low P plot seeds-HGP seedlings), LP-LGPS (low P plot seeds-LGP seedlings), 
NP-HGPS (normal P plot seeds-HGP seedlings), and NP-LGPS (normal P plot seeds-LGP seedlings). Various 
morphological and physiological parameters of these seedlings were analyzed to assess the differential response 
of seed P content in germinability and seedling growth.

LP-HGPS show better seedling growth than LP-LGPS. The root and shoot length of LP-HGPS was 
significantly more than LP-LGPS and N22. The mean root length of LP-HGPS and LP-LGPS was 11.04 cm and 
10.26 cm at 12 days and 15.76 cm and 14.58 cm at 24 days, respectively. The mean root dry weight of LP-HGPS 
and LP-LGPS was 0.017 and 0.009 g at 12 days, and 0.024 and 0.022 g at 24 days, respectively. Notably, LP-

Figure 1.  Initial grain P concentration in seeds collected from low P (shown in red dots) and normal P (shown 
in blue dots) filed plots.
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HGPS, LP-LGPS and LP-N22 showed significant increase in root length as compared to NP-HGPS, NP-LGPS, 
and NP-N22 (Fig. 2). Shoot length was also recorded at 12 and 24 days of germination. NP-HGPS, NP-LGPS, 
and NP-N22 did not show any significant variation in shoot length, however, LP-HGPS showed higher shoot 
length than LP-LGPS at both the time points. The mean shoot length of LP-HGPS and LP-LGPS was 8.4 cm and 
6.7 cm at 12 days, and 23 cm and 21.6 cm at 24 days, respectively (Fig. 3). Interestingly, one of the HGP mutants 
(NH4614) showed similar shoot length under LP and NP at 24 days of germination. In contrast, LGP mutants 
such as NH4777, NH4684, and NH4725 showed severe impact on shoot length under LP when compared with 
NP.

NP-HGPS, NP-LGPS, and NP-N22 did not show significant variation in root and shoot dry weight, how-
ever, LP-HGPS showed higher root and shoot dry weight than LP-LGPS at both the time points (Figs. 4, 5). The 
average root dry weight of LP-HGPS and LP-LGPS was 0.017 and 0.009 g at 12 days, and 0.024 and 0.022 g at 
24 days, respectively. LP-HGPS exhibited 89% and 10% more root dry weight than LP-LGPS at 12 and 24 days 
(Fig. 4). The average shoot dry weight of LP-HGPS and LP-LGPS was 0.033 and 0.027 g at 12 days, and 0.054 
and 0.053 g at 24 days, respectively. LP-HGPS exhibited 22% and 2% more shoot dry weight than LP-LGPS at 12 

Figure 2.  Root length of seedlings obtained from germination of seeds harvested from low P (shown as red 
dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), 
and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Root length at 12 days of 
germination. (B) Root length at 24 days of germination. The values represent the mean of 100 plants.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1203  | https://doi.org/10.1038/s41598-022-04983-9

www.nature.com/scientificreports/

and 24d, respectively (Fig. 5). The difference between LP-HGPS and LP-LGPS was more pronounced at 12 days 
than 24 days old seedlings.

Seedling vigour. SVI was comparable in NP-HGPS, NP-LGPS, and NP-N22 at both the time points, but 
it was more severely affected in LP-LGPS than LP-HGPS (Fig. 6). The average mean SVI of LP-HGPS and LP-
LGPS was 1651.8 and 1256.8 at 12 days and 3290.7 and 2680.1 at 24 days, respectively. Germination percentage 
of LP-HGPS and LP-LGPS was 85 and 74 percent, respectively. Notably, mutants NH4785 and NH4791 showed 
similar SVI under NP and LP conditions at 24 days of germination. Both of these mutants showed lesser effect 
of LP on SVI at 12 days of germination also. Among all the mutants, NH4688 showed highest SVI under LP and 
NP at 12 days of germination.

Chlorophyll (Chl) and fluorescence parameters. Reciprocal trend of Chl a content was observed at 12 
and 24 days. At 12 days, all the mutants showed reduced Chl a under LP in comparison to NP, though the degree 
of reduction was more severe in LP-LGPS than LP-HGPS. On the other hand, at 24 days, all the mutants showed 
increased Chl a under LP in comparison to NP, and there was not much difference between LP-LGPS and LP-
HGPS. Chl a did not show significant difference in NP-HGPS, NP-LGPS, and NP-N22 at both the time points 

Figure 3.  Shoot length of seedlings obtained from germination of seeds harvested from low P (shown as red 
dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), 
and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Shoot length at 12 days of 
germination. (B) Shoot length at 24 days of germination. The values represent the mean of 100 plants.
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(Fig. 7). LP-NH4663 showed maximum gain of Chl a when compared with NP-NH4663, while NH4618 did not 
show difference under LP and NP conditions at 24 days. Chl b was reduced in all the mutants under LP condition 
at both the time points, however, the degree of reduction was more severe in LP-LGPS than LP-HGPS (Fig. 8). 
Mutants NH4785 and NH4791 showed similar Chl b content at 12 days under LP and NP conditions. Similarly, 
fluorescence parameters such as Fv/Fm and ETR were reduced in all the mutants under LP condition at 24 days. 
LP-LGPS showed more reduction of Fv/Fm and ETR than LP-HGPS (Fig. 9). Fv/Fm ranged from 0.64 to 0.71 in 
LP-HGPS and 0.63 to 0.65 in LP-LGPS, while ETR ranged from 20.28 to 22.50 in LP-HGPS and 15.62 to 18.46 
in LP-LGPS. Fv/Fm and ETR were comparable in NP-HGPS, NP-LGPS, and NP-N22.

P content in root and shoot tissues. The differences in root and shoot P content were significant 
between LP and NP seedlings and also between HGPS and LGPS at 12 and 24 days (Figs. 10, 11). Compared to 
NP, the P content was significantly less in LP seedlings in all the mutants but the degree of reduction was more 
in LP-LGPS than LP-HGPS. The root and shoot P content was 13% and 27% more in LP-HGPS than LP-LGPS 
at 12d. Similarly, at 24 days, LP-HGPS exhibited 10% and 14% more root and shoot P content than LP-LGPS. 
At 12 days, LP-HGPS showed 29% and 14% lesser P content than NP-HGPS in root and shoot while LP-LGPS 
showed 40% and 36% lesser root and shoot P content than NP-LGPS. At 24 days, LP-HGPS showed 29% and 

Figure 4.  Root dry weight of seedlings obtained from germination of seeds harvested from low P (shown as red 
dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), and 
low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Root dry weight at 12 days of 
germination. (B) Root dry weight at 24 days of germination. The values represent the mean of 20 plants.
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2% lesser root and shoot P content than NP-HGPS while LP-LGPS showed 34% and 14% lesser root and shoot 
P content than NP-LGPS.

Acid phosphatase activity. Low P stress responsive enzymes such as externally secreted acid phosphatase 
(ESApase), root acid phosphatase (RApase), and shoot acid phosphatase (SApase) play a key role in mobilizing 
the organic P to available P in plants. The low P condition triggers these P responsive enzymes to compensate the 
P deficiency/P availability upto some extent. The ES Apase, RApase and SApase enzymes activity was induced 
in all the LP seedlings (Figs. 12, 13, 14). Though the percent increase (from NP to LP) of ESApase, RApase, and 
SApase enzyme activity was more in LGPS than HGPS, the differences in the ESApase enzyme activity among 
LP-HGPS, LP-LGPS and LP-N22 were not significant at both 12 days and 24 days, respectively (Fig. 12). The 
mean RApase enzyme activity in LP-HGPS, LP-LGPS and LP-N22 at 12d was 4.47, 5.38 and 5.77, respectively 
(Fig. 13). The mean RApase enzyme activity in LP-HGPS, LP-LGPS, and LP-N22 at 24 days was 2.62, 2.48 and 
2.27, respectively. The mean SApase enzyme activity in LP-HGPS, LP-LGPS and LP-N22 at 12d was 3.86, 4.53 
and 4.31, respectively (Fig. 14). The mean SApase enzyme activity in LP-HGPS, LP-LGPS, and LP-N22 at 24 days 

Figure 5.  Shoot dry weight of seedlings obtained from germination of seeds harvested from low P (shown as 
red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), 
and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Shoot dry weight at 
12 days of germination. (B) Shoot dry weight at 24 days of germination. The values represent the mean of 20 
plants.
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was 2.24, 2.27 and 2.17, respectively. Compared to 12 days old LP seedlings, the ESApase, RApase, and SApase 
activity was 10%, 47%, and 45% lower in 24 days old LP seedlings.

Alpha-amylase activity. Alpha-amylase enzyme (AAE) plays a significant role during the germination 
and later throughout the growth period of rice. AAE activity was comparable in NP-HGPS, NP-LGPS, and 
NP-N22 at both the time points (4 days and 8 days), but it was significantly high in LP-HGPS than LP-LGPS, and 
LP-N22 (Fig. 15). The average mean AAE of LP-HGPS and LP-LGPS was 7.46 and 5.16 at 4 days and 5.49 and 
4.65 at 8 days, respectively. The AAE activity was significantly more in NP than LP condition in all the mutants 
and N22.

Correlation studies. Correlation analysis of various parameters taken from 12 days old seedlings was per-
formed. In LP-HGPS, seedling vigour was positively and significantly correlated with germination percentage, 
root length, and shoot length (Fig.  16A). Root dry weight was positively correlated while shoot length was 
negatively correlated with grain P content. In LP-LGPS, root length was positively correlated with RApase but 
negatively correlated with SApase. Similarly, P content in root and root dry weight showed significant positive 
correlation with Chl b content. RApase showed significant negative correlation with Chl a content (Fig. 16B). 
These correlations were not noticed in NP-HGPS and NP-LGPS (Fig. 16C,D).

Figure 6.  Seedling vigour index (SVI) of seedlings obtained from germination of seeds harvested from low 
P (shown as red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant 
seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) SVI at 
12 days of germination. (B) SVI at 24 days of germination. The values represent the mean of 100 plants.
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At 24 days, LP-HGPS showed significant and positive correlation of germination%, root length, and shoot 
length with seedling vigour. FV/Fm and ETR showed significant positive correlation with root dry weight. Chl 
a showed significant positive correlation with SApase (Fig. 17A). In LP-LGPS, shoot length was negatively and 
significantly correlated with SApase, while Chl b was negatively correlated with Fv/Fm, RApase, ES Apase, and 
root P content. P content in root was positively and significantly correlated with ES Apase, RApase, and Fv/Fm. 
Shoot P content was negatively correlated with root P content, ES Apase, and Chl a (Fig. 17B). These correlations 
were not observed in NP-HGPS and NP-LGPS (Fig. 17C,D).

Gene expression analysis. To decipher the relative expression of phosphate starvation responsive (PSR) 
genes, a set of seven P transporter genes was selected based on their critical roles in P  metabolism28. The expres-
sion level of all the genes was similar in NP-HGPS, NP-LGPS, and NP-N22. While comparing the expression 
level of genes in LP with NP, all the seven genes showed a distinct expression pattern among LGPS and HGPS. 
In root of 12 days old seedling, these genes showed up-regulation in all the LGPS, while in root of 24 days old 
seedlings, OsPT6, OsPT8, and OsPT4 showed up-regulation in HGPS but OsPT2, and OsPT10, OsPT1, and 
OsPAP10a showed up-regulation in LGPS (Fig. 18). Similar analysis was performed in shoot tissue of 12- and 
24-days old seedlings. At 12 days, shoot of HGPS showed up-regulation of OsPT4, OsPT2 while LGPS showed 

Figure 7.  Chlorophyll a (Chl a) content of seedlings obtained from germination of seeds harvested from 
low P (shown as red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant 
seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Chl a at 
12 days of germination. (B) Chl a at 24 days of germination. The values represent the mean of 6 plants.
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up-regulation of OsPT6. Other genes did not show a distinct expression between LGPS and HGPS. At 24 days, 
shoot of HGPS showed up-regulation of OsPT4 and OsPT10 while LGPS showed up-regulation of OsPT1, 
OsPT2, OsPT8, and OsPAP10a. OsPT6 did not show a distinct expression between LGPS and HGPS (Fig. 19).

Discussion
Phosphorus is an essential element of seed. While low P concentration in seeds can be detrimental to the seed 
germination, seedling establishment, and plant growth, the higher P concentration in seeds is undesirable due 
to several reasons: 1—Excess driving of soil P into seed P leading to P depletion from soil and increased use 
of P fertilizers, 2—Adverse effects of excess P to human body, especially the negative effect on uptake of other 
nutrients, 3—Increased P concentration in human waste pollute the environment. Therefore, understanding 
the minimum seed P concentration to maintain seedling vigour is crucial for sustainable use of P fertilizers in 
agriculture. It is necessary to design the breeding programs for development of cultivars loading optimum con-
centration of P in seeds. In this study, we utilized the EMS mutants of rice cultivar N22 to study the effect of seed 
P concentration on seedling vigour and associated physiological/biochemical processes. Further, we identified 
few mutants showing insignificant effect of reduced seed P concentration on seedling vigour.

Figure 8.  Chlorophyll b (Chl b) content of seedlings obtained from germination of seeds harvested from 
low P (shown as red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant 
seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Chl b 
at 12 days of germination. (B) Chl b at 24 days of germination. The values represent the mean of 6 plants.
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Shoot/root length and dry weight of seedlings are affected adversely due to low P concentration in seeds. 
LP-HGPS showed better performance than LP-LGPS and wild type N22 at both the time points, however, the 
differences were more pronounced at 12 days than 24 days old seedlings, suggesting that external P supply may 
abridge the differences as the plant growth progresses. Earlier studies suggested that adverse effects of low P con-
centration of seeds on seedling vigour can be reduced by applying external soil  P12,15,16. Germination percentage 
and SVI was more severely affected in LP-LGPS than LP-HGPS suggesting that initial seed P concentration does 
affect the early seedling vigour and germination even though P is supplemented in soil. A germination percentage 
of 85 and 74 was recorded in cases of LP-LGPS and LP-HGPS, respectively. Alpha-amylase enzyme activity was 
also more in LP-HGPS than LP-LGPS in 4 and 8 days old seedlings. Alpha-amylase activity directly influences 
seed germination by hydrolyzing the stored starch for nourishing the developing  embryo38. Further, physiological 
parameters of LP-LGPS and LP-HGPS revealed that Chl a, Chl b, Fv/Fm, and ETR were also adversely affected 
in seedlings obtained from low P seeds. P deficiency disrupts the photosynthetic machinery and the electron 
transport  chain39. P content in seeds has direct effect on seedling vigour and crop establishment as it affects root 
development and associated physiological  processes10–14. 10–20% reduction of seedling biomass and P uptake was 

Figure 9.  Fv/Fm and ETR of seedlings obtained from germination of seeds harvested from low P (shown as 
red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), 
and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Fv/Fm at 24 days of 
germination. (B) ETR at 24 days of germination. The leaf samples at 24th day were collected and kept in dark for 
30 min before measuring the Fv/Fm and ETR. The values represent the mean of 6 plants.
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noticed in low P seed germinated in P-deficient  soil16. It should be noted that these parameters were not different 
among NP-HGPS, NP-LGPS, and NP-N22 suggesting that effects are due to low P seed concentration only and 
not because of genetic mutation influencing physiological processes regulating these parameters.

The percent increase in acid phosphatases (ESApase, RApase, and SApase) from NP to LP conditions and 
enhanced activity of these enzymes in LGPS in comparison to HGPS indicate the phosphorus stress in early 
seedlings due to low P content in seeds. Increased activity of acid phosphatases has been reported under low P 
 stress40,41. The activity of these enzymes was 10%, 47%, and 45% lower in 24 days old LP seedlings as compared 
to 12 days old seedlings suggesting that P stress experienced initially due to low P content in seeds gets sub-
side as the growth progresses. Notably, Chl a was decreased in 12 days but increased in 24 days old seedlings 
obtained from low P seeds, suggesting plants attempt to compensate the initial losses due to low P. Phosphorus 
deficiency has a negative impact on the photosynthetic characteristics of  rice42. Similar observation in case of 
root and shoot P content was observed. Initially at 12 days, LP-HGPS showed 13% and 27% more root and shoot 
P content than LP-LGPS but this gap was reduced to 10% and 14% at 24 days. Seed P reserves are critical for root 
development of seedling that influences acquisition of soil  nutrients11,14. The early vigour trait contributes to 
improved P uptake in  plants43. Therefore, seed P concentration affects seedling vigour and later seedling vigour 
influences P uptake by plants.

Figure 10.  Root P content of seedlings obtained from germination of seeds harvested from low P (shown as red 
dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), and 
low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Root P content at 12 days of 
germination. (B) Root P content at 24 days of germination. The values represent the mean of 6 plants.
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The 24 days old seedlings of mutant NH4614 showed similar shoot length while NH4785 showed similar 
SVI from harvested seeds of low P and normal P plots. The grain/seed P content of NH4614 and NH4785 was 
1.88 mg/g DW and 1.92 mg/g DW in low P plot harvested seeds and, 2.80 mg/g DW and 2.90 mg/g DW in nor-
mal P plot harvested seeds, respectively. Among all the mutants, root P content of LP-NH4785 at 24 days was 
least (0.513 mg/g DW) and shoot P content was one among the highest (2.35 mg/g DW), suggesting that this 
mutant may have efficient P transport system active at early growth stage. Notably, LP-NH4791 showed maxi-
mum root dry weight (0.027 g/plant) while LP-NH4785 and LP-NH4714 showed root dry weight of 0.026 g/plant 
and 0.025 g/plant at 24 days, suggesting that ability to develop robust roots in early growth stages make these 
mutants less vulnerable to low grain P. NH4791 showed similar SVI at 24 days and less affected SVI at 12 days in 
seeds obtained from low P when compared with seeds obtained from normal P field plots. Not only SVI, even 
Chl b content of 12 days old seedlings of NH4785 and NH4791 was similar in seeds obtained from low P and 
normal P field plots. The highest Fv/Fm (0.71) was recorded in 24 days old seedling of LP-NH4791. LP-NH4785 
and LP-NH4714 showed Fv/Fm as 0.70 and 0.69 at 24 days. NH4714 at 24 days showed 2nd highest SVI (after 
NH4791) in seeds obtained from low P field. The grain P content of NH4791 and NH4714 was 1.84 mg/g DW and 
1.94 mg/g DW in low P plot harvested seeds and, 2.84 mg/g DW and 2.92 mg/g DW in normal P plot harvested 
seeds, respectively. LP-NH4663 (grain P content 1.64 mg/g DW) showed fastest recovery of Chl a, while NH4618 
showed similar level of Chl a in 24 days old seedlings obtained from seeds of low P (grain P content 1.10 mg/g 

Figure 11.  Shoot P content of seedlings obtained from germination of seeds harvested from low P (shown as 
red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P mutant seedlings (HGPS), 
and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) Shoot P content at 12 days 
of germination. (B) Shoot P content at 24 days of germination. The values represent the mean of 6 plants.
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DW) and normal P (grain P content 2.86 mg/g DW) field plots. Detailed data of such selected mutants is summa-
rized in Tables S1 and S2. These identified low seed-P mutants having ability to compensate for lower endogenous 
supply of P from the seed are having desirable attributes to minimize the loss of soil P in the form of harvested 
plant product. Associated genetic factors and linked genetic markers of these mutants can be investigated, and 
these can be used to produce breeding lines that can exhibit rapid root development and seedling vigour even 
with reduced seed P concentration. These efforts are needed to achieve the goal of reducing the twofold negative 
impact of unsustainable high P fertilizer applications, and conserving the reserves of rock-phosphate resources 
for sustainable  agriculture9. Decreasing the 20% grain P concentration in rice can reduce depletion of 0.4 Mt 
P worth of $2 billion P fertilizers every year  globally44. The mutants like NH4785 and NH4791 showed ~ 35% 
reduction in grain P content of low P plot harvested seeds than normal P plot harvested seeds, however, the 
seedling vigour and other physiological processes of next generation seedlings were unaffected due to low grain P.

While comparing the P transporter genes expression in roots, all the 7 transporter genes showed up-regulation 
in 12 days old LGPS of low P than LGPS of normal P, suggesting that low P content in seeds triggered the expres-
sion of genes involved in P transport at a very early stage. At 24 days, OsPT2, and OsPT10, OsPT1, and OsPAP10a 
showed up-regulation in LGPS while OsPT6, OsPT8, and OsPT4 showed up-regulation in HGPS suggesting 

Figure 12.  Externally secreted acid phosphatase (ESApase) enzyme activity of seedlings obtained from 
germination of seeds harvested from low P (shown as red dots) and normal P (shown as blue dots) fields. Wild 
type N22 (W), high grain P mutant seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown 
under normal P condition. (A) ESApase enzyme activity at 12 days of germination. (B) ESApase enzyme activity 
at 24 days of germination. The values represent the mean of 6 plants.
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that P transporters are differentially regulated in seeds with different P content. Similar observations were made 
in shoot tissue. At 12 days, LGPS showed up-regulation of OsPT6 but HGPS showed up-regulation of OsPT4, 
OsPT2. At 24 days, OsPT4 and OsPT10 were upregulated in HGPS while OsPT1, OsPT2, OsPT8, and OsPAP10a 
were up-regulated in LGPS. OsPT1 and OsPT8 are involved in P uptake from  roots45,46 while OsPT2 is involved 
in transportation of P from root to  shoot47. Both of these transporters were active at 2 days after germination 
suggesting that the transport machinery of P became active at a very early stage of seedling  development9. While 
some of the P transporters such as OsPT2, OsPT4 and OsPT8 are well  characterized44,47–51, function of several 
other transporter genes in P homeostasis needs to be deciphered. Initial seed P concentration has significant 
influence on regulation of P transporters that appears to be highly dynamic.

In 12 day old seedlings, a positive correlation between root dry weight and grain P content was observed 
in LP-HGPS. In case of LP-LGPS, a positive correlation between root length and RApase, root dry weight and 
Chl b content, P content in root and Chl b content was observed. In 24 dasy old seedlings, a positive correlation 
between germination percent, root length, shoot length and seedling vigour was observed in LP-HGPS. Further, 
root dry weight showed positive correlation with Fv/Fm and ETR. In LP-LGPS, root P content was positively 
and significantly correlated with ES Apase, RApase, and Fv/Fm. Such correlations observed under low P further 

Figure 13.  Root acid phosphatase (RApase) enzyme activity of seedlings obtained from germination of seeds 
harvested from low P (shown as red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high 
grain P mutant seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown under normal P 
condition. (A) RApase enzyme activity at 12 days of germination. (B) RApase enzyme activity at 24 days of 
germination. The values represent the mean of 6 plants.
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indicate that seed P content influences physiological and metabolic processes of seedlings which are intercon-
nected. These correlations did not exist in NP-HGPS and NP-LGPS.

This study demonstrated that P concentration in seeds have significant influence on seedling vigour and 
associated physiological processes. It has immense importance in addressing the earlier non-conclusive reports 
on effects of seed P concentration on seedling vigour. We suggest that these mutants are appropriate genetic mate-
rial to resolve the longstanding scientific question. The mutants such as NH4614, NH4785, NH4791, NH4714, 
NH4663, and NH4618 are appropriate genetic resources to develop breeding lines for low P grains which can 
help achieving the goal of sustainable P use in agriculture. Many of the mutants identified in this study can be 
utilized for understanding the molecular and biochemical basis of seed P role in germination, early seedling 

Figure 14.  Shoot acid phosphatase (SApase) enzyme activity of seedlings obtained from germination of 
seeds harvested from low P (shown as red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), 
high grain P mutant seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown under normal 
P condition. (A) SApase enzyme activity at 12 days of germination. (B) SApase enzyme activity at 24 days of 
germination. The values represent the mean of 6 plants.
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vigour, and crop establishment. We believe that these mutant lines can be used to produce the hybrids/inbreds 
that can help to reduce the loss of soil P in the long run. Pariasca-Tanaka et al.17 suggested that negative effect 
of low concentration of P in seed on seedling vigour could be genotype-specific and it is possible to mitigate the 
negative effect by selection and breeding of appropriate rice lines loading lesser P in seeds yet exhibiting good 
seedling vigour and growth. The outcome of present study highlights the value of mutations and causal genes 
that can reduce the dependency on finite P resources.

Figure 15.  Alpha amylase enzyme (AAE) activity of seedlings obtained from germination of seeds harvested 
from low P (shown as red dots) and normal P (shown as blue dots) fields. Wild type N22 (W), high grain P 
mutant seedlings (HGPS), and low grain P mutant seedlings (LGPS) were grown under normal P condition. (A) 
AAE activity at 4 days of germination. (B) AAE activity at 8 days of germination. The values represent the mean 
of 10 plants.
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Figure 16.  Correlogram of traits under LP and NP conditions in HGPS and LGPS at 12 days. The scale 
represents Pearson correlation values. Blue and red colours represent negative and positive correlation, 
respectively. root length (rl), shoot length (sl), root dry weight (rdwt), shoot dry weight (sdwt), P content in 
root (pr), P content in shoot (ps), P content in grain (pg), externally secreted acid phosphatase (esa), root acid 
phosphatase (ra), shoot acid phosphatase (sa), grain length (gl), grain width (gw), grain area (ga), chlorophyll A 
content (chla), chlorophyll B content (chlb).
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Figure 17.  Correlogram of traits under LP and NP conditions in HGPS and LGPS at 24 days. The scale 
represents Pearson correlation values. Blue and red colours represent negative and positive correlation, 
respectively. root length (rl), shoot length (sl), root dry weight (rdwt), shoot dry weight (sdwt), P content in 
root (pr), P content in shoot (ps), P content in grain (pg), externally secreted acid phosphatase (esa), root 
acid phosphatase (ra), shoot acid phosphatase (sa), grain length (gl), grain width (gw), grain area (ga), (fvfm) 
electron transport rate (etr), chlorophyll A content (chla), chlorophyll B content (chlb).
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