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Abstract

Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the
firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and
processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have
specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of
the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with
different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP
in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire
neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input
frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory
response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways.
First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show
axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of
these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing
fundamental pitch perception in the auditory brainstem.
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Introduction

Spike-timing-dependent plasticity (STDP) is an experimentally

observed learning rule that changes synaptic strengths based on

the relative timing of pre- and post-synaptic spikes (action

potentials) [1–4]. Gerstner et. al. first proposed it as an

unsupervised Hebbian learning rule that could select feed-forward

connections with specific axonal delays [5]. They showed that it

could be used to achieve the high degree of temporal coherence

that had been observed at frequencies of up to 8 kHz in the

auditory brainstem of barn owls. This finding explained how a

network could learn to perform sound localization using the time

lag between the neural signals from the two ears. Their study also

demonstrated that the precise timing of spikes could be captured

by STDP and that this was sufficient to explain how neurons in the

auditory pathway could learn to distinguish such fine temporal

differences in an unsupervised fashion. In general, STDP has the

ability to encode temporal correlations in neuronal activity, such

as oscillations, into the functional structure of networks of neurons

that have axonal and dendritic propagation delays.

The brain processes information through neuronal networks

that contain specifically structured feed-forward and recurrent

(lateral) connections. For example, only 5% of the input

connections into cortical neurons are from the thalamus and,

while these feed-forward connections tend to be strong, most of the

remaining 95% are recurrent cortical connections [6,7]. For this

reason, studies of neural learning that considered recurrent

networks, rather than solely feed-forward networks, offered the

possibility of providing new insight into how the brain processes

and encodes information. While significant work has been carried

out with learning in feed-forward networks [8,9], it was only more

recently that the same attention was paid to recurrent networks

[10–19].

Few analytical studies of spike-based learning in recurrent

networks have been done, despite the ability for these studies to

provide a more informative description of the mechanisms than

studies that use simulations alone. A recent paper reviewed many

of these studies [20]. In one such analytical study, Gilson et. al.

looked at the emergent structure that forms in recurrent networks

due to STDP [17]. They showed that spike correlations within two

pools of inputs led to a form of symmetry breaking in the recurrent

network receiving the inputs. Specifically, two sub-networks

emerged with strong connections within the sub-networks but

weak connections between them. In this way, the recurrent
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network encoded a spatial pattern of its inputs into its structure.

The recurrent networks they considered contained only a narrow

range of spike propagation delays. The inputs they considered

contained instantaneous spike time correlations and had firing

rates that were constant in time.

Most inputs and activity in the brain are, however, not constant

in time. Oscillations have been observed in many different regions

of the brain, such as the cortex [21–23] and the auditory

brainstem [24]. In particular, gamma oscillations in the cortex

have received considerable attention [25,26] and have been shown

to play a role in attention, memory, and other cognitive functions

[21,27]. For these reasons, it is important to consider the synaptic

changes that occur due to these oscillations. Doing so may help

elucidate the possible functions that oscillations play in cognitive

processes.

A number of studies have explored the interaction between

oscillatory activity and STDP using numerical simulations [28,29],

but only few have performed analytical investigations. Pfister and

Tass considered how STDP in recurrent networks can produce

stable states of high and low synchrony (oscillations) [30]. They

also examined how external stimulation can force the network out

of a highly synchronous state into a state of lower synchrony.

Muller et. al. investigated how STDP can modify excitatory feed-

forward connections into a single post-synaptic neuron such that it

becomes phase-locked to oscillations in the inputs [31]. Gilson et.

al. demonstrated a similar result for excitatory and inhibitory feed-

forward connections with a range of dendritic delays [32]. They

further showed that the post-synaptic neuron became selective in

its response to oscillatory inputs at the training frequency. These

studies, however, did not consider networks that have a wide range

of delays on the same timescale as the oscillation period, where the

correlations due to the oscillations could drive delay selection.

Gerstner et. al. considered this situation for a specific neural

system [5], but only for feed-forward connections and very high

frequency oscillations. Though not specifically for oscillatory

activity, further analysis has been performed for this concept of

delay selection through STDP, although still only for feed-forward

connections [33].

The broad question that motivated this study was: what can be

inferred about the ways that the brain learns patterns and

processes information, given the role that STDP plays in

determining network structure? We specifically aim to address

this for networks that have oscillatory firing patterns and a wide

range of propagation delays, both axonal and dendritic. We

investigate how additive STDP changes the strength of recurrent

connections with a wide range of axonal delays and short dendritic

delays when the network is driven by input spike trains that have

oscillatory firing rates. We then look at how these changes affect

the oscillatory firing rate response of the network to inputs with

different oscillation frequencies. We consider a range of oscillation

frequencies from 100 to 300 Hz. We discuss how this delay

selection mechanism may suggest a possible explanation for how

the auditory brainstem performs missing fundamental pitch

perception.

We extend this simple situation and compared it to a network

with a range of dendritic as well as axonal delays. We also extend

the original model to one with multiple groups of neurons that are

recurrently connected with connections that have a range of

axonal delays. In this case, the oscillatory inputs to each of the

groups have the same frequency but are out of phase with each

other. In both of these cases, we focus on frequencies in the

gamma range (30–100 Hz) [27]. We discuss how the second of

these cases is relevant to the formation of oscillatory neuronal

ensembles.

Throughout this study, we determine or estimate both the

learning and dynamics of the networks analytically using the

Poisson neuron model. We use numerical simulations with

networks of leaky integrate-and-fire (LIF) neurons to support the

results and conclusions. In the analysis and simulations, we

consider only excitatory networks (i.e., without inhibition) to

facilitate the mathematical analysis. We address the implications of

this for the model in different contexts.

Methods

Poisson Neuron Model
Our analytical work used the Poisson neuron model [8]. This is

a stochastic model which outputs a spike train that is a realization

of an inhomogeneous Poisson process. The intensity function of

this process is analogous to the membrane potential of the neuron.

It is made up of a spontaneous rate and the weighted sum of post-

synaptic response kernels given by

li(t)~n0z
X
j=i

Jij(t)
X

n

E(t{tj,n{dax
ij {dden

ij ), ð1Þ

where li(t) is the intensity function for the ith neuron at time t, n0

is the spontaneous rate (assumed to be zero in this study), Jij(t) is

the synaptic weight from neuron j to neuron i, E(t) is the post-

synaptic response kernel, or excitatory post-synaptic potential

(EPSP) kernel, tj,n is the time of the nth spike output by neuron j,

and dax
ij and dden

ij are the axonal and dendritic delays, respectively,

from neuron j to neuron i. Synapses here are modeled as current

based. This means that synaptic input into the neuron is

independent of the neuron’s membrane potential (the intensity

function in this model).

In this paper, input spike trains are denoted ŜSk(t), neuron spike

trains are Si(t), and both of these are represented as the sum of

Dirac delta functions positioned at the times of spikes. These spike

Author Summary

Our brain’s ability to perform cognitive processes, such as
object identification, problem solving, and decision mak-
ing, comes from the specific connections between
neurons. The neurons carry information as spikes that
are transmitted to other neurons via connections with
different strengths and propagation delays. Experimentally
observed learning rules can modify the strengths of
connections between neurons based on the timing of
their spikes. The learning that occurs in neuronal networks
due to these rules is thought to be vital to creating the
structures necessary for different cognitive processes as
well as for memory. The spiking rate of populations of
neurons has been observed to oscillate at particular
frequencies in various brain regions, and there is evidence
that these oscillations play a role in cognition. Here, we use
analytical and numerical methods to investigate the
changes to the network structure caused by a specific
learning rule during oscillatory neural activity. We find the
conditions under which connections with propagation
delays that resonate with the oscillations are strengthened
relative to the other connections. We demonstrate that
networks learn to oscillate more strongly to oscillations at
the frequency they were presented with during learning.
We discuss the possible application of these results to
specific areas of the brain.

Delay Selection by STDP with Oscillatory Inputs
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trains are realizations of the intensity functions, l̂lk(t) and li(t),
respectively, and have temporally averaged firing rates (or mean

firing rates), n̂nk and ni, respectively.

All EPSP kernels used in this study are of the form given by

E(u)~
1

tB{tA

(e
{ u

tB{e
{ u

tA )h(u), ð2Þ

where tBwtA and h(u) is the Heaviside function such that for

u§0, h(u)~1, and h(u)~0 otherwise. There are three main

EPSP kernels used in this study: ‘slow’, ‘medium’, and ‘fast’. The

values of the time constants for these EPSP kernels are shown in

Table 1.

Spike-Timing-Dependent Plasticity (STDP)
In this study, learning refers to changes made to the network

due to the additive STDP learning rule [17]. The change in

synaptic weight, J , due to this rule is

DJ~g

vin, for each pre� synaptic spike

vout, for each post� synaptic spike

W (Dt), for each pair of spikes(wherejDtjis sufficiently small),

8><
>: ð3Þ

where g is the learning rate, Dt~tin{toutzdax{dden, tin and tout

are the times of the spikes at the somas of the pre- and post-

synaptic neurons, respectively, and dax and dden are the axonal

and dendritic delays of the synapse, respectively. This is illustrated

in Figure 1A and B. Finally, vin and vout are rate-based

parameters that change the synaptic weight for every pre- and

post-synaptic spike, respectively. The learning window, W (t), is of

the form

W (t)~

cpe
t

tp , tv0

0, t~0

{cde
{t
td , tw0:

8>><
>>: ð4Þ

where the values of the parameters used in this study are shown in

Table 1. Figure 1C shows this learning window.

For a network with only axonal delays (i.e., the dendritic delays

are sufficiently short to be neglected), the learning rule described in

Equation (3) can be reformulated to give the rate of change of the

weight Jij as

_JJij(t,d
ax
ij ) ~g½vinnj(t)zvoutni(t)z ~WWni(t)nj(t)zCW

ij (t,dax
ij )�,ð5Þ

where ~WW~
Ð?
{? W (u)du, and

CW
ij (t,dax

ij )~ð?
{?

W (u)Cij(t,u{dax
ij )du~½W ({u) �

u
Cij(t,u)�({dax

ij ),
ð6Þ

where a(u) �
u

b(u) denotes the convolution of functions a(u) and

b(u) with respect to u. The axonal delay, dax
ij , can be seen to

effectively shift the learning window in a positive direction. The

correlation function for a pair of neurons in a recurrent network is

defined by [20]

Cij(t,u)~
1

T

ðt

t{T

SSi(t
0)Sj(t

0zu)Tdt0

{
1

T

ðt

t{T

SSi(t
0)Tdt0

� �
1

T

ðt

t{T

SSj(t
0zu)Tdt0

� � ð7Þ

This notation generalizes that used previously [17], in which only

constant input intensity functions were considered.

Network Configuration
The network configuration that we considered, as illustrated in

Figure 2A, consisted of a single network of N neurons. Each

neuron received feed-forward connections from a set of M inputs

and also recurrent connections from other neurons in the network.

The inputs were spike trains, ŜSk(t), each a different realization of

the same Poisson process with intensity function, l̂l(t). This

intensity function was oscillatory in time; it can be thought of as

the instantaneous firing rate of the inputs with mean (temporally

averaged) firing rate, n̂n. Each neuron received NK feed-forward

connections, all with the same weight, �KK , and axonal delay, d̂dax
0 ,

and negligible dendritic delays. The neurons each produced spike

trains, Si(t), according to the neuron model used. In this study,

this was either the Poisson neuron model or the leaky integrate-

and-fire (LIF) neuron model. There were NJ recurrent connec-

tions into each neuron. These were initially all the same weight but

were modified by additive STDP. These connections each had

different axonal delays, sampled uniformly from a range. Initially,

we assumed these connections had negligible dendritic delays. This

model is illustrated in Figure 2A, where ½Kik� and ½Jij � denote the

matrices of feed-forward and recurrent connections just described.

In this study, we always used (unless otherwise stated)

N~M~10,000, NK~NJ~100, and d̂dax
0 to 1 ms. The axonal

delay range (and later the dendritic delay range) used in this study

Table 1. Model parameters.

Type Parameter Slow Medium Fast

EPSP Synaptic Rise Time, tA (ms) 1 0.5 0.1

EPSP Synaptic Decay Time, tB (ms) 5 1 0.5

LIF Membrane Time Constant,
tm (ms)

20 10 5

LIF Threshold Potential, Vth (mV) 250

LIF Resting Potential, Vp (mV) 265

LIF Reset Potential, Vr (mV) 265

LIF Synaptic Reversal Potentials,
ES,j (mV)

0

LIF Refractory Period (ms) 1

STDP Potentiation Factor, cp 15

STDP Depression Factor, cd 10

STDP Potentiation Time Constant,
tp (ms)

17

STDP Depression Time Constant,
td (ms)

34

Parameters used in the model for the three different EPSPs (‘slow’, ‘medium’
and ‘fast’). All parameters were used in simulations, but only EPSP and STDP
parameters were used in the analytical model.
doi:10.1371/journal.pcbi.1002897.t001

Delay Selection by STDP with Oscillatory Inputs

PLOS Computational Biology | www.ploscompbiol.org 3 February 2013 | Volume 9 | Issue 2 | e1002897



was 1–10 ms. This is consistent with the magnitude of axonal

delays observed in the cortex (4–20 ms) [34], while perhaps less so

for the auditory brainstem (0.4–1.4 ms) [35].

When the neurons were modeled using the Poisson neuron

model, we simplified the full model analytically in two major ways.

This simplification is illustrated in Figure 2B. First, instead of the

full set of input and neuron spike trains, we considered only the

ensemble averaged, instantaneous firing rates,
�̂
ll̂ll(t) and �ll(t), for

the input and network neurons, respectively (as the inputs have

identical intensity functions,
�̂
ll̂ll(t)~l̂l(t)). Second, we represented

the sets of feed-forward and recurrent connections as weighted

axonal delay profiles (or simply axonal delay profiles or delay

profiles), �KK(d̂dax) and �JJ (dax), respectively. These delay profiles give

the mean weight for connections with a specific axonal delay (d̂dax

or dax, respectively). When representing a set of recurrent

connections that are uniformly sampled from a fixed range of

axonal delays (dax
min to dax

max), the integral of the recurrent axonal

delay profile is

ðdax
max

dax
min

�JJ (x)dx~(dax
max{dax

min)�JJ~Ddax�JJ, ð8Þ

where �JJ is the mean recurrent weight in the network and Ddax is

the range of the axonal delays in the network. We relaxed our

definition of the axonal delay profile representing the mean weight

for a specific axonal delay when the range of the axonal delays,

Ddax, was zero. This is the case for the input connections, as they

all have the same axonal delay, d̂dax
0 . The profile is instead given by

�KK(d̂dax)~ �KKd(d̂dax{d̂dax
0 ), where �KK is the mean feed-forward weight

(and also the integral of the profile). Other feed-forward delay

profiles (e.g. Gaussian) could have been considered but this was the

simplest analytically and the effect of other profiles would solely be

to reduce the effective modulation amplitude of the input spike

trains.

This study investigated the learning that occurs in the

recurrent network through changes in the recurrent axonal

delay profile. It also considered the amplitude of the oscillatory

firing rate of the network (averaged over the neurons in the

network) to different oscillatory inputs after this learning has

occurred.

Learning with Axonal Delays
We investigated the learning of the recurrent connections in the

network by considering the changes to the recurrent axonal delay

profile due to Equation (5). We modified Equation (5) to apply to

the recurrent axonal delay profile. The new learning equation is

Figure 1. Additive STDP learning window. (A) Examples of two different synapses between the pre-synaptic neuron, 1, and the post-synaptic
neuron, 2. The left one has a short dendritic delay and the right one has similar axonal and dendritic delays. (B) Examples of spike pairs. Top: Spike
times are given at the somas of each of the neurons in each case in B. Middle: Pre- and post-synaptic spike times for the synapse with a short
dendritic delay in B. Bottom: Pre- and post-synaptic spike times for the synapse with similar axonal and dendritic delays in B. (C) The learning window,
W , used in this study that describes how the change in synaptic weight depends upon the difference in time between the pre- and post-synaptic
spikes at the synapse. The form of this is described in Equation (4) with parameter values shown in Table 1. This window was used in an additive STDP
learning rule along with two rate-based terms as described in Equation (3). The changes in synaptic strength due to the synaptic spike pairs (shown in
B) for each of these two cases is shown by the red and green vertical lines. This shows that as the dendritic delay is increased, or the axonal delay
decreased, the Dt for the spike pairs is shifted to the left on the learning window (the opposite occurs for increasing the axonal delay, or decreasing
the dendritic delay).
doi:10.1371/journal.pcbi.1002897.g001

Figure 2. Diagram of single group network model. (A) Diagram
of the full model used in simulations, which shows a network of N
neurons with spike trains, Si(t), that receive inputs from M inputs,

ŜSk(t), via fixed (black), feedforward connections denoted by ½Kik�, and
from each other via plastic (blue), recurrent connections denoted by
½Jij �. (B) Diagram of the simplified, analytical model, which shows the
same network represented by an ensemble averaged, instantaneous
firing rate, �ll(t), which is driven by inputs with instantaneous firing rate,

l̂l(t). The (fixed; black) feedforward and (plastic; blue) recurrent

connections are represented by the axonal delay profiles, �KK(d̂dax) and
�JJ (dax), respectively.

doi:10.1371/journal.pcbi.1002897.g002
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_�JJ�JJ (t,dax) ~g½vin�nn(t)zvout�nn(t)z ~WW�nn(t)2z�CCW (t,dax)�, ð9Þ

where �nn(t) is the temporally averaged firing rate of the recurrent

neurons and �CCW (t,dax) is the convolution of the learning window,

W (t), with the mean recurrent correlation function, �CC(t,u). The

first three terms in this equation determine the evolution of the

mean recurrent weight over all axonal delays. We were interested

in the last term, which determines the average deviation from this

mean for connections with different axonal delays. In this model,

learning was assumed to happen on a longer timescale compared

with that of the network activity and so we treated the recurrent

correlation as quasi-stationary. For this reason, the t-dependence

of the average recurrent correlation function is dropped and so is

given by �CC(u) in the subsequent analysis of this paper. Using the

simplified model with a recurrent axonal delay profile, we found

the (ordinary frequency) Fourier transform of �CC(u) (see Section 1

of Supporting Text 10) to be approximated by

F �CC(f )~N2
K

�KK2DF E(f )D2C(f )F �̂
CĈCC(f ), ð10Þ

where

C(f )~
1

D1{F E(f ) ~NNJF �JJ (f )D2
, ð11Þ

F �̂
CĈCC(f ) is the Fourier transform of the average input correlation

function,
�̂
CĈCC(u), F �JJ (f ) is the Fourier transform of the axonal delay

profile, �JJ (dax), F E(f ) is the Fourier transform of the EPSP kernel,

E(t), and ~NNJ~(Ddax){1NJ .

The input intensity function for a population of oscillatory

inputs is defined as

l̂lk(t)~SŜSk(t)T~n̂n0za:cos½2pfm(tzd̂dk)�, ð12Þ

where n̂n0 is the mean input rate (in spikes/s), a is the amplitude in

the oscillations (in spikes/s), fm is the modulation frequency of the

oscillations (in Hz), and d̂dk is the delay of the input (in seconds). In

this model, all inputs are assumed to be in phase with each other.

As Section 2 of Supporting Text 10 shows, the temporally

averaged input firing rate is n̂n0 and the correlation function for any

pair of inputs is

ĈCkl(u)~
a2

2
cos(2pfmu)~

�̂
CĈCC(u) ð13Þ

and the Fourier transform of this is

F ĈCkl(f )~
a2

4
½d(f {fm)zd(f zfm)�~F �̂

CĈCC(f ): ð14Þ

It should be noted that no additional higher-order spike timing

correlations were introduced in the input spike trains. The

correlations described here are the rate correlations arising solely

from the fact that all input neurons shared a common firing rate

modulation.

With oscillatory inputs, the average recurrent correlation

function becomes

F �CC(f ) ~
a2N2

K
�KK2

4
DF E(f )D2C(f )½d(f {fm)zd(f zfm)�: ð15Þ

It can be seen that C({f )~C(f ) and DF E({f )D2~DF E(f )D2.

Using this, the Fourier transform of the correlation function can be

combined with the learning window (shifted by the axonal delay),

as described by Equation (6), to give the contribution to learning

from recurrent correlations for connections of axonal delay, dax, as

�CCW (dax)~½W ({u) �
u

�CC(u)�({dax)

~F{1½FW ({f )F �CC(f )�({dax):

~
a2N2

K
�KK2

4
jF E(fm)j2C(fm)F{1½FW ({fm)D(f {fm)z

FW (fm)d(f zfm)�({dax)

~
a2N2

K
�KK2

4
jF E(fm)j2C(fm)½FW ({fm)e{2pidaxfmz

FW (fm)e2pidaxfm �,

ð16Þ

where FW (f ) is the Fourier transform of the learning window,

W (u).

This was reformulated, by rewriting F E(f ) as rE(f )e{iwE(f ) and

FW (f ) as rW (f )eiwW (f ), to be

�CCW (dax)

~
a2N2

K
�KK2r2

E (fm)rW (fm)C(fm)

4
½e{i(2pdaxfmzwW (fm))

zei(2pdaxfmzwW (fm))�

~
a2N2

K
�KK2r2

E (fm)rW (fm)C(fm)

2
cos½2pdaxfmzwW (fm)�:

ð17Þ

Expressions for functions rE(f ), wE(f ), rW (f ), and wW (f ) were

derived, for the specific EPSPs and learning window used in this

study, in Section 6 of Supporting Text 10.

Assuming weak recurrent connections compared to the input

connections, C(fm)&1, we derived the approximation

�CCW (dax) &
a2N2

K
�KK2r2

E (fm)rW (fm)

2
cos½2pdaxfmzwW (fm)�: ð18Þ

The deviation of the mean weight for a given delay, �JJ (dax)

from the mean weight over all delays, �JJ , is defined as D �JJ (dax).
Although, the mean weight is driven towards a homeostatic

equilibrium, �JJ�, by the rate-based learning terms (see Section 3 of

Supporting Text 10), the evolution of the deviation of weights from

this mean is described by

D _�JJ (dax)~ _�JJ (dax){_�JJ�JJ&g �CCW (dax)

&
ga2N2

K
�KK2r2

E (fm)rW (fm)

2
cos½2pdaxfmzwW (fm)�:

ð19Þ

Delay Selection by STDP with Oscillatory Inputs

PLOS Computational Biology | www.ploscompbiol.org 5 February 2013 | Volume 9 | Issue 2 | e1002897



Response to Oscillations after Axonal Delay Selection
To determine the response of a network, after learning, to

oscillatory inputs, we first needed to consider the instantaneous

firing rate of a single neuron, which is given by

li(t)~n0z
X

Jij(t)

ð
E(r{dij)lj(t{r)dr

z
X

Kik(t)

ð
E(r{d̂dik)l̂lk(t{r)dr,

ð20Þ

where dij~dax
ij zdden

ij and d̂dij~d̂dax
ij zd̂dden

ij are the total recurrent

and input delays, respectively, which are the sums of the axonal

and dendritic delay components. This means that the network

response only depends on the total delays, not directly on the

axonal or dendritic components, so only total delays are referred

to in the following derivation. In networks with short dendritic

delays, the axonal delay is equivalent to the total delay.

We assumed that the input connections have equal total delay,

d̂d , the inputs have identical rate functions, l̂l(t), and n0~0. We

also represented all the recurrent weights as a profile over total

delay, �JJ (d). Therefore, the average response of the network is

ll(t)~ ~NNJ

ðdmax

dmin

�JJ (x)

ð
E(r{x)�ll(t{r)drdx

zNK
�KK

ð
E(r{d̂d)l̂l(t{r)dr,

ð21Þ

where �KK is the mean feedforward weight.

For oscillatory inputs, l̂l(t)~n̂n0zacos(2pfmt), we showed that

the expression for the response of the network becomes (see

Section 4 of Supporting Text S1)

�ll(t)~�nnzaNK
�KKrE(fm)

X?
j~0

½rE(fm) ~NNJr �JJ (fm)�jcosf2pfm(t{d̂d)

{j½w �JJ (fm)zwE(fm)�{wE(fm)g,

ð22Þ

where r �JJ (f ) and w �JJ (f ) are defined by

F �JJ (f ) ~
Ð dmax

dmin

�JJ (x)e{2pifxdx~r �JJ (f )e
{iw �JJ (f )

, ð23Þ

and

�nn ~
NK

�KK n̂n0

1{ ~NNJF �JJ (0)
~

NK
�KK n̂n0

1{NJ
�JJ

, ð24Þ

and, as before, rE(f ) and wE(f ) are given by Fourier transform,

F E(f )~rE(f )e{iwE(f ).

To the second order, we approximated the network response as

�ll(t)&�nnzaNK
�KKrE(fm)fcos½2pfm(t{d̂d){wE(fm)�

zrE(fm) ~NNJr �JJ (fm)cos½2pfm(t{d̂d){w �JJ (fm){2wE(fm)�g,
ð25Þ

and, since rE(fm)rJ (fm)v1, we approximated the network response

amplitude as

R(fm)&

aNK
�KKrE(fm)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2rE(fm) ~NNJr �JJ (fm)cos½w �JJ (fm)zwE(fm)�

q
,

ð26Þ

using the result from Section 7 of Supporting Text S1.

We assumed a Gaussian delay profile with mean, �ddax, standard

deviation, s,

�JJ (d)~
Ddax�JJffiffiffiffiffiffiffiffiffiffi

2ps2
p e

{
(d{�ddax)2

2s2 , ð27Þ

so we found that

F �JJ (f ) ~Ddax�JJe{2(psf )2{2pi�ddaxf ,

r �JJ (f ) ~Ddax�JJe{2(psf )2 ,

w �JJ (f ) ~2p�ddaxf :

ð28Þ

We found the amplitude of the response function with this

Gaussian delay profile by substituting Equation (28) into Equation

(26).

Learning with Both Axonal and Dendritic Delays
As previously considered [18], when dendritic delays are

included together with the axonal delays, the expression for the

learning term, CW
ij (t), becomes

CW
ij (t)~

ð?
{?

W (u)Cij(t,u{dax
ij zdden

ij )du

~½W ({u) �
u

Cij(t,u)�(dden
ij {dax

ij ):

ð29Þ

We performed a similar derivation as for learning with only

axonal delays. We found that, for oscillatory inputs, the learning

term due to correlations is a function of both the axonal and

dendritic delays,

�CCW (dax,dden)&

a2N2
K

�KK2r2
E (fm)rW (fm)

2
cos½2p(dax{dden)fmzwW (fm)�:

ð30Þ

Therefore, the deviation of the mean weight for a given axonal

and dendritic delay evolves according to

D _�JJ (dax,dden)~b(fm)cos½2p(dax{dden)fmzwW (fm)�: ð31Þ

Learning with Two Recurrently Connected Groups
The recurrent network was also considered to be made up of

two groups of neurons with each group receiving inputs from a

different group of oscillatory inputs, as shown in Figure 3. We once

again considered networks with short dendritic delays.

Delay Selection by STDP with Oscillatory Inputs
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Here, �KKik(d̂dax) and �JJij(d
ax) are defined as the mean feed-

forward and recurrent weights from group k or j to group i with

delay d̂dax or dax, respectively. We considered the case of two

network groups, each with
N

2
neurons, and two input groups, each

with
M

2
spike trains. The input connection matrix, �KK(d̂dax), is

defined for the two input groups and two recurrent groups as

�KK(d̂dax)~
�KKd(d̂dax{d̂dax

0 ) 0

0 �KKd(d̂dax{d̂dax
0 )

" #
~ �KKd(d̂dax{d̂dax

0 )I , ð32Þ

where, as before, �KK and d̂dax
0 are the mean feed-forward weight and

the axonal delay of input connections, respectively. The spike trains

in each input group were generated from the group’s input intensity

function. These are defined for each group of oscillatory inputs as

l̂l1(t) ~n̂n0za:cos½2pfm(tzd̂d)�,
l̂l2(t) ~n̂n0za:cos½2pfm(tzd̂dzd̂d lag)�,

ð33Þ

where n̂n0 is the mean input rate (in spikes/s), a is the amplitude in

the oscillations (in spikes/s), fm is the modulation frequency of the

oscillations (in Hz), d̂d is the delay of inputs in the first group (in

seconds), and d̂dlag is the time lag between the oscillations of the two

input groups (in seconds). We determined that the average input

correlation function matrix is (see Section 2 of Supporting Text S1)

�̂
CĈCC(u) ~

a2

2

cos½2pfmu� cos½2pfm(uzd̂d lag)�
cos½2pfm(u{d̂d lag)� cos½2pfmu�

" #
, ð34Þ

and the Fourier transform is

F �̂
CĈCC(f ) ~

a2

4
½d(f {fm)zd(f zfm)� 1 e

2pid̂dlagf

e
{2pid̂dlagf

1

" #
: ð35Þ

As with learning for a single group, we assumed weak recurrent

connections. Therefore, we approximated the Fourier transform of

the average recurrent correlation function as

F �CC(f )~N2
K

�KK2jF E(f )j2F ĈC(f )

~
a2N2

K
�KK2

4
jF E(f )j2½d(f {fm)

zd(f zfm)� 1 e
2pid̂dlagf

e
{2pid̂dlagf

1

" #
:

ð36Þ

Therefore,

�CCW (dax)

~
a2N2

K
�KK2jF E(fm)j2

4
F{1f 1 e

2pid̂dlagfm

e
{2pid̂dlagfm 1

" #
FW ({fm)d(f {fm)

z
1 e

{2pid̂dlagfm

e
2pid̂dlagfm 1

" #
FW (fm)d(f zfm)g({dax)

~
a2N2

K
�KK2r2

E (fm)rW (fm)

2

|
cos½2pfmdaxzwW (fm)� cos½2pfm(dax{d̂dlag)zwW (fm)�

cos½2pfm(daxzd̂dlag)zwW (fm)� cos½2pfmdaxzwW (fm)�

" #
:

ð37Þ

Figure 3. Diagram of two group network model. (A) Diagram of the full model used in simulations, which shows a network of N neurons with

spike trains, Si(t), divided into two groups that each receive inputs from a different group of M
2

inputs, ŜSk(t), via fixed (black), feedforward
connections, denoted by ½Kik�, and from each other via plastic (blue, red and green), recurrent connections, denoted by ½Jij �. (B) Diagram of the

simplified, analytical model, which shows the same network represented by an ensemble averaged, instantaneous firing rate for each group, �ll1(t)

and �ll2(t), respectively, that are driven by inputs with instantaneous firing rates, l̂l1(t) and l̂l2(t), respectively. The (fixed; black) feedforward and

(plastic; blue, red, and green) recurrent connections are represented by the axonal delay profiles, �KKik(d̂dax) and �JJij(d
ax), respectively, where i denotes

the group that the connections are to and k or j denote the group of inputs or neurons that the connections are from.
doi:10.1371/journal.pcbi.1002897.g003
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Response of Two Groups after Axonal Delay Selection
For two recurrently connected groups, where the within group

weights have been depressed and the inputs are as in Equation

(33), each of the group responses is

�ll1(t)~ ~NNJ

ðdmax

dmin

�JJ12(x)

ð
E(r{x)�ll2(t{r)drdx

zNK
�KK

ð
E(r{d̂d)l̂l1(t{r)dr,

�ll2(t)~ ~NNJ

ðdmax

dmin

�JJ21(x)

ð
E(r{x)�ll1(t{r)drdx

zNK
�KK

ð
E(r{d̂d)l̂l2(t{r)dr:

ð38Þ

As derived in Section 5 of Supporting Text S1, we approx-

imated this as

�ll1(t)&
aNK

�KKrE(fm)

2
fcos½2pfmt{wE(fm){2pd̂dfm�

zrE(fm) ~NNJ r �JJ12
(fm)cos½2pfmt{2wE(fm)

{w �JJ12
(fm){2p(d̂dlagzd̂d)fm�

zr2
E (fm) ~NN2

J r �JJ12
(fm)r �JJ21

(fm)cos½2pfmt{3wE(fm)

{w �JJ12
(fm){w �JJ21

(fm){2pd̂dfm�g,

�ll2(t)&
aNK

�KKrE(fm)

2
fcos½2pfmt{wE(fm){2p(d̂dlagzd̂d)fm�

zrE(fm) ~NNJ r �JJ21
(fm)cos½2pfmt

{2wE(fm){w �JJ21
(fm){2pd̂dfm�

zr2
E (fm) ~NN2

J r �JJ21
(fm)r �JJ12

(fm)

|cos½2pfmt{3wE(fm){w �JJ21
(fm)

{w �JJ12
(fm){2p(d̂dlagzd̂d)fm�g,

ð39Þ

where r �JJ ij
(f ) and w �JJ ij

(f ) are the amplitude and negative phase

of the Fourier transform of the axonal delay profile of connections

from group j to group i, respectively. As we did for a single

recurrent group, we assumed the between group delay profiles

were Gaussian. Specifically, it was assumed that

r �JJ ij
(f )~Ddax�JJije

{2(psij f )2
and w �JJ ij

(f )~{2p�ddijf . The result

from Section 7 of Supporting Text S1 was used to approximate

the amplitude of this response.

Numerical Simulations
Simulations were performed using the leaky integrate-and-fire

(LIF) neuron model. A single state variable, Vi(t), represents the

membrane potential for each neuron i that evolves according to

dVi(t)

dt
~

1

tm
(Vp{Vi(t)

z
X
j=i

fJij(t)½ES,j{Vi(t)�
X

n

Ec(t{tj,n{dax
ij {dden

ij )g),
ð40Þ

where tm is the passive membrane time constant, Vp is the resting

membrane potential, ES,j is the synaptic reversal potential of the

(excitatory) synapses from neuron j, and Ec(t) represents the

excitatory post-synaptic conductance (EPSC). This plays a similar

role to the EPSP kernel, E(t), in the Poisson neuron model and,

because of this, we refer to both E(t) and Ec(t) as the EPSP or the

EPSP kernel. Jij(t), tj,n, dax
ij and dden

ij are the same as for the Poisson

neuron model. A spike was produced when the membrane potential

reached a threshold value, Vth, and it was reset to Vr. An absolute

refractory period was used, which prevented the membrane potential

from changing during this time. The values of these parameters are

shown in Table 1. It should be noted that different values for the

membrane time constant were used for the three different EPSP

kernels considered. Simulations were of a model with 10,000 LIF

neurons that each received 100 randomly chosen input spike trains

from a total of 10,000. These neurons also received 100 recurrent

connections from other neurons in the network, which had no

dendritic delay and axonal delays that were sampled uniformly from

the range 1–10 ms. The weights of the input (feed-forward)

connections were fixed and chosen to be equal to each other and

such that, without recurrent connections, the temporally averaged

firing rate of the neurons was approximately equal to that of the

inputs. The weights of the recurrent connections were updated by

STDP during the simulation. They were initialized to be equal to

each other and such that they significantly increased the firing rate of

the neurons above the base rate caused by the inputs alone.

Simulations were performed using an in-house neuron modeling

software program, SpikeSim, used in previous studies [17,18].

The networks simulated and considered in this paper contained

only excitatory neurons and operated in super-threshold, mean-

driven regimes. We address this and consider the limitations for

this as a model of networks in the auditory brainstem or the cortex

in the Discussion.

Results

In this study, we considered how STDP leads to delay selection

in the recurrent connections of a network receiving oscillatory

inputs. We used the Poisson neuron model to derive analytical

results and the leaky integrate-and-fire (LIF) neuron model in

simulations. The observed learning was due to additive STDP

together with single-spike contributions, or rate-based terms. As in

previous work [17], these rate-based terms, along with the learning

window cause the mean recurrent weight to converge to a

homeostatic equilibrium. However, in this study, we were

concerned with the deviation of individual weights with specific

delays from the mean weight.

Axonal Delay Selection within a Recurrent Network
We first considered how STDP changes the functional

connectivity of a recurrent network receiving inputs from a single

group of oscillatory inputs. The connections in the networks had a

range of axonal delays (1–10 ms) but very short dendritic delays.

The modulation frequencies of the inputs were between 100 and

Delay Selection by STDP with Oscillatory Inputs
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300 Hz. This range is typical of the fundamental frequency of

sounds encoded in modulation frequencies in the auditory

brainstem. We modeled the recurrent connections as a weighted

axonal delay profile �JJ (dax), which is the mean weight of

connections with a given axonal delay. We analytically derived

an expression for the changes made to this profile and showed that

these predicted changes were supported by numerical simulations.

As detailed previous studies [17], the rate-based plasticity

parameters vin and vout, together with the learning window bias
~WW , caused the mean weight in the network to converge to a stable

equilibrium value, �JJ�. The mean weight of connections with a

given axonal delay deviated from this homeostatic equilibrium as

given by, D �JJ (dax)~ �JJ (dax){�JJ�. For inputs with a given

modulation frequency, fm, we predicted that this deviation would

evolve according to (see Equation (19))

D _�JJ (dax)~b(fm)cos½2pdaxfmzwW (fm)�, ð41Þ

where b(fm)~
1

2
ga2N2

K
�KK2r2

E (fm)rW (fm) is a positive factor that

determines the rate of learning, a is the amplitude of the input

modulation, �KK is the mean feed-forward weight. The functions

rE(f ) and wE(f ) denote the amplitude and negative phase of the

Fourier transform of E(t) (i.e. F E(f )~rE(f )e{iwE(f )), respectively.

The functions rW (f ) and wW (f ) denote the amplitude and phase

of the Fourier transform of W (t) (i.e. FW (f )~rW (f )eiwW (f )),

respectively. A plot of rW (f ) is shown in Figure S1. The functions

rE(f ) and wW (f ) are considered in more detail in the next section.

Assuming upper and lower bounds on the synaptic weights, we

determined the axonal delay profiles that resulted from this

learning. An example of this is shown in Figure 4A for an input

frequency of 120 Hz. Eventually, a narrow range of delays was

uniquely selected because of the bounds on the weights. This

narrow range was centered approximately on the delay that

resonated with the input frequency. The shortest of these is given by

�ddax~
1

fm

{
wW (fm)

2pfm

: ð42Þ

If this delay is outside the range of axonal delays in the network,

then the frequency cannot be encoded by the network. The

minimum (maximum) delay in the recurrent connections of the

Figure 4. Learning through axonal delay selection with oscillatory inputs. (A) Axonal delay profiles predicted by the analytical model,
Equation (41) (which uses the Poisson neuron model), with an input modulation frequency of 120 Hz, after 1000s (blue), 2000s (green), 3000s (red),
4000s (cyan), and 5000s (magenta) of learning from the initial (dashed) profile. (B) As for A, but for a simulation using LIF neurons. (C) Mean recurrent
weight, for connections of any axonal delay, over time for the simulation in B (black) and the stable mean recurrent weight assumed in the analytical
model (dashed), with colored dots showing the mean recurrent weight in the simulation for the times corresponding to the profiles shown in B. (D)
Axonal delay profiles after 20,000s of learning in simulations with LIF neurons for input modulation frequencies of 100 Hz (blue), 120 Hz (red), 140 Hz
(green), 180 Hz (cyan), 240 Hz (magenta), and 300 Hz (yellow). These simulations used a ‘medium’ EPSP (solid), except for one that used a ‘fast’ EPSP
(dashed). Also shown is a delta delay profile at 3.1 ms (purple, dot-dashed). For both analytical and simulations, a modulation amplitude, a, of 5
spikes/s was used.
doi:10.1371/journal.pcbi.1002897.g004
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network sets the limit on the maximum (minimum) frequency that

can be learned.

Equation (41) shows that the synaptic rise and decay times only affect

the learning rate, b(fm), and not the delays that are selected. The

learning rate is also dependent upon the square of the amplitude of

oscillations and the square of the input strength. For the simulations

with LIF neurons, the firing rate of neurons is no longer linear with the

input strength so this learning rate dependence on input strength is

different but it is still a non-decreasing dependence.

We compared the learning that occurs with 120 Hz inputs,

shown analytically in Figure 4A, to simulations with 10,000 LIF

neurons. This is shown in Figure 4B. The shape of the delay

profile learned was the same; it is only the rate of learning that

differs. The simulations with the LIF neurons showed a

significantly faster learning rate. Simulations with Poisson neurons,

however, did not show this difference when compared to the

analytical model (see Figure S2). The higher learning rate appears

to be due to the differences between the Poisson and LIF neuron

models. We saw that, after further learning occurred, the mean

recurrent weight did not remain at the homeostatic equilibrium.

Instead the mean recurrent weight increased up to a critical point

(Figure 4C). The concept of a ‘‘critical point’’ and how it is

relevant to the response of the network is explained in more detail

in the Discussion section. For learning within the simulation, it is

sufficient to observe that the mean recurrent weight increased

above the homeostatic equilibrium, providing another way that

the simulation differed from the analytical model.

We observed that different delays were selected for different input

frequencies. This is shown in the delay profiles in Figure 4D. These

are the result of 20,000s of learning in simulations with 10,000 LIF

neurons. It can be seen that for the higher frequencies used (180,

240 and 300 Hz) there was a second smaller peak at a longer delay.

Equation (41) predicts that this second delay (and others that are

within the allowed range for axonal delays) should be equally

selected for. However, the simulations showed that, while each of

these delays was initially potentiated, eventually the shortest of these

delays was selected over the longer ones. We used a ‘medium’ EPSP

kernel (0.5 ms rise time, 1 ms decay time) in all previously

mentioned simulations. The learning for 240 Hz with a ‘fast’ EPSP

kernel (0.1 ms rise time, 0.5 ms decay time) is shown in Figure 4D.

Frequency Selective Response after Delay Selection
Next, we considered how this learning changed the way the

network responds to different input frequencies. Being driven by

oscillatory inputs, the network always had an oscillatory response

at the same modulation frequency. We derived an approximation

to the amplitude of this oscillatory response, R(fm), as a function of

the modulation frequency of the inputs (see Equation (26))

R(fm)&

aNK
�KKrE(fm)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2rE(fm)NJ

�JJe{2(psfm)2 cos½2pfm
�ddaxzwE(fm)�

q
,

ð43Þ

where the network has a Gaussian axonal delay profile centered

about �ddax with a standard deviation of s (and short dendritic

delays, dden&0). Additionally, rE(f ) and wE(f ) denote the

amplitude and negative phase, respectively, of the Fourier

transform of the EPSP kernel, E(t) (i.e. F E(f )~rE(f )e{iwE(f )) and
�JJ is the mean recurrent weight.

The shape of this response function, R(fm), is highly dependent

on the amplitude of the Fourier transform of the EPSP, rE(fm),
being used (see Figure 5A). This depends on the decay time and, to

a lesser extent, on the rise time of the EPSP in the model (see

Section 6 of Supporting Text S1). Figure 5C shows that, when the

‘slow’ EPSP (1 ms rise time, 5 ms decay time) was used, the

oscillatory response of the network was very small in the frequency

range considered regardless of how the delays in the network were

tuned. The ‘medium’ EPSP (0.5 ms rise time, 1 ms decay time);

however, gave rise to an oscillatory response with an amplitude

Figure 5. Analytical investigation of network response after delay selection. Responses considered for ‘slow’ (blue), ‘medium’ (red), and
‘fast’ (green) EPSPs. (A) Amplitude of the Fourier transform of the three EPSPs as functions of frequency, as given by Equation (33) in Section 6 of
Supporting Text S1. (B) Negative phase of the Fourier transform of the three EPSPs compared to the phase of the Fourier transform of the learning
window (magenta) as functions of frequency, as given by Equations (31) and (33) in Section 6 of Supporting Text S1. (C) Analytically determined
response of networks with delay profiles centered about the delay selected due to learning (Equation (42)) with input frequencies of 120 Hz (solid),
180 Hz (dashed), and 240 Hz (dot-dashed) inputs, with a profile width, s, of 0.5 ms. These curves are given by Equation (43). (D) Peak response
frequency, fpeak, as a function of the training frequency, flearn , of the network, for delay profiles with a width, s, of 0.5 ms (solid) and 1 ms (dashed).
The peak response frequency was numerically determined from the analytical formula in Equation (43). The dashed line represents fpeak~flearn. Note
that the dot ending some of the lines represents that, for higher training frequencies, there was no peak in the response amplitude with frequency.
For plots C and D, a recurrent strength, NJ

�JJ , of 0.5 and a modulation amplitude, a, of 5 spikes/s were used.
doi:10.1371/journal.pcbi.1002897.g005
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peaked at a particular frequency. This frequency depended on the

axonal delay, �ddax, about which the profile was centered. Using the

‘fast’ EPSP (0.1 ms rise time, 0.5 ms decay time), this selective

response was even more pronounced. This difference was larger

when the axonal delay profile was such that the peak response

amplitude was at higher frequencies.

The frequency of the peak in the response amplitude function

(excluding the peak at 0 Hz) is denoted by fpeak. This frequency does

not necessarily correspond to the frequency present during learning,

flearn. Equation (42) shows how flearn determines the selected axonal

delay, �ddax. The correspondence between these two frequencies

depends on the difference between wW (f ) and wE(f ). This is shown

in Figure 5B for ‘slow’, ‘medium’, and ‘fast’ EPSPs. This shows that

wW (f ) was larger than wE(f ) across the frequency range, for any of the

EPSPs considered. This tended to cause fpeak to be higher than flearn.

However, there is a second factor affecting the correspondence

between flearn and fpeak. This is the decay with frequency that was

evident in both rE(f ) (see Figure 5A) and the e{2(psfm)2

term. These

decays tended to make fpeak lower than flearn. Figure 5D shows the

correspondence between fpeak and flearn, for ‘slow’, ‘medium’, and

‘fast’ EPSPs for narrow and wide delay profiles. We generated this plot

by first considering the response amplitude function, R(fm), that

resulted from assuming the selected axonal delay produced by the

training frequency, flearn. We then numerically found fpeak as the

location of the first peak (after 0 Hz) in this function. A similar plot for

different learning window parameters is shown in Figure S3. This

demonstrates the robustness of the mechanism to the learning window

used. It is important to note that these plots do not take into account the

membrane time constant (not present in the Poisson neuron model).

This was present in simulations using the LIF neuron model and

worked to effectively increase wE(f ), bringing it closer to wW (f ). Later

in this section, results of simulations with LIF neurons show how this

affected the frequency of the peak response.

We compared the analytical expression for the network

response amplitude for various input frequencies, R(fm), to

simulations using the Poisson neuron model. We carried out

simulations with networks of 10,000 neurons. These simulations

were done before any learning had occurred in the network (all

weights were equal) and then after 20,000s of learning with

120 Hz oscillatory inputs. The axonal delay profiles of this

network before and after learning, along with a Gaussian profile fit

to the after-learning profile, are shown in Figure S4A. Simulations

were run multiple times, each for 10s of modeled time and with a

different input modulation frequency, for frequencies ranging from

30 Hz to 300 Hz in steps of 10 Hz. The amplitude of the

responses for these two networks as a function of the input

modulation frequency is compared to an analytical approximation

in Figure S4B. We determined this analytical approximation using

Equation (43) and assuming the Gaussian delay profile that was

fitted to the after-learning network. The analytical approximation

closely matched the responses observed in the simulations.

Similar to the above simulations with the Poisson neuron model,

we carried out simulations using networks of 10,000 LIF neurons

(and ‘medium’ EPSPs). These networks had each learnt over

20,000s while receiving inputs with different modulation frequen-

cies (‘training frequencies’). The resulting axonal delay profiles of

these networks are shown in Figure 4D. We ran simulations

multiple times with all of these networks, each for 10s of modeled

time and with input modulation frequencies (‘testing frequencies’)

ranging from 50 Hz to 300 Hz in steps of 5 Hz. The peak

instantaneous firing rates of the periodic responses (averaged over

neurons), or the peak response, observed are shown in Figure 6A.

The peak instantaneous firing rate is presented instead of the

amplitude because the response, while still periodic with the same

frequency as the input, was no longer a cosine function. This was

due to the non-linear nature of the LIF model. For networks

trained with 100 Hz, 120 Hz, 140 Hz, and 180 Hz, these

response curves showed a clear selectivity toward the input

modulation frequency at which they were trained.

While LIF networks were able to encode higher training

frequencies (240 Hz, and 300 Hz) in their selected axonal delays

(Figure 4D), they did not respond selectively to this frequency after

learning. This was largely due to the fact that the network was not

able to respond with these higher frequencies regardless of the

delays in the network. We hypothesized that networks with faster

Figure 6. Simulations of peak network response after delay
selection. Response plots showing the peak in the periodic response
of networks of LIF neurons plotted as a function of the modulation
frequency, fm (‘medium’ EPSPs used unless otherwise specified). (A)
Response plot for networks after 20,000s of learning with input
modulation frequencies of 100 Hz (blue), 120 Hz (red), 140 Hz (green),
180 Hz (cyan), 240 Hz (magenta), and 300 Hz (yellow), as shown in
Figure 4D. The simulations used ‘medium’ EPSPs (solid), except for two
which used the fast EPSP (dashed and dot-dashed). The weights in the
networks trained with 240 Hz and 300 Hz inputs were scaled down
slightly (to about 0.99 of their original value) so that the networks were
below criticality. (B) Response plot for the network trained with 100 Hz
inputs in A, with the weights all scaled by 0.90 (dotted), 0.95 (dot-
dashed), 0.98 (dashed), 1.00 (solid).
doi:10.1371/journal.pcbi.1002897.g006
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synapses and neurons would be able to show a stronger response at

these higher frequencies. We considered this situation by running

simulations using a network with faster synapses and neurons that

was trained with an input frequency of 240 Hz. This is described

in the Methods section and the learned network is shown in

Figure 4D. Its response is shown in Figure 6A. We observed that

the network showed selectivity to an input frequency of 250 Hz.

This was very close to the trained frequency. The response of the

network with all of the axonal delays set to 3.1 ms (also shown in

Figure 4D) showed a response with only slightly improved

selectivity. Another point to notice is that the response of the

networks trained with higher frequencies (180, 240, 300 Hz) to

frequencies in the lower range (50–100 Hz) was higher than

networks trained with 100, 120 or 140 Hz. This was likely due to

the fact that the potentiated delays in these networks were

relatively short. It may be that these short delays were providing

recurrent feedback within the same oscillation peak, which for

lower frequencies like 50 Hz was relatively wide.

The recurrent connections in a network of excitatory neurons

provided positive feedback to the network. For weak recurrent

connections, this positive feedback did not greatly affect the firing

of the neurons in the network. As this feedback increased, these

connections caused higher firing rates. This continued up to a

critical point where the feedback caused the firing in the network

to continue increasing in an unstable manner. A network with its

mean recurrent weight at this point can be said to be critical, or to

have reached criticality. The trained networks we considered

ended up just below criticality after learning. Figure 6B shows the

change to the response of the network caused by scaling down the

recurrent weights in the network trained with 100 Hz. This shows

a decreasing frequency selectively as the network moves away from

criticality. In Figure 6A, it was necessary for us to scale down all of

the recurrent weights in the networks trained with 240 and 300 Hz

by a slight amount (down to 0.99 of their original value) so that

they were below criticality (for all frequencies).

Axonal and Dendritic Delay Selection
We extended the learning of oscillatory inputs by axonal delay

selection to consider the networks with connections that had a

range of dendritic as well as axonal delays. To do this, we needed

to consider the recurrent connections as a weighted delay profile

over both axonal and dendritic delays, �JJ (dax,dden). We derived an

expression for how this evolves due to STDP (see the Methods

section). As previously, we predicted the evolution of the deviation

of this profile from the homeostatic equilibrium

D _�JJ (dax,dden)~b(fm)cos½2p(dax{dden)fmzwW (fm)�, ð44Þ

where, as before, b(fm)~
1

2
ga2N2

K
�KK2r2

E (fm)rW (fm).

This analytic result can be visualized using a heat map of the

deviation of weights from the homeostatic equilibrium for connec-

tions of different axonal and dendritic delays. Figure 7A shows the

resulting heat map after learning with ‘medium’ EPSPs and inputs

with modulation frequencies of 120 Hz. This same result is shown in

Figure 7B for gamma frequency inputs (60 Hz) and ‘slow’ EPSPs

(typical of pyramidal neurons) to model how this mechanism may

work in the cortex. In both of these cases, the two-dimensional delay

profiles that were learned showed a bias towards connections that

have a linear relationship between their axonal and dendritic delays

(with a slope of 1.0). We compared these analytic results (Figure 7A

and B) to simulations of networks of 10,000 LIF neurons. As shown in

Figure 7C and D, these results supported the analytic model.

In order for the network to show a selective response, it is the

sum of the axonal and dendritic delays (not the difference between

them) that is required to be tuned to a particular value. The

diagonal black lines in Figure 7A and B show the connections that

have the specific axonal and dendritic delays required for the

network to have its largest response amplitude at the training

frequency. It can be seen that these lines did not match at all with

the delays selected during learning. The implications of this are

addressed in the Discussion section.

Delay Selection with Multiple, Out-of-phase, Oscillatory
Groups

Gamma oscillations (40–60 Hz) are the highest modulation

frequencies typically observed in the cortex. Axons within a single

group of neurons would need to have delays of approximately 10–

20 ms to be selected by the STDP delay selection mechanism

considered thus far. This may not be realistic for most axons in the

cortex. We showed that for multiple groups of neurons receiving out-

of-phase, oscillatory inputs it was possible for multiple, shorter delays

(e.g. 1–10 ms) to encode these lower frequencies (e.g. in the gamma

range). More interestingly, these delays could simultaneously encode

the time lag between the groups. These different groups of neurons

can be thought of as being in different cortical regions.

We extended the learning of oscillatory inputs through axonal

delay selection to learning within and between multiple groups of

neurons. These groups each received oscillatory inputs of the same

frequency but with different phases to each other. This extension of

the model to two groups of neurons (and inputs) is described in the

Methods section. In this case, we defined �JJij(d
ax) as the recurrent,

weighted axonal delay profile for connections from group j to group

i. These sets of connections are shown in Figure 8A using different

colors. This matrix of axonal delay profiles (specifically the deviation

of these profiles from the homeostatic equilibrium) was predicted to

evolve, due to STDP, according to

D _�JJ (dax)~

b(fm)
cos½2pfmdaxzwW (fm)� cos½2pfm(dax{d̂dlag)zwW (fm)�

cos½2pfm(daxzd̂dlag)zwW (fm)� cos½2pfmdaxzwW (fm)�

" #
,

ð45Þ

where, as before, b(fm)~
1

2
ga2N2

K
�KK2r2

E (fm)rW (fm).

An example of this delay selection at 60 Hz with a phase

difference of 0:78p (6.5 ms) and ‘slow’ EPSPs (typical of pyramidal

synapses in the cortex) is shown in Figure 8B. This shows the

analytical prediction for the resulting delay profiles between the

groups (red and green) after 25,000s of learning. It also shows the

supporting simulations, which used two groups each of 5,000 LIF

neurons. In both the analytical and simulation results, the two

within-group axonal delay profiles are shown in blue but are not

easily seen. This is because these connections were almost

completely depressed and their plots lie close to the horizontal

axis. We investigated analytically how the axonal delays that were

selected between the groups depended on the time lag in Figure

S5. For 60 Hz inputs, time lags of about 5 ms to 12 ms made it

possible for the between-group connections to encode the

frequency and time lag (for axonal delay ranges of 1–10 ms).

The response of each of the two groups, after delay selection,

depended upon both the frequency of the inputs, fm, and the time lag

between them, d̂dlag (their relative phases). As with a single group, the

response of the groups was oscillatory with the same frequency as the

inputs. We considered only the case where the within-group

connections were completely depressed and played no role in the
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response. Given this, the amplitudes of the responses of groups 1 and 2,

respectively, (derived in the Methods section) are approximated by

R1(fm,d̂dlag)&aNK
�KKrE(fm)f1zr2

E (fm)N2
J
�JJ2

12e{4(ps12fm)2

z2rE(fm)NJ
�JJ12e{2(ps12fm)2

cos½wE(fm)z2pfm(�dd12zd̂dlag)�

z2r2
E (fm)N2

J
�JJ12

�JJ21e
{2(pfm)2(s2

12
zs2

21
)

cos½2wE(fm)z2pfm(�dd12z�dd21)�g
1
2,

R2(fm,d̂dlag)&aNK
�KKrE(fm)f1zr2

E (fm)N2
J
�JJ2

21e{4(ps21fm)2

z2rE(fm)NJ
�JJ21e{2(ps21fm)2

cos½wE(fm)z2pfm(�dd21{d̂dlag)�

z2r2
E (fm)N2

J
�JJ21

�JJ12e
{2(pfm)2(s2

21
zs2

12
)

cos½2wE(fm)z2pfm(�dd21z�dd12)�g
1
2,

ð46Þ

where �JJij , �ddij , and sij are the mean recurrent weight, and the mean

and standard deviation (width) of the axonal delay profile, respectively,

from group j to group i.

Figure 8D shows the peak response of each group in the

network from Figure 8B observed in simulations with various time

lags between the inputs. Figure 8C shows the mean of the

analytically determined group response amplitudes, R1(fm,d̂dlag)

and R2(fm,d̂dlag), respectively, against both the input frequency, fm,

and the time lag between the inputs, d̂dlag. The individual group

response amplitudes of this average are shown in Figure S6A and

B. Both the analytical results and the simulations showed that the

network response was selective to the trained time lag. For these

results, an EPSP with a rise time of 1 ms and a decay time of 3 ms

was used. This was in the parameter range between the ‘slow’ and

‘medium’ EPSPs, the results of which are shown in Figure S6C

and D, respectively. The frequency that the network was predicted

to be selective to differs from the training frequency, and these

plots show that this difference strongly depended on the EPSP

used. The strength of this selectivity, as with the response of a

single group, depended on the mean strength of the recurrent

connections. This is shown in Figure S6E, where the mean group

response amplitudes are plotted for a network with weaker

between group connections.

Figure 7. Axonal and dendritic delay selection. (A) Analytically determined heat map of potentiation/depression of connections with different
axonal and dendritic delay with 120 Hz inputs and ‘medium’ EPSP, as given by Equation (44). Regions of red correspond to potentiation and regions
of blue correspond to depression. Black lines correspond to the delays that maximize the response at 120 Hz. (B): Same as A but with 60 Hz inputs
and ‘slow’ EPSPs (black lines correspond to the delays that maximize the response at 60 Hz). (C) Resulting heat map of mean connection strengths for
different axonal and dendritic delays after simulating 500s of learning with 10,000 LIF neurons, ‘medium’ EPSPs, and 120 Hz inputs. (D) Same as C but
with ‘slow’ EPSPs, 60 Hz inputs, and learning for only 50s. Note that no color bars are shown in A and B as the value of the weights is arbitrary; the
mean depended on the homeostatic equilibrium and the amplitude on the learning duration.
doi:10.1371/journal.pcbi.1002897.g007
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Discussion

In this study, we examined how STDP can lead to the selection

of axonal and dendritic propagation delays within a recurrently

connected network receiving oscillatory synaptic input. We found

that the recurrent delays selected depend on the frequency of the

oscillations and that this delay selection influences the response of

the network to different input frequencies. We identified the

conditions under which the resulting network was selective to the

frequency of oscillation that it received during learning.

For learning with only axonal delays (assuming short dendritic

delays), the range of frequencies that can be learned is limited by

the range of axonal delays in the network. This can be seen from

Equation (42). Here, the maximum delay (10 ms in this study) sets

the limit on the minimum frequency (76 Hz) and the minimum

delay (1 ms) sets the limit on the maximum frequency (750 Hz).

After delay selection, the frequencies that a network can possibly

respond selectively to differ from the frequencies that it can learn.

While the minimum frequency is the same, the maximum

frequency is limited by how reliably the neurons and synapses in

the network respond to these higher frequencies. This is illustrated

in Figure 6A and B. We also observed in Figure 6A that networks

trained with higher frequencies (e.g. 240 Hz) have a higher

response for low frequencies (e.g. 50 Hz). This is likely due to the

width of the oscillation peaks at these low frequencies being much

larger than potentiated axonal delays in the network. In this case,

the oscillation peaks become reinforced by recurrent feedback

multiple times during a single oscillation, increasing the response

at lower frequencies.

We found that short dendritic delays are necessary in order for a

network to become selective in its response to a particular

frequency. This can be seen with a range of axonal and dendritic

delays, where the connections that are selected during learning

(red stripes in Figure 7) have a large range of total propagation

delays (daxzdden). In other words, the learning is no longer a one-

to-one mapping between frequency and delay. It has been

suggested that, by considering unreliable synaptic transmission,

STDP can differentiate between connections with the same

difference in axonal and dendritic delays (dax{dden) [33]. In this

study, however, the effect of unreliable synaptic transmission is

Figure 8. Axonal delay selection between two recurrently connected groups. (A) Diagram of two group model simplified from Figure 3. (B)
Comparison between analytical (dashed) and simulation (solid) for axonal delay profiles between two groups each with oscillatory inputs with a
modulation frequency of 60 Hz and where the inputs into group 2 are 6.5 ms behind the inputs into group 1. Analytical result was for 40,000s of
learning and as given by Equation (45) and used a ‘slow’ EPSP. Simulation result was for 20,000s of learning with two groups of 5000 LIF neurons
each. Shown are the delay profiles for the connections from group 2 to group 1 (red), from group 1 to group 2 (green), and within groups (blue) for
which the mean weight for all delays was zero. (C) Analytically determined heat map (Equation (46)) of the mean of the group response amplitudes
for different input frequencies and time lags. An EPSP with 1 ms rise time and 3 ms decay time was used instead of the ‘slow’ EPSP (Figure S6C), and
recurrent strengths, NJ

�JJ12 and NJ
�JJ21, of 0.9. Black lines represent the training frequency (60 Hz) and time lag (6.5 ms). (D) Peak responses from

simulations of group 1 (red) and group 2 (green) for different input time lags at the training frequency (60 Hz), for the network after learning, shown
in B. Dashed vertical line represents training time tag. Both B, C and D use a modulation amplitude, a, of 5 spikes/s, and the analytical plots in B and C
used NK

�KK~4, to match the network response to the network response during the simulation with the nonlinear LIF neurons.
doi:10.1371/journal.pcbi.1002897.g008
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minimal because the post-synaptic activity arises predominately

from the inputs rather than the recurrent connections. Without

this one-to-one mapping between frequency and delay, the learned

network is not selective to any frequency (let alone the training

frequency). If dendritic delays are not short but are sharply tuned,

the network would become selective to a frequency but it would

not be the training frequency. In a network with a range of

dendritic delays and short axonal delays, the network would also

become frequency selective but again not to the training

frequency. While there are unlikely to be regions in the brain

that contain only connections with short dendritic delays, the sub-

networks made up of only these short dendritic connections would

exist. Depending on the relative strength and correlation of the

inputs from connections with longer dendritic delays, the learning

and response of the networks would be as we have considered

here.

The STDP learning window used here has the typical

bimodality (depression for post-pre spike pairs and potentiation

for pre-post pairs) observed with excitatory synapses. The axonal

delays of the recurrent connections temporally shift this learning

window, and are potentiated if they do so by the right amount and

capture a peak in the neurons’ periodic correlogram. It is

important to note that, because the oscillatory activity of the

neurons is due to the inputs, coincidence detection by means of

recurrent axonal delays is not necessary for learning. However,

this recurrent coincidence detection is relevant when considering

the amplitude of the network’s response for different input

frequencies.

As discussed in the Results section, recurrent excitatory

networks have a critical point where the positive feedback of the

potentiated recurrent connections causes run-away increases in

firing. The mean strength of the recurrent connections converges

to a homeostatic equilibrium that depends on the homeostatic

learning parameters, the learning window, and the level of

correlation in the inputs. This may be above or below this critical

point. For networks where the mean recurrent weights tends to

increase, Lubenov and Siapas showed that STDP keeps this mean

weight just below the critical point, provided the connections have

axonal delays that exceed their dendritic delays [36]. In this

situation, synchronous firing is caused by the super-critical

feedback. This synchronous firing is propagated along the

recurrent axons arriving at neurons shortly after post-synaptic

spikes, leading to synaptic depression. We observed this to be the

case for the learning that was performed in this study (see

Figure 4C). The networks taken after 20,000s of learning (see

Figure 4D) all had mean recurrent weights just less than this

critical value. We showed that the frequency selectively of the

network increases dramatically as it approaches criticality.

We found our results to be robust with respect to the shape of

the learning window used, provided it has the bimodality typical of

excitatory synapses (see Figure S3). We also explored multiple

neuron models (Poisson and LIF) and a range of synaptic time

constants (‘slow’, ‘medium’ and ‘fast’ EPSPs). The delay selection

learning within a single group requires a significantly large number

of neurons in the network (see Section 1 of Supporting Text S1

and Figure S7A). In spiking networks, a particular synaptic input

may be the input that induces an output spike, which is referred to

as a spike triggered correlation [8,17]. In the Poisson neuron

model, this is captured by the autocorrelation of the external

inputs and the autocorrelation of the neurons in the network. This

effect is small if many inputs are required for a neuron to generate

a spike. If the network is too small, these correlations dominate the

shape of the delay profile learned and prevent the encoding of the

input frequency. For axonal delay selection between groups, where

the spike triggering correlations are not present, smaller numbers

of neurons (e.g. 1000) can demonstrate axonal delay selection than

is possible within a single group (see Figure S7B).

This study focused on additive STDP and more general STDP

models remain to be fully explored [37]. Although not investigated

here, we would expect a weight dependent (non-additive) learning

rule to produce qualitatively similar results as long as the weight

dependency leads to sufficient competition between the recurrent

weights [12,18,38,39]. Another variant of STDP that was not

considered here is triplet STDP [40–43]. Triplet STDP effectively

modifies the learning window for different firing rates and captures

correlations beyond the second order [44]. The correlations in our

model arise solely from oscillations and there are no higher-than-

second-order correlations (see Section 8 of Supporting Text S1).

Also, our results have been shown to be reasonably insensitive to

the precise shape of the typical excitatory STDP learning window

for the frequency range considered here (see Figure S3).

Therefore, we would expect qualitatively similar results with a

triplet STDP model, provided that the mean firing rates are in the

range such that there is both LTP and LTD (approximately 5–

30 Hz [44]).

In this study, we looked only at the learning of oscillatory

(sinusoidal) patterns. However, this delay selection learning could

potentially encode many other temporal patterns. This study

suggests the ranges of the frequency spectra of the types of signals

that could be learned. A slightly different pattern to consider

would be a periodic, phase-locked firing pattern. Here, the firing

rate would be made up of a small base level with narrow, high

intensity peaks that periodically occur. In this situation, we would

expect delay selection to occur in a manner similar to that

described in this study, or possibly faster. Trained networks would

be expected to respond less to low frequencies (much lower than

the training frequency). This is because the narrow peaks within

the inputs would not allow the behavior observed in this study,

where recurrent connections reinforced activity within the same

oscillation peak (see Figure 6A).

Delay selection can also encode the oscillation frequency of

signals in the feed-forward connection delays [5]. This requires

selecting two (or more) different delays, the difference of which

would need to be a multiple of the oscillation period. Depending

on the frequency, this may require an unrealistic range of delays in

the connections, especially if these are connections within a local

network.

First proposed by Hebb [45], there has been growing

experimental evidence for spatially distributed neuronal ensembles

or cell assemblies [46–49] in which neurons far apart in the brain

are synchronously active. This type of coordinated activity

between distant regions (or cortical ‘columns’ in these regions)

may be mediated by long range synaptic connections. The

learning considered in this study, where delay selection is observed

between multiple groups that are driven by out-of-phase, gamma

oscillations, provides a possible mechanism by which this type of

behavior could arise. Gamma (and other cortical) oscillations are

known to be stronger during certain cognitive tasks [27]. This

strengthening may correspond to the ‘‘activation’’ of particular

ensembles between certain regions/columns, as illustrated in

Figure 9A. These ‘‘activations’’, as described here, would be

triggered by specific sets of phase differences as shown in

Figure 9B. This would be similar to proposed gating [50] and

routing mechanisms [51]. If the learning we have considered here

does lead to the formation of these types of neuronal ensembles,

then it can be seen that it would be possible for these ensembles to

merge with one another, split into multiple ensembles, grow in

size, shrink, temporally bind with one another, or trigger,
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promote, stop, or block one another. Such ensemble activity is thus

related to studies on neural syntax [52], neural Darwinism [53],

synfire chains [54], and polychronous groups [10] (although at the

larger scale of regions/columns than polychronous groups).

This study focused on the oscillatory activity in the network

being due to oscillations in the inputs. These inputs may represent

activity coming from sensory areas and representing a stimulus

(e.g. sound), but they may also be involved in the coding of

information coming from other brain regions. In this case, the

oscillations would not necessarily represent the oscillatory nature

of a stimulus, but instead have some functional role (such as the

above mentioned cognitive role postulated for gamma oscillations).

The oscillations in the networks may even be intrinsically

generated and not due to the inputs at all. In a related study,

Cateau et. al. looked at the oscillations that arose in a network due

to STDP and the specific properties of the neuron model used

[55]. They observed functional clustering of neurons into groups

with only weak within group connections. Since there was only a

narrow range of axonal delays in the study, STDP was not able to

perform delay selection. The study demonstrated that STDP

instead selected the number of out-of-phase groups of neurons

such that the connections between the groups all ‘‘shared’’ the

oscillation delay.

Pyramidal-interneuron gamma (PING) is an established net-

work configuration that generates intrinsic oscillations via the

interactions between excitatory and inhibitory populations

[56,57]. If it is assumed that inhibitory connections in the cortex

only act locally, local populations producing these oscillations

would be connected to other local populations by only excitatory

connections. These interconnected groups are similar to those

considered in this study. The main difference is that their

oscillations are internally generated rather than due to inputs.

Though it remains to be considered, we would expect the synaptic

changes to the excitatory connections between these groups to

occur in a qualitatively similar manner to what was observed

between the multiple groups considered in this paper. Further-

more, when oscillations are internally generated, the phase of their

oscillations is not fixed and can be perturbed. In this situation, it is

possible that the delay selection between multiple groups could

lead to the formation of stable patterns of relative phases or

oscillatory states or modes. Although the phase of the oscillations is

not fixed, the frequency of the oscillations would be fixed at a

frequency determined by the excitatory-inhibitory interactions.

Because of this, the frequency selectivity of the network response

due to the delay selection would not be of interest. However, the

phase selectivity of the network response would be relevant. We

would expect a stronger response when the activity is in one of the

stable oscillatory modes. Inputs to the network (not necessarily

oscillatory) could possibly steer the network in and out of these

different, self-sustaining modes. This formation of neuronal

ensembles from intrinsic network oscillations may even be possible

with multiple, distinct oscillation frequencies present (e.g. gamma

and beta frequencies) [58,59]. This suggests another extension for

the learning between multiple groups, which only considered a

single frequency. Investigating how these networks could encode

two (or more) different frequencies, instead of a single frequency

and a time lag, is left as an interesting challenge.

Another example of where the delay selection mechanism might

be employed in the brain is in the auditory brainstem. Here, sound

information is encoded both spatially, with different frequency

components being carried by spike trains of different nerve fibers,

and temporally, with the precise timing of these spikes. The delay

selection mechanism considered in this study may provide a way to

extract the temporal information. Specifically, it could help

explain how the brain can perceive the pitch of a sound with a

missing fundamental, such as in telephone speech. The frequency

range we have considered (100–300 Hz) is typical of the pitches

present in speech. The neuronal and synaptic time constants that

we have used (‘fast’ EPSP) are consistent with those observed in

the auditory brainstem. We demonstrated how oscillations in this

range can be encoded into the axonal delays of a network, which

becomes selectively responsive to this trained frequency. It remains

to be explored whether networks could be trained instead with a

complex sound containing a fundamental frequency (e.g. 120 Hz)

as well as its harmonics (e.g. 240, 360, and 480 Hz). It would then

be of interest whether the network became selective not only to

Figure 9. Illustration of different neuronal ensembles formed by delay selection. (A) Multiple groups/regions of recurrently connected
neurons where connections between them have undergone axonal delay selection appropriate to the different out-of-phase, oscillatory activities
present during the activation of each neuronal ensemble (blue, red, green and magenta). (B) Different out-of-phase, oscillatory activity of each group/
region for the different neuronal ensembles (blue, red, green and magenta). In this network, only one neuronal ensemble can ever be ‘active’ at once.
For each neuronal ensemble, the activities of the participating regions have the specific frequencies and relative phases that drove the delay selection
and, after learning, resonate with the selected axonal delays of the recurrent connections.
doi:10.1371/journal.pcbi.1002897.g009
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this signal but also to the corresponding signal without the

fundamental frequency. If this were shown with a sufficiently

detailed simulation with realistic inputs, this mechanism would be

a candidate for describing missing fundamental pitch perception.

However, other possible mechanisms are likely to exist and these

would each need to be tested against experimental data.

Throughout this study, we only considered networks of

excitatory neurons. This is an important point to note because,

as mentioned, studies have shown that interactions between

excitatory and inhibitory populations can lead to the generation of

intrinsic oscillations (e.g. PING) [56,57]. Furthermore, the

networks considered all operated in super-threshold, mean-driven

regimes. This was done to facilitate the mathematical analysis and

reduce the number of parameters to consider. The present analytic

framework has not been extended to incorporate inhibitory post-

synaptic potentials and this could be an area for future

investigation. The current model provides a suitable description

of the feed-forward behavior of neural processing in the auditory

brainstem (for a review, see [60]). Conversely, the cortex is

generally considered to be a balanced network, operating in a

fluctuation-driven regime [61–67]. Because of this, it is not clear

how applicable the results in this study are to such networks.

However, as we discussed, our results for multiple, out-of-phase

groups would be expected to extend to the situation where local

populations of excitatory and inhibitory neurons, internally

generating (gamma) oscillations (through a mechanism such as

PING) are connected to each other through long-range, excitatory

connections. This situation may provide a more suitable model of

the cortex [68,69].

STDP in a network regularly driven by oscillatory activity

introduces a bias towards strong connections with a specific linear

relationship between their axonal and dendritic delays, as shown

in Figure 7. If a structural plasticity mechanism exists in the brain

that physically removes weak connections not being used, then this

predicts that a bias should be observed in the axonal and dendritic

delays of connections in regions of the brain known to exhibit

oscillatory activity. For example, the relationship between these

delays shown in Figure 7B may be what is observed in regions of

the cortex that show gamma oscillations. This prediction assumes

that STDP works in the same manner for connections with long

dendritic delays. While it is usually modeled in this way [37], it is

not clear whether this is consistent with experimental work

[70,71].

Supporting Information

Figure S1 Amplitude of the Fourier transform of the
learning window as a function of frequency. Given by

Equations (31) in Section 6 of Supporting Text S1. The standard

window has parameters cP~15, cD~10, tP~17ms and

tD~34ms.

(TIFF)

Figure S2 Comparison of learning predicted analytical-
ly (dashed) and from a simulation with Poisson neurons
(solid). The axonal delay profile of a network at homeostatic

equilibrium with 120 Hz oscillatory inputs after 1000s (blue),

2000s (green), 3000s (red), 4000s (cyan), 5000s (magenta), 6000s

(yellow), and 7000s (black). A ‘medium’ EPSP was used here.

(TIFF)

Figure S3 Analytical comparison of frequency corre-
spondence between learning and response for different
learning windows. Plot of the training frequency and

corresponding peak response frequency for different learning

windows for a ‘fast’ EPSP, a delay profile with width, s, of 0.5 ms,

strength, J0, of 0.5, and with a modulation amplitude, a, of 5

spikes/s. The different learning windows shown are: the standard

window with cP~15, cD~10, tP~17ms and tD~34ms (green),

the standard window with tP and tD multiplied by 0.1 (blue), the

standard window with tP and tD multiplied by 10 (red), a

balanced window with cP~cD~10 and tP~tD~20 (magenta),

and a window biased in the reverse way to the standard with

cP~10, cD~15, tP~34ms and tD~17ms (yellow). The dashed

line represents fpeak~flearn.

(TIFF)

Figure S4 Comparison of analytical expression for
network response with simulations using the Poisson
neuron model. (A) The axonal delay profile of a network before

(green) and after (blue) 40,000s of learning, with STDP and

120 Hz inputs and a Gaussian delay profile (red), which closely

approximates the profile after learning. (B) The amplitude of the

network response to different input modulation frequencies, from

simulations with networks of the same color in A (green and blue),

or analytically determined from the Gaussian delay profile of the

same color in A (red), using Equation (43). A ‘medium’ EPSP was

used here.

(TIFF)

Figure S5 Selected axonal delays for different time lags
between the inputs into two groups. (A) Analytical plot of

the axonal delays selected by STDP for connections within each of

two groups (blue), from group 1 to group 2 (green), and from

group 2 to group 1 (red), with the time lag between the 60 Hz

oscillatory inputs into each group. The dashed line represents the

6.5 ms time lag considered in more detail. (B) Same as A (thick

lines) with additional lines for 55 Hz (paler lines) and 65 Hz

(darker lines). Note that the three green lines (pale, thick and dark)

in the bottom right of B are very close together.

(TIFF)

Figure S6 Analytical estimations of two group response
amplitude to different inputs. (A) Response amplitude of

group 1 for inputs with different frequencies and relative time lags,

using Equation (46) with an EPSP with a rise time of 1 ms and a

decay time of 3 ms, a modulation amplitude, a, of 5 spikes/s,

feedforward strengths, NK
�KK , of 1.0, and recurrent strengths,

NJ
�JJ12 and NJ

�JJ21, of 0.9. (B) Same as A but for group 2. (C) Plot of

the average between the response amplitudes of groups 1 and 2 as

plotted for A and B but with a ‘slow’ EPSP. (D) Same as C but

with a ‘medium’ EPSP. (E) Same as C but with the EPSP used in A

and B and weaker recurrent strengths of 0.5.

(TIFF)

Figure S7 Axonal delay profile learned in networks of
different sizes. (A) Deviation of axonal delay profile (from mean

network weight) after 250s of learning for a single group of 500

(blue), 1000 (red), 2000 (green), 5000 (magenta), 10,000 (cyan),

20,000 (black, dashed) LIF neurons receiving 120 Hz inputs and

with ‘medium’ EPSPs. (B) Deviation of axonal delay profile (from

mean network weight), for connections from group 2 to group 1,

after 100s of learning for two groups, each with 250 (blue), 500

(red), 1000 (green), 2000 (magenta), 5000 (cyan), and 10,000

(black, dashed) LIF neurons, receiving different, out-of-phase

(6.5 ms), 60 Hz inputs and with ‘slow’ EPSPs.

(TIFF)

Text S1 Detailed analytical derivations and calcula-
tions. (PDF). Sections: (1) Recurrent Correlation, (2) Oscillatory

Inputs, (3) Homeostatic Equilibrium in a Recurrent Network, (4)

Network Response for a Single Group, (5) Network Response for
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Two Groups, (6) Learning Window and EPSP Kernel, (7)

Estimating the Amplitude of a Sum of Cosines, and (8) Third-

Order Covariance of Oscillatory Inputs.

(PDF)
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