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Abstract: Hypertrophic cardiomyopathy (HCM) is an inherited disorder of the myocardium, and
pathogenic mutations in the sarcomere genes myosin heavy chain 7 (MYH7) and myosin-binding
protein C (MYBPC3) explain 60%–70% of observed clinical cases. The heterogeneity of phenotypes
observed in HCM patients, however, suggests that novel causative genes or genetic modifiers likely
exist. Here, we systemically evaluated RNA-seq data from 28 HCM patients and 9 healthy controls
with pathogenic variant identification, differential expression analysis, and gene co-expression and
protein–protein interaction network analyses. We identified 43 potential pathogenic variants in 19
genes in 24 HCM patients. Genes with more than one variant included the following: MYBPC3, TTN,
MYH7, PSEN2, and LDB3. A total of 2538 protein-coding genes, six microRNAs (miRNAs), and
1617 long noncoding RNAs (lncRNAs) were identified differentially expressed between the groups,
including several well-characterized cardiomyopathy-related genes (ANKRD1, FHL2, TGFB3, miR-30d,
and miR-154). Gene enrichment analysis revealed that those genes are significantly involved in heart
development and physiology. Furthermore, we highlighted four subnetworks: mtDNA-subnetwork,
DSP-subnetwork, MYH7-subnetwork, and MYBPC3-subnetwork, which could play significant roles
in the progression of HCM. Our findings further illustrate that HCM is a complex disease, which
results from mutations in multiple protein-coding genes, modulation by non-coding RNAs and
perturbations in gene networks.

Keywords: hypertrophic cardiomyopathy; RNA-seq; pathogenic variants; differential gene expression;
gene network

1. Introduction

Hypertrophic cardiomyopathy (HCM) is a global, inherited cardiovascular disease that can
lead to arrhythmia, heart failure and even sudden cardiac death [1,2]. It is characterized by
ventricular hypertrophy (usually the left ventricle), small ventricular cavity, and decreased ventricular
diastolic compliance. The prevalence of HCM is estimated at 0.2% of the general population by early
echocardiographic studies [2]. The utilization of cardiac magnetic resonance imaging (MRI) and genetic
testing has increased recognition and precise clinical diagnosis of HCM [3,4]. Genetic testing, though,
has revealed that some mutation carriers do not exhibit obvious clinical symptoms of HCM. It is still
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possible for a carrier to later demonstrate HCM symptoms and to pass these potentially pathogenic
mutations on to offspring [5]. With the use of these more sophisticated technologies, the prevalence of
HCM should be modified to 0.5% or even greater [2].

Variants in sarcomere and sarcomere-associated protein genes represent the greatest genetic
contributor to HCM cases. Previous studies have shown that pathogenic mutations in myosin heavy
chain 7 (MYH7) and cardiac myosin-binding protein C (MYBPC3) account for 60%–70% of identified
HCM cases [6]. About 1%–5% of HCM and HCM-like phenotypes can be attributed to pathogenic
mutations in other sarcomere protein genes (e.g., TNNT2, TNNI3, TPM1, MYL2, MYL3, ACTC1, and
TNNC1) and some non-sarcomere protein genes (e.g., Z-disk and calcium-handling proteins) [6,7].

HCM represents a genetically complex and heterogeneous disease [7]. High throughput sequencing
technologies have greatly reduced the cost of genetic testing in familial HCM screening, and numerous
disease-causing variants had been identified and archived [8–10]. Related individuals carrying an
identical mutation in the same gene, may display different HCM phenotypes and experience different
clinical outcomes [11], suggesting that novel causative or modifier genes exist or that non-coding
RNAs, such as microRNA (miRNA) and long noncoding RNA (lncRNA). Furthermore, the complex
HCM phenotype may result, not from monogenic or even digenic perturbation, but from the synergy of
a complex gene co-expression network. With our current understanding of cardiomyopathy genetics,
genotype–phenotype correlation may not be obvious in HCM patients. Since the genetic modifier
and pathway/co-expression perspectives are both possibilities, distinguishing pathogenic genes and
variants and establishing clear genotype–phenotype correlations remain challenging.

Previously, Gu et al. [12] generated 37 myocardial RNA-seq data from HCM patients and
healthy donors. Their research mainly focused on RNA-seq data quality evaluation, novel lncRNA
gene prediction, and differential expression analysis. The results demonstrated that a high-quality
dataset was obtained and hundreds of differentially expressed genes (DEGs) were identified between
HCM patients and healthy controls. In this study, we systemically analyzed this dataset with a
different perspective. This included the identification of functional variants, differentially expressed
coding and noncoding genes, and interpretation of their potential functional roles associated with
HCM. In addition, we also performed weighted gene co-expression network analysis (WGCNA) and
protein–protein interaction (PPI) network analysis to identify a gene network that was associated with
HCM clinical traits.

2. Results

2.1. Statistics of RNA-Seq Data

The myocardial RNA-seq included 28 HCM patients and 9 healthy controls. For HCM samples,
MYBPC3 mutations were previously identified in 10 samples and MYH7 mutations in eight (Table 1).
The other 10 remained genetically undiagnosed (Table 1). The RNA-seq data generated 4.3 billion
reads with an average of 116.5 million per sample. After quality control, read mapping, variant calling,
and filtering, ~0.75 million variants, including single nucleotide polymorphisms (SNPs) and insertions
and deletions (Indels), on average, were identified for each sample. Approximately 34,000 variants
were located in exonic regions. The summary statistics of the RNA-seq data are listed in Table 2.
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Table 1. Clinical characteristics of the studied samples [12].

Sample ID Group# Sex Age Smoking LAD (mm)a LVST (mm)b LVEDD (mm)c LVEF (%)d Maxi LVWT
(mm)e

Maxi LVOTG
(mmHg)f

HCM420 GENETUN male 32 NA 41 14 44 76 18 55

HCM405 GENETUN female 31 NO 42 14 47 78 16 126

HCM541 GENETUN male 38 NA 47 22 46 71 25 96

HCM493 GENETUN male 40 NA 40 15 45 75 17 95

HCM273 GENETUN male 30 NO 38 15 33 50 21 30

HCM269 GENETUN male 25 NO 53 29 51 63 38 56

HCM395 GENETUN male 20 NO 49 19 43 60 22 78

HCM282 GENETUN male 48 YES 49 21 49 65.3 23 75

HCM591 GENETUN male 42 NA 39 21 45 70 32 53

HCM552 GENETUN male 32 NA NA NA NA 75 21 100

HCM515 MYBPC3 male 21 YES 39 18 50 75 25 84

HCM504 MYBPC3 male 25 YES 39 25 39 75 28 66

HCM498 MYBPC3 male 39 YES 38 20 42 72 21 55

HCM486 MYBPC3 female 36 NA 45 16 35 75 20 100

HCM460 MYBPC3 male 43 YES 45 16 45 65 19 61

HCM439 MYBPC3 female 47 NA 36 15 38 80 18 103

HCM437 MYBPC3 male 30 YES 54 19 47 78 26 54

HCM429 MYBPC3 female 36 NA 48 17 42 78 18 70

HCM533 MYBPC3 male 47 YES 62 24 50 75 29 118

HCM518 MYBPC3 female 31 NA 37 22 38 68 26 105

HCM506 MYH7 male 19 YES 48 20 43 75 21 59

HCM562 MYH7 female 36 YES 36 0 36 66 21 70

HCM490 MYH7 female 41 NA 44 15 39 58 21 63
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Table 1. Cont.

Sample ID Group# Sex Age Smoking LAD (mm)a LVST (mm)b LVEDD (mm)c LVEF (%)d Maxi LVWT
(mm)e

Maxi LVOTG
(mmHg)f

HCM491 MYH7 female 30 NA 44 23 32 75 28 64

HCM456 MYH7 male 28 NA 51 15 45 69 20 90

HCM483 MYH7 male 37 YES 57 23 40 72 26 70

HCM431 MYH7 male 24 NA 57 18 49 80 21 80

HCM443 MYH7 female 28 NA 46 17 44 69 18 68

sc5-LV NORMAL female NA NA NA NA NA NA NA NA

sc2-LV NORMAL male NA NA NA NA NA NA NA NA

sc6-LV NORMAL male NA NA NA NA NA NA NA NA

N105-LV NORMAL male NA NA NA NA NA NA NA NA

N104-LV NORMAL male NA NA NA NA NA NA NA NA

ND2 NORMAL male NA NA NA NA NA NA NA NA

ND1-LV NORMAL male NA NA NA NA NA NA NA NA

N102-LV NORMAL male NA NA NA NA NA NA NA NA

N103-LV NORMAL male NA NA NA NA NA NA NA NA
#: GENETUN, genetically undiagnosed HCM patient; MYBPC3, HCM patient with mutation in MYBPC3; MYH7, HCM patient with mutation in MYH7; NORMAL, normal heart; a:
left atrial diameter; b: left ventricular septal thickness; c: left ventricular end-diastolic; d: left ventricular ejection fraction; e: maximum left ventricular wall thickness; f: maximum left
ventricular outflow track gradient at rest or after exercise; NA: not available.
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Table 2. Summary statistics of RNA-seq data.

Sample ID Raw Reads HQ Reads HQ Reads
(%)

Mapping
Rate (%) #

Total
Variant

Exonic
Variant

HCM420 117,254,002 110,409,284 94.16 96.87 742,007 34,208

HCM405 96,660,588 90,958,152 94.10 96.72 697,916 32,501

HCM541 118,364,902 112,199,122 94.79 96.56 748,918 34,438

HCM493 135,595,138 127,235,398 93.83 96.67 802,057 35,285

HCM273 100,383,614 94,562,944 94.20 96.10 674,997 32,320

HCM269 104,573,612 98,483,828 94.18 96.69 657,403 30,937

HCM395 101,463,898 94,778,784 93.41 96.50 718,773 32,792

HCM282 135,385,378 128,496,976 94.91 96.41 835,560 36,065

HCM591 117,087,250 110,633,048 94.49 96.33 742,357 33,694

HCM552 110,633,048 97,644,508 88.26 96.57 714,914 32,157

HCM515 126,385,206 120,132,036 95.05 96.53 797,070 35,707

HCM504 126,614,812 120,041,188 94.81 96.46 747,293 34,481

HCM498 118,114,640 110,661,262 93.69 96.18 745,414 33,633

HCM486 102,005,260 95,821,344 93.94 96.76 688,159 32,517

HCM460 83,321,826 78,346,916 94.03 97.01 641,381 30,658

HCM439 115,966,430 108,531,416 93.59 96.48 777,052 34,950

HCM437 114,409,150 107,630,394 94.07 96.59 718,353 33,216

HCM429 107,327,856 100,460,638 93.60 96.51 781,013 34,514

HCM533 113,801,296 107,068,190 94.08 96.47 765,001 34,584

HCM518 123,140,430 116,174,372 94.34 96.54 821,103 36,229

HCM506 104,464,396 98,442,104 94.24 96.88 721,500 33,453

HCM562 119,176,332 113,518,840 95.25 96.63 782,848 34,382

HCM490 109,178,274 102,325,212 93.72 96.79 728,218 33,873

HCM491 123,213,328 115,698,990 93.90 95.97 756,623 34,040

HCM456 124,188,740 116,826,920 94.07 96.65 793,088 35,368

HCM483 132,375,212 125,845,538 95.07 96.52 838,862 35,806

HCM431 95,467,544 91,611,504 95.96 96.60 701,266 33,263

HCM443 103,385,170 96,969,874 93.79 96.18 707,524 33,016

sc5-LV 115,206,460 109,427,776 94.98 94.80 731,586 35,144

sc2-LV 119,628,518 113,668,538 95.02 96.52 747,079 34,629

sc6-LV 133,156,688 126,807,678 95.23 95.59 789,274 37,289

N105-LV 125,064,692 118,533,240 94.78 96.39 830,057 35,975

N104-LV 151,765,118 143,413,882 94.50 96.50 930,969 37,875

ND2 115,981,584 110,192,388 95.01 94.90 649,196 33,173

ND1-LV 111,029,746 105,848,092 95.33 95.66 715,284 33,920

N102-LV 111,141,904 102,446,288 92.18 96.59 754,272 33,343

N103-LV 146,673,012 138,682,818 94.55 96.50 864,176 35,856
#: the percentage of uniquely mapped reads to the total high-quality (HQ) reads.
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2.2. Pathogenic Variants and Genes Prioritization

In order to identify the pathogenic variants and genes responsible for the development of HCM,
we applied a series of bioinformatics filters to the exonic variants identified in the HCM patients
(Figure 1). We identified over 4000 candidate variants that matched our criteria: 1) variants only
existed in the HCM patients, 2) variants classified as nonsynonymous, stop-gain, stop-loss, frameshift,
or splice altering, 3) variants with minor allele frequency less than 0.01 in human populations, and 4)
variants predicted to be deleterious in silicon. In order to further narrow down the candidate lists, we
filtered the above variants with the 73-gene HCM panel (Supplementary Data 1). This resulted in a
total of 43 potential candidate variants, and 19 genes were prioritized (Figure 2 and Table 3). Therefore,
our following analysis and discussions were mainly focused on those 19 genes, and the 4000 candidate
variants were also listed in Supplementary Data 2 for review.
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For the 10 patients with previously identified MYBPC3 functional mutations, we found nine
MYBPC3 variants (five frameshift variants, three stop-gain variants, and one splicing variant) in nine
patients (Figure 2 and Table 3). HCM518 had a MYBPC3 mutation in isolation, and MYBPC3, NEXN,
LDB3, and TNNT2 variants were identified in HCM515. For the remaining MYBPC3 HCM samples,
variants were also found in the following other cardiomyopathy genes: ACTN2, LAMA4, LDB3, NEXN,
PSEN2, TNNT2, and TTN. The remaining patient, HCM486, did not have an identifiable MYBPC3
variant, but an unreported mutation (c.T106C:p.C36R) was found in PLN.

Seven missense MYH7 variants were found in nine samples (Figure 2 and Table 3), with two
(HCM456 and HCM483) having a MYH7 mutation in isolation and one (HCM437) possessing MYH7,
MYBPC3, and COX15 variants. For the remaining MYH7 HCM samples, variants in the following
other cardiomyopathy genes were also found: DSP, MHY6, NEBL, PSEN1, RBM20, and TTN.

We identified eight candidate variants in six genetically undiagnosed patients (Figure 2 and Table 3).
These variants include ABCC9 (c.T2935C:p.W979R) in HCM541, SGCD (c.A845G:p.Q282R) and TTN
(c.C28730T:p.P9577L) in HCM493, CSRP3 (c.A585C:p.X195C) in HCM395, NEXN (c.C643T:p.R215C)
in HCM282, DSP (c.G6119A:p.R2040Q) and PSEN2 (c.G640T:p.V214L) in HCM591, and NEBL
(c.G561C:p.Q187H) in HCM552. However, we were unable to identify any variants in the remaining
four genetically undiagnosed patients (Figure 2).
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Table 3. Lists of candidate variants prioritized from HCM patients.

Group Sample ID Gene dbSNP Variant Type AAChange#

GENETUN

HCM541 ABCC9 rs763968252 nonsynonymous NM_005691:exon24:c.T2935C:p.W979R

HCM493
SGCD rs397516338 nonsynonymous NM_001128209:exon8:c.A845G:p.Q282R

TTN rs146400809 nonsynonymous NM_133378:exon126:c.C28730T:p.P9577L

HCM395 CSRP3 NA stop loss NM_003476:exon7:c.A585C:p.X195C

HCM282 NEXN rs146245480 nonsynonymous NM_001172309:exon7:c.C643T:p.R215C

HCM591
DSP rs116888866 nonsynonymous NM_001008844:exon24:c.G6119A:p.R2040Q

PSEN2 rs574125890 nonsynonymous NM_000447:exon8:c.G640T:p.V214L

HCM552 NEBL rs75301590 nonsynonymous NM_006393:exon6:c.G561C:p.Q187H

MYBPC3

HCM515

MYBPC3 rs869025465 frameshift deletion NM_000256:exon13:c.1153_1168del:p.V385Mfs*15

NEXN rs146245480 nonsynonymous NM_001172309:exon7:c.C643T:p.R215C

LDB3 rs566463138 nonsynonymous NM_001080114:exon10:c.T1367G:p.M456R

TNNT2 rs141121678 nonsynonymous NM_001001432:exon14:c.G839A:p.R280H

HCM504
MYBPC3 NA frameshift deletion NM_000256:exon28:c.3018delC:p.W1007Gfs*12

TTN rs118161093 nonsynonymous NM_003319:exon27:c.G5602A:p.A1868T

TTN rs139517732 nonsynonymous NM_001256850:exon3:c.G160A:p.V54M

HCM498
MYBPC3 NA stop gain NM_000256:exon5:c.G587A:p.W196X

ACTN2 rs376144003 nonsynonymous NM_001103:exon11:c.T1162A:p.W388R

PSEN2 NA nonsynonymous NM_000447:exon10:c.C902A:p.T301K

HCM486 PLN NA nonsynonymous NM_002667:exon2:c.T106C:p.C36R

HCM460
MYBPC3 rs730880576 stop gain NM_000256:exon26:c.G2748A:p.W916X

LDB3 rs397517221 nonsynonymous NM_001080114:exon2:c.C236T:p.T79I

TTN rs199932621 nonsynonymous NM_003319:exon186:c.G75632A:p.R25211Q
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Table 3. Cont.

Group Sample ID Gene dbSNP Variant Type AAChange#

HCM439
MYBPC3 rs397516073 splicing NA

LAMA4 rs3752579 nonsynonymous NM_001105206:exon12:c.T1475A:p.L492H

PSEN2 NA nonsynonymous NM_000447:exon13:c.G1234A:p.A412T

HCM437
MYBPC3 NA frameshift insertion NM_000256:exon13:c.1201dupC:p.Q401Pfs*12

MYH7 rs727503278 nonsynonymous NM_000257:exon5:c.C427T:p.R143W

COX15 rs769275933 nonsynonymous NM_001320976:exon9:c.C584T:p.T195M

HCM429
MYBPC3 NA frameshift deletion NM_000256:exon22:c.2237delA:p.E746Gfs*6

NEXN rs146245480 nonsynonymous NM_001172309:exon7:c.C643T:p.R215C

HCM533
MYBPC3 NA stop gain NM_000256:exon24:c.C2526G:p.Y842X

TTN rs549841864 nonsynonymous NM_003319:exon167:c.C66059T:p.P22020L

HCM518 MYBPC3 NA frameshift deletion NM_000256:exon4:c.480delG:p.P161Hfs*5

MYH7

HCM506
MYH7 rs121913627 nonsynonymous NM_000257:exon16:c.G1816A:p.V606M

RBM20 rs372923744 nonsynonymous NM_001134363:exon9:c.G2201A:p.R734Q

HCM562
MYH7 rs727503278 nonsynonymous NM_000257:exon5:c.C427T:p.R143W

DSP rs116888866 nonsynonymous NM_001008844:exon24:c.G6119A:p.R2040Q

HCM490

MYH7 rs397516201 nonsynonymous NM_000257:exon30:c.C4130T:p.T1377M

TTN rs368057764 nonsynonymous NM_003319:exon79:c.C19652T:p.T6551M

TTN NA nonsynonymous NM_003319:exon154:c.G56641A:p.D18881N

TTN rs567446185 nonsynonymous NM_003319:exon154:c.G46322A:p.G15441D

HCM491
MYH7 rs397516127 nonsynonymous NM_000257:exon18:c.C1987T:p.R663C

MYH6 NA splicing NA

HCM456 MYH7 rs3218714 nonsynonymous NM_000257:exon13:c.C1207T:p.R403W

HCM483 MYH7 rs121913627 nonsynonymous NM_000257:exon16:c.G1816A:p.V606M

HCM431
MYH7 rs727503246 nonsynonymous NM_000257:exon30:c.G4066A:p.E1356K

PSEN1 NA splicing NA

HCM443
MYH7 rs121913632 nonsynonymous NM_000257:exon20:c.G2221T:p.G741W

NEBL rs75301590 nonsynonymous NM_006393:exon6:c.G561C:p.Q187H

#: Gene may have multiple transcript annotations, but only the first is shown here; the full list of annotations can be
found in Supplementary Data 2; NA: not available.

2.3. Identification of DEGs between HCM Patients and Healthy Controls

In order to assess the DEGs, we compared gene expression differences between HCM and normal
controls by using DEseq2 software. Based on the cut-off threshold (false discovery rate (FDR) < 0.05
and fold change > 1.5), a total of 4161 genes were identified as DEGs (Figure 3A and Supplementary
Data 3), of which 2538 are protein-coding genes, 6 are miRNAs, and 1617 are lncRNAs.

We did not find any significant expression differences for MYBPC3 and MYH7 between the
groups. However, several genes that have been implicated in cardiomyopathy did demonstrate
large differences between normal controls and HCM patients, including ANKRD1, FHL2, and TGFB3
(Figure 3B–D). In order to interpret the differentially expressed protein-coding genes, we performed
gene over-representation analysis for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. The results demonstrated that these genes are largely involved in
regulating cardiovascular system development and cardiac physiology. (Figure 3E, Supplementary
Data 4). Those terms accounted for 7.6% (192 genes) of the DEGs. Pearson correlation analysis
revealed that they are significantly co-expressed, even with a multiple correction threshold FDR < 0.01
(Figure 4 and Supplementary Data 5). In addition to GO biological processes, we also identified several
overrepresented KEGG pathways (Supplementary Data 4), including ribosome, cytokine–cytokine
receptor interaction, cyclic AMP signaling pathway, and calcium signaling pathways.
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Figure 3. Differentially expressed protein-coding genes between HCM patients and normal controls. (A) Volcano plot of the differentially expressed genes (DEGs).
The x-axes show the log2 transformed fold change, and the y-axes show the log10 transformed false discovery rate (FDR). Red dots are DEGs with an FDR < 0.05 and
fold change > 1.5. (B–D) Dot plots of the expression levels of ANKRD1, TGFB3, and FHL2 in normal controls (NC) and HCM patients, ***FDR < 0.001. (E) Bar plots of
the significantly enriched cardiovascular-related Gene Ontology (GO) terms for the differentially expressed protein-coding genes.



Int. J. Mol. Sci. 2020, 21, 3040 10 of 23
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 24 

 

 
Figure 4. Correlation networks for the cardiovascular-related differentially expressed protein-coding 
genes. The Pearson correlation coefficient analysis was calculated across the 192 cardiovascular-
related genes. Nodes represent genes, and edges represent correlations between two genes (FDR < 
0.01). 

There are only six miRNAs that showed significant differences, with miR-487a, miR-654, miR-
30d, miR-154, and miR-3193 being downregulated and miR-3671 being upregulated in HCM patients 
(Figure 5A–F). Among them, miR-30d and miR-154 have been shown to play regulatory roles in 
myocardial fibrosis [13,14]. Next, their targeting genes were predicted using miRWalk2. A total of 
720 differentially expressed protein-coding genes (Supplementary Data 6) were targeted by the above 
miRNAs, with these genes demonstrating inverse expression patterns compared to their 
corresponding miRNAs. Among them, 75 are involved in cardiovascular system regulation (Figure 
5G). In addition, we also performed the Pearson correlation analysis. The results demonstrated that 
the percentages of significantly correlated (p < 0.05) candidate pairs ranged from 25.5% (miR-154) to 
76.5% (miR-3671).  

In order to dissect the functional roles of the differentially expressed lncRNAs, we retrieved a 
total of 1482 protein-coding genes near (< 0.5 Mb) those lncRNAs (Supplementary Data 7), including 
cardiomyopathy-related genes: TTN, ACTC1, TPM1, JPH2, ANKRD1, DTNA, TMPO, FHL2, CTNNA3, 
GATA4, LAMA2, PRDM16, POLG, etc. Further GO enrichment analysis illustrated that these genes 
are significantly enriched in cardiovascular-related categories (Table 4), including 95 genes involved 
in cardiovascular system development (GO:0072358), 75 genes related to heart development 
(GO:0007507), and 31 genes critical to cardiac muscle tissue development (GO:0048738). 

Figure 4. Correlation networks for the cardiovascular-related differentially expressed protein-coding
genes. The Pearson correlation coefficient analysis was calculated across the 192 cardiovascular-related
genes. Nodes represent genes, and edges represent correlations between two genes (FDR < 0.01).

There are only six miRNAs that showed significant differences, with miR-487a, miR-654, miR-30d,
miR-154, and miR-3193 being downregulated and miR-3671 being upregulated in HCM patients
(Figure 5A–F). Among them, miR-30d and miR-154 have been shown to play regulatory roles in
myocardial fibrosis [13,14]. Next, their targeting genes were predicted using miRWalk2. A total of
720 differentially expressed protein-coding genes (Supplementary Data 6) were targeted by the above
miRNAs, with these genes demonstrating inverse expression patterns compared to their corresponding
miRNAs. Among them, 75 are involved in cardiovascular system regulation (Figure 5G). In addition,
we also performed the Pearson correlation analysis. The results demonstrated that the percentages of
significantly correlated (p < 0.05) candidate pairs ranged from 25.5% (miR-154) to 76.5% (miR-3671).

In order to dissect the functional roles of the differentially expressed lncRNAs, we retrieved a
total of 1482 protein-coding genes near (< 0.5 Mb) those lncRNAs (Supplementary Data 7), including
cardiomyopathy-related genes: TTN, ACTC1, TPM1, JPH2, ANKRD1, DTNA, TMPO, FHL2, CTNNA3,
GATA4, LAMA2, PRDM16, POLG, etc. Further GO enrichment analysis illustrated that these genes are
significantly enriched in cardiovascular-related categories (Table 4), including 95 genes involved in
cardiovascular system development (GO:0072358), 75 genes related to heart development (GO:0007507),
and 31 genes critical to cardiac muscle tissue development (GO:0048738).
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Figure 5. Differentially expressed microRNAs (miRNAs) between HCM patients and normal controls.
(A–F) Dot plots of miR-487a, miR-654, miR-30d, miR-154, miR-3193, and miR-3671 expression levels in
NC and HCM patients, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001. (G) Predicted miRNA-gene pairs
with miRWalk2, which implements four miRNA-gene prediction algorithms. Target pairs for which
more than two algorithms had signals are included. Seventy-five cardiovascular-related DEGs were
targeted by the above miRNAs, with these genes demonstrating inverse expression patterns compared
to their corresponding miRNAs.

Table 4. GO enrichment of long noncoding RNA (lncRNA)-annotated protein-coding genes.

GO Term Description Gene Count p-Value FDR

GO:0072358 cardiovascular system development 95 6.21 × 10−14 8.38 × 10−11

GO:0007507 heart development 75 2.71 × 10−10 1.10 × 10−7

GO:0003007 heart morphogenesis 42 7.29 × 10−9 1.89 × 10−6

GO:0003231 cardiac ventricle development 26 1.18 × 10−7 1.61 × 10−5

GO:0003206 cardiac chamber morphogenesis 25 6.39 × 10−7 6.43 × 10−5

GO:0003205 cardiac chamber development 29 1.09 × 10−6 9.88 × 10−5

GO:0048738 cardiac muscle tissue development 31 4.73 × 10−6 3.00 × 10−4

GO:0060411 cardiac septum morphogenesis 16 5.09 × 10−6 3.11 × 10−4

GO:0003208 cardiac ventricle morphogenesis 17 7.56 × 10−6 4.43 × 10−4

GO:0035051 cardiocyte differentiation 22 2.22 × 10−5 1.12 × 10−3

GO:0003279 cardiac septum development 19 3.35 × 10−5 1.59 × 10−3

GO:0003215 cardiac right ventricle morphogenesis 8 3.44 × 10−5 1.62 × 10−3

GO:0003197 endocardial cushion development 11 8.84 × 10−5 3.62 × 10−3

GO:1905207 regulation of cardiocyte
differentiation 10 2.19 × 10−4 7.33 × 10−3

GO:0003203 endocardial cushion morphogenesis 9 2.62 × 10−4 8.54 × 10−3

GO:0055007 cardiac muscle cell differentiation 17 3.08 × 10−4 9.57 × 10−3

GO:0055008 cardiac muscle tissue morphogenesis 13 3.15 × 10−4 9.72 × 10−3

GO:0060047 heart contraction 33 5.04 × 10−4 1.46 × 10−2

GO:0003015 heart process 33 6.21 × 10−4 1.72 × 10−2

GO:0035050 embryonic heart tube development 14 6.58 × 10 −4 1.80 × 10−2

GO:0055017 cardiac muscle tissue growth 13 6.92 × 10−4 1.88 × 10−2
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Table 4. Cont.

GO Term Description Gene Count p-Value FDR

GO:0061323 cell proliferation involved in heart
morphogenesis 6 7.55 × 10−4 1.98 × 10−2

GO:0055012 ventricular cardiac muscle cell
differentiation 6 7.55 × 10−4 1.98 × 10−2

GO:1905209 positive regulation of cardiocyte
differentiation 7 1.00 × 10−3 2.44 × 10−2

GO:0003170 heart valve development 9 1.27 × 10−3 2.97 × 10−2

GO:0003272 endocardial cushion formation 7 1.31 × 10−3 3.02 × 10−2

GO:0010002 cardioblast differentiation 6 1.46 × 10−3 3.32 × 10−2

GO:0060419 heart growth 13 1.59 × 10−3 3.52 × 10−2

GO:0003143 embryonic heart tube morphogenesis 12 1.73 × 10−3 3.78 × 10−2

GO:2000725 regulation of cardiac muscle cell
differentiation 7 2.14 × 10−3 4.40 × 10−2

GO:0001947 heart looping 11 2.44 × 10−3 4.85 × 10−2

2.4. Co-Expression Network Analysis

To gain insight into the functional organization of the transcriptomes from myocardial tissue,
we conducted gene co-expression network analysis with WGCNA. By applying data transformation
and filtration according to the WGCNA pipeline (see the “Materials and Methods” section),
8417 protein-coding genes were used for constructing gene co-expression networks. With the
soft-thresholding power β = 12 determined by scale-free topology (Figure 6A,B), we identified a total
of 16 modules (Figure 6C). The module size ranged from 50 genes in module M11 to 2207 genes in
module M8. In addition, by performing correlation analysis between the module module eigengenes
(MEs) and clinical traits (Table 1), several modules were identified to be associated with HCM clinical
traits (Figure 6C), including module M14 and M16, which contain MYH7 and MYBPC3, respectively.
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Figure 6. Co-expression network analysis. (A) The soft thresholding index R2 (y-axis) as a function of
the different thresholding power β (x-axis). (B) Mean connectivity (y-axis) as a function of the power β
(x-axis). (C) Sixteen co-expression modules identified from the myocardial RNA-seq dataset. Each cell
represents the correlation coefficient p-value computed from correlating the module eigengenes to the
clinical traits (columns). Cells filled with red represent significant associations between modules and
traits (p < 0.05).
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2.5. PPI-Subnetwork Analysis for MYH7 and MYBPC3 Modules

Next, we explored the PPIs for the genes in the MHY7- and MYBPC3-involved modules (M14 and
M16). By performing MCL clustering, we highlighted four subnetworks that could play significant
roles in HCM, including one mtDNA-subnetwork and three cardiomyopathy-gene-centered networks:
MYBPC3-, MYH7-, and DSP-subnetworks (Figure 7). Next, we performed Pearson correlation analysis
for each subnetwork gene against to the HCM phenotype. This identified half of them (18 out of 39
genes), showing significant correlations (p < 0.05) with the measured phenotypes (Supplementary
Data 8), including NDUFS2, DSP, JUP, TNNI1, etc. These genes could be directly associated with the
phenotypes, while the rest may modulate the HCM phenotypes by interacting with those 18 genes.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 24 
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Figure 7. MtDNA-, DSP-, MYH7-, and MYBPC3-subnetworks constructed by integrating co-expression
and protein–protein interaction (PPI) network analyses. MHY7- and MYBPC3-involved co-expression
modules (M14 and M16) identified by co-expression analysis were used to construct PPI-subnetworks
from the STRING database (https://string-db.org/) with the Markov Cluster (MCL) clustering method,
for which the inflation parameter was set to 3.

Besides the subnetwork hub genes, other genes were also found to be associated with
cardiomyopathy. For instance, TPM1, and ACTC1, which are critical for the maintenance of sarcomere
thickness [15,16], have been associated with familial HCM [17–19]. Truncating mutations in DES are
associated with inherited skeletal and cardiac myopathies [20]. TCAP is required for sarcomerogenesis
in striated muscles, and mutations in TCAP have been identified in patients with HCM and dilated
cardiomyopathy (DCM) [21]. Patients with heterozygous mutations in JUP have been diagnosed with
HCM [22,23], and reduced cardiac DSG2 levels appear to be specifically associated with arrhythmogenic
right ventricular cardiomyopathy (ARVC) [24]. For the mtDNA-subnetwork, mutations of MT-ND1,
MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, MT-CO1, MT-CO2, MT-CO3, MT-ATP6,
MT-ATP8, and MT-CYB have been identified in cardiomyopathy patients [25–28]. Levels of NDUFV1, a
component of complex I in the electron transport chain, are significantly decreased in the myocardium
of DCM patients, and NDUFS2 gene mutations cause complex I deficiency with associated DCM [29,30].

https://string-db.org/
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3. Discussion

3.1. Pathogenic Variant Analysis and Mechanisms of Variant Synergism

In the current study, nine HCM patients were identified with pathogenic MYH7 variants and nine
with pathogenic MYBPC3 variants. One patient (HCM437) had both MYH7 and MYBPC3 variants,
along with one in COX15, whose function appears to be essential for cytochrome c oxidase (COX)
biogenesis in the electron transport chain (ETC). Mutations in this gene are associated with Leigh
syndrome and COX deficiency with infantile HCM, and the presence of this variant is interesting in
the context of the enriched mitochondrial PPI-subnetwork (Figure 7) [31]. All of the MYH7 mutations
were missense variants, while the MYBPC3 mutations were frameshift, nonsense, or splice variants.
Missense, rather than truncating, variants in MYH7 and truncating, rather than missense, variants in
MYBPC3 are well-documented to be the mutational classifications associated with HCM, instead of
other cardiomyopathy subtypes [32,33].

A single variant in NEXN, MYH7, NEBL, and DSP was replicated in three, two, two, and two HCM
patients, respectively. Importantly, the NEXN and DSP variants have been predominantly classified
as “likely benign” within the NCBI ClinVar database; the NEBL mutation is described as a variant of
uncertain significance. For patients HCM282 and HCM552, the NEXN and NEBL variants, respectively,
occur in isolation, which may mean that the phenotype results from the presence of these variants in
conjunction with unidentified modifier variants. The NEBL variant has been found in isolation in one
Japanese patient with DCM and in conjunction with another cardiomyopathy-associated variant in a
Japanese HCM patient [34].

Both of the patients with the DSP variant (HCM562 and HCM591) have another cardiomyopathy
gene identified. Desmoplakin, which is encoded by DSP, is a desmosomal plaque protein, and
variants in this gene are implicated in ARVC [35]. PSEN2 mutations, like the one in HCM591,
have been reported in association with familial Alzheimer’s disease and DCM, but not HCM, and
those associated with DCM impair calcium signaling and handling [36]. The presenilin complex
proteolytically processes desmoglein-2 (DSG2), another component of the desmosome, and protein
networks implicate gene–gene interactions between the presenilin components and a number of
desmosomal proteins, including desmoplakin [37]. This provides a mechanism for how these variants
may operate synergistically to produce HCM, and the DSP variant may be a pro-HCM modifier gene.
Overall, the NEXN, NEBL, and DSP mutations may represent important modifier variants, as they are
disproportionately represented in this sample population.

The remaining patients without an identified pathogenic MYBPC3 or MYH7 variant had mutations
in ABCC9, SGCD, TTN, CSRP3, and PLN. Variants in ABCC9, which encodes an ATP-sensitive K+

channel, have been implicated in familial atrial fibrillation, sporadic DCM, and hypertrichotic
osteochondrodysplasia. DCM variants have been described in exon 38 and likely modify a
nucleotide-binding domain in the SUR2A portion of the channel, altering overall channel gating [38].
HCM541′s variant in ABCC9 is found in exon 24, which corresponds to the SunT domain of the protein
(not a transmembrane region), and may represent an HCM mutational hotspot.

SGCD encodes the δ component of the sarcoglycan complex, and mutations in this gene are
associated with autosomal recessive limb-girdle muscular dystrophy type VI and a mild autosomal
dominant DCM phenotype [39,40]. The sarcoglycan complex interacts with the dystrophin complex,
which is in turn composed of dystrophin and dystroglycan subunits. The disruption of sarcoglycan
components has been linked with a reduced expression of α-dystroglycan at the sarcolemma, and
overall dystroglycan knockout has been associated with disruptions in titin expression [41]. Encoded
by TTN, titin maintains the structure of the sarcomeric unit in both skeletal and cardiac muscle during
contraction and interacts with actin filaments and myosin [42]. While both of the variants identified in
HCM493 are categorized as “likely benign”. The SGCD mutation may further disrupt titin networks
that are already disorganized by the TTN variant itself and thus work synergistically to produce HCM.
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CSRP3 encodes an LIM domain-containing scaffolding protein that maintains the structure of the
Z-disk and the costamere and is implicated in actin remodeling and cardiomyocyte differentiation.
Mutations in this gene are associated with both familial HCM and DCM [43,44]. HCM395′s unique
mutation has not been reported previously. This stop-loss variant extends the protein by 33 amino
acids. A similar variant that converts the termination codon to an arginine residue (rather than a
cysteine residue) and promotes a 33 amino acid extension has been labeled as a variant of uncertain
significance. Further studies are needed to determine if these additional residues alter protein function,
structure, and/or the rate of degradation.

Produced by PLN, phospholamban is a substrate of protein kinase A (PKA), a cAMP dependent
kinase, in cardiomyocytes. The phosphorylation of phospholamban by PKA relieves its inhibition of
ATP2A2, a sarcoplasmic reticulum Ca2+-ATPase, allowing for the sequestration of calcium ions and
cardiac muscle relaxation in diastole [45,46]. Heterozygous PLN variants, like the unreported one
found in HCM486, have been identified in patients with HCM; the PLN inheritance pattern for DCM is
less clear [46,47]. Interestingly, this gene participates in both cAMP and calcium signalling pathways,
reflecting the significant KEGG pathway enrichment mentioned above (Supplementary Data 4).

3.2. HCM Phenotypic Variability from Multi-Gene Modification and Differential Gene Expression

While HCM has been attributed to monogenic perturbations in sarcomeric genes, like MYBPC3
and MYH7, there is often dramatic phenotypic variability, even within a single family, with some family
members having other cardiomyopathy subtypes, including DCM and ARVC, or hybrid phenotypes.
This variability is most likely attributable to the presence of multiple modifier variants, and hints at the
concept that cardiomyopathy is a polygenic trait.

Beyond the single gene and synergistic modifier gene perspectives, pathway perspectives illustrate
the idea that even single gene mutations may in turn modify other genes in a specific pathway or
network. The differences in expression levels of ANKRD1, FHL2, and TGFB3 between the HCM patients
and normal controls demonstrated this idea. Mutations in FHL2 have been implicated in HCM, so the
reduced expression of these genes in HCM hearts mirrors actual inherited modifications or deficiencies
in these proteins [48–50]. Other studies have demonstrated that the elevation of ANKRD1 expression
in DCM heart samples correlates with the progression of heart failure, and this reflects the increased
expression that we saw in the HCM patients [51]. Finally, HCM is characterized by cardiac fibrosis, and
TGFB3 is an important driver of the fibrosing process [52]. This is illustrated in the elevation of TGFB3
expression in our HCM samples; likewise, missense TGFB3 mutations have loosely been associated
with HCM itself [53].

3.3. HCM Modulation with Noncoding RNAs

As post-transcriptional regulators, both miRNAs and lncRNAs can interfere with gene
expression [54,55]. We explored the miRNA and lncRNA expression profiles of HCM patients
and healthy controls. Six miRNAs (miR-487a, miR-654, miR-30d, miR-154, miR-3193 and miR-3671) were
observed to be significantly up- or down-regulated in HCM patients. Among them, Serum miR-30d has
been reported to be associated with acute heart failure [56] and considered as a biomarker for diffuse
myocardial fibrosis in HCM patients [13]. In addition, the expression of miR-30d-5p was decreased
1.58-fold in patients with ST-elevated myocardial infarction [57]. MiR-154 has been reported to promote
myocardial fibrosis through β-catenin signaling pathways [14,58]. It is worth noting that the 75 targeted
genes in the miRNA-gene network (Figure 5G) are all involved in the cardiovascular system, suggesting
those miRNAs may modulate cardiac function by regulating their expression levels. For example, the
target gene FGF1, known as acidic fibroblast growth factor, shares regulation by miR-487a and miR-154.
A pathophysiologic role for fibroblast growth factors in idiopathic cardiomyopathy has been implicated
in the past [59]. Additionally, several voltage-gated calcium channels genes (CACNA2D1, CACNA1B,
CACNA1S, CACNG4, and CACNG8) are also targeted by those miRNAs. It has been reported that
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mutations in CACNA2D1 cause a variant of short QT syndrome, which is associated with sudden
cardiac death in humans [60].

Several studies have demonstrated the importance of lncRNAs in the cardiovascular system [61,62].
We retrieved a total of 1482 protein-coding genes near the differentially expressed lncRNAs. A few
lncRNAs are located in the introns of cardiomyopathy-related genes (e.g., TTN, ACTC1, TPM1, JPH2,
ANKRD1, DTNA, TMPO, and FHL2) or physically close to these genes. The lncRNA-annotated
protein-coding genes are enriched in the GO terms of heart development and cardiomyocyte
differentiation (Table 4), while the enriched terms for the differentially expressed protein-coding
genes centered more so on cardiac physiology (contractility, heart rate, and conduction; Figure 3E). This
illustrates the idea that HCM can represent both an inherited defect in myocardial development (that
may or may not be immediately clinically apparent) and a pathologic process of ventricular remodeling
that occurs over an extended period of time due to impaired cardiac, or even renal, function.

3.4. HCM Modulation with Gene Networks

Differential expression analysis usually focuses on individual gene perturbations, which cannot
dissect their potential interactions. Furthermore, genes with relatively modest expression changes may
also contribute to the phenotypes of interest. However, this information was usually underestimated or
missed from differential expression analysis. Network-based analysis provides an alternative way to
leverage this gap by grouping a subset of tightly co-expressed genes together, which can be defined as
a module or network. In this study, we performed gene co-expression network analysis with WGCNA
and PPI analysis with STRING. Our results highlighted four subnetworks, mtDNA-, MYBPC3-, MYH7-,
and DSP-subnetworks, that may be critical to the progression of HCM. Besides the hub genes of
MYBPC3, MYH7, and DSP, these subnetworks also include several genes that have been implicated in
cardiomyopathy, such as TPM1, ACTC1 [17–19], DES [20], TCAP [21], JUP [22,23], and DSG2 [24].

In addition, our gene network analysis also highlighted the importance of mitochondrial genes
(mtDNA-subnetwork) in HCM. However, those genes are largely neglected on HCM genetic screening
panels. Mutations in sarcomeric genes are associated with inefficient energy utilization [63]. When
these variants are present in conjunction with heterozygous oxidative phosphorylation mutations,
compensations in energy production may not be possible and may contribute to the HCM phenotypes.
This will require further elucidation, but screening for these genes may aid in the identification of
a genetic cause of HCM in patients with mutations not included on typical HCM panels and can
supplement the landscape of genetic modifiers in HCM.

3.5. Novelty and Limitations of This Study

As the original research of this RNA-seq data [12] was reported as data descriptor, with the
major findings of this dataset is to be of high quality to perform downstream analysis such as the
identification of DEGs. Compared with the original findings, our research highlighted several novel
findings. First, we performed a variant calling from this RNA-seq data, our results not only confirmed
the MYH7 and MYBPC3 pathogenic variants that have been identified in the original research, but
also discovered eight candidate variants in six genetically undiagnosed patients. In addition, we also
found most of the patients carry muti-genic variants, even for the MYH7 and MYBPC3 diagnosed
patients, suggesting that a heterogeneous phenotype could exist among those patients. Second, we
identified thousands of differentially expressed coding and noncoding genes. For the coding genes, we
performed functional enrichment analysis, which highlighted that those genes significantly involved in
regulating cardiovascular system development and cardiac physiology (192 genes, Figure 4). We found
six differentially expressed miRNAs (Figure 5A–F) that could regulate HCM progression by targeting
75 cardiovascular-function-related genes (Figure 5G). Additionally, by co-locating the differentially
expressed lncRNAs and protein-coding genes, we highlighted that several lncRNAs could relate to
cardiac function, since they are co-located with the well-known cardiomyopathy-related genes (Table 3).
Therefore, our analysis not only identified the DEGs, but also reduced the candidates from thousands
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of DEGs to a few dozen by integrating no-coding gene annotation and gene function enrichment
analysis. Last, we performed gene network analysis based on WGCNA and PPI. This resulted in
four subnetworks that are strongly correlated to the HCM clinical traits (Figures 6 and 7). Those
subnetworks not only include known genes implicated in HCM, but also highlighted several genes
with an unknown function in HCM that need to be further deciphered (Figure 7).

There are several limitations for our studies. First, calling variants from RNA-seq is confronted with
several issues, due to the complexity of the transcriptome. In order to avoid false positives/negatives,
we applied SNP and Indel calling with the recommendation of the Broad Institute’s GATK best
practices workflow. In addition, for the candidate variants, we also “eye” inspected the alignment to
avoid false positive/negatives raised by too much complexity around the variant region. Further, our
results confirmed the MYH7 and MYBPC3 pathogenic variants that have been identified in the original
paper, highlighting the variant-calling pipeline and that the results are reliable. Second, the clinical
measurement of the studied sample is not fully characterized (such as morphological or magnetic
resonance imaging data). This limited our genotype–phenotype correlations, especially for evaluating
the clinical outcome differences between the patients carry muti-genic and single gene mutation. Third,
the larger sample size would be beneficial for covering broader variants’ spectrum and increase the
statistical power for differential expression analysis and gene co-expression network construction.

4. Materials and Methods

4.1. RNA-Seq Data

The RNA-seq data of SRP186138 [12] were downloaded from the NCBI Sequence Read Archive
database (https://www.ncbi.nlm.nih.gov/sra/SRP186138). This data set contains 28 myocardial samples
from HCM patients and 9 samples from healthy donors. The detailed clinical characteristics of the
studied samples are listed in Table 1.

4.2. Read Mapping and Variant Calling

The raw reads for each sample first underwent adaptor trimming and filtering with the fastp
software [64], allowing for reads containing over 80% bases with a quality greater than 20 to be
included. Read mapping and variant calling were done according to the Broad Institute’s GATK [65]
best practices workflow for SNP and Indel calling on RNAseq data (https://software.broadinstitute.
org/gatk/documentation/article.php?id=3891). Briefly, paired-end reads (PE300) were mapped onto
the human reference genome (GRCh38) using the STAR 2-pass alignment method [66]. The first-pass
alignment was used to generate the junction file. Then, the second-pass alignment was conducted
with the junctions found in the first-pass mapping to produce the final alignments. After that,
Picardtools (http://broadinstitute.github.io/picard/) was used to add read groups, sort, mark duplicates,
and create index. Then, the SplitNCigarReads function, implemented in GATK, was used to split
reads into exon segments. Finally, variant calling and filtering were done with HaplotypeCaller and
VariantFiltration, respectively.

4.3. Functional Variants and Gene Prioritization

The variant call was first annotated with wANNOWAR [67]. Then, the following strategies
were applied to identify potential functional variants and genes: 1) variants only present in the 28
HCM patients, but not in the 9 controls; 2) variants classified as nonsynonymous, stop-gain, stop-loss,
frameshift, or splice altering; 3) variants with a minor allele frequency less than 0.01 in 1000G, ExAC,
ESP6500, or gnomeAD data sets; 4) variants predicted to be deleterious by no less than five of the
following algorithms—SIFT, Polyphen2, LRT, MutationTaster, FATHMM, PROVEAN, MetaSVM, and
CADD, and 5) variants only in the 73-gene HCM panel listed in Supplementary Data 1.

https://www.ncbi.nlm.nih.gov/sra/SRP186138
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
http://broadinstitute.github.io/picard/
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4.4. Differential Expression Analysis

A comparison of HCM patients with normal controls was used to identify differentially expressed
genes (DEGs). Gene-level read counts were obtained using featureCount version 0.6.1 with Ensembl
annotation of the GRCh38 reference genome, which includes both coding and non-coding genes. Raw
counts were analyzed with DESeq2 version 1.10.1 [68] to identify DEGs. p-values were adjusted with
the false discovery rate (FDR) based on Benjamini and Hochberg’s method [69], and DEGs were defined
as FDR < 0.05 and fold change > 1.5.

4.5. MiRNA Target Prediction

MiRNAs are a class of non-coding small RNAs (~22 nucleotides), which are widely found in plant
and animal cells. Cleavage of mRNA transcripts or the inhibition of translation initiation is achieved
by inaccurate complementary base pairing with the target gene [70]. To date, several algorithms have
been proposed and applied to predict miRNAs targets [71]. In this study, we used miRWalk 2 [72],
which implements the four miRNA-gene prediction programs “miRWalk,” “miRanda”, “RNA22”, and
“Targetscan” to predict miRNA gene targets. We considered the positive target pairs for which more
than two algorithms had signals.

4.6. LncRNA Annotation

LncRNAs are a class of non-coding RNAs that are greater than 200 nucleotides in length [73].
Although most of them have not been functionally characterized, studies have shown that they play
significant roles in gene expression regulation, especially for neighboring genes, at various levels,
such as transcriptional and post-transcriptional regulation [73,74]. In order to interpret the potential
functional roles of the differentially expressed lncRNAs, their neighbor genes (< 0.5 Mb) were extracted
using bedtools [75] and further explored by performing gene set enrichment analysis.

4.7. Co-Expression Network Analysis

Gene co-expression networks was constructed using the WGCNA package in R [76], according to
the tutorials written by Peter Langfelder and Steve Horvath (https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/Tutorials/). We first normalized the raw read count with
the Transcripts Per Million (TPM) method and then removed genes whose expression was consistently
low (TPM < 10 in more than 90% of the samples). The filtered data was log-transformed with log2(x+1),
which was used as input for WGCNA analysis. Based on the scale-free topology, threshold power
β = 5 was used for constructing the adjacency matrix and the Topological Overlap Matrix. Then, genes
were aggregated into modules with hierarchical clustering and further refined using the dynamic
tree cut algorithm. In order to identify the clinical-trait-associated modules, we performed Pearson’s
correlation coefficient analysis between the traits and MEs, which are defined as the first principal
component of a given module.

4.8. PPI Network Analysis

The PPI network analysis of module genes was based on the protein interaction information
retrieved from the online database STRING (https://string-db.org/) [77]. To define subnetworks, we
first only selected genes with a high confidence interaction score (> 0.7). Those highly confident
interactions were further clustered into subnetworks with the MCL clustering method, for which the
inflation parameter was set to 3.

4.9. Gene Over-Representation Analysis

Gene overrepresentation analysis for GO (biological process) and KEGG pathway was analyzed
with WebGestalt (http://www.webgestalt.org/) with default parameters [78]. The human genome
was used as a reference gene set, and the minimum number of genes for a category was set to 5 for

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://string-db.org/
http://www.webgestalt.org/
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both analyses. The Benjamini and Hochberg correction [69] was used for multiple test correcting. A
threshold of FDR < 0.05 was used to determine the significantly enriched terms.

4.10. Data Statement

Raw RNA-seq data had been deposited in the NCBI Sequence Read Archive database (SRA;
https://www.ncbi.nlm.nih.gov/sra/) under the accession number SRP186138 [12].

5. Conclusions

In summary, by analyzing myocardial RNA-seq data from HCM and control patients, we provide
evidence that HCM is a complex genetic disorder, with pathogenic and modifier protein-coding
mutations, differential gene expression, and non-coding RNA modulation contributing to extensive
phenotypic variability. In addition, this work highlights the importance of integrative analysis with
gene co-expression and protein–protein interaction networks for the further identification of functional
HCM genes within gene subnetworks. Further elucidation of HCM genes, whether at the level of the
single protein-coding gene or the gene network, will lead to improvements in genetic screening for HCM
patients without an identified genetic cause and to the development of new, personalized therapeutics.
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Abbreviations

ARVC arrhythmogenic right ventricular cardiomyopathy
DCM dilated cardiomyopathy
DEG differentially expressed gene
FDR false discovery rate
GO Gene Ontology
HCM hypertrophic cardiomyopathy
Indel insertion and deletion
KEGG Kyoto Encyclopedia of Genes and Genomes
LncRNA long noncoding RNA
MEs module eigengenes
MiRNA microRNA
NC Normal control
PPI protein-protein interaction
SNP single nucleotide polymorphism
TPM transcripts per million
WGCNA weighted gene co-expression network analysis.
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