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Purpose: To evaluate the value of radiomics analysis in contrast-enhanced spectral
mammography (CESM) for the identification of triple-negative breast cancer (TNBC).

Method: CESM images of 367 pathologically confirmed breast cancer patients (training
set: 218, testing set: 149) were retrospectively analyzed. Cranial caudal (CC), mediolateral
oblique (MLO), and combined models were built on the basis of the features extracted
from subtracted images on CC, MLO, and the combination of CC and MLO, respectively,
in the tumour region. The performance of the models was evaluated through receiver
operating characteristic (ROC) curve analysis, the Hosmer-Lemeshow test, and decision
curve analysis (DCA). The areas under ROC curves (AUCs) were compared through the
DeLong test.

Results: The combined CC and MLO model had the best AUC and sensitivity of 0.90
(95% confidence interval: 0.85–0.96) and 0.97, respectively. The Hosmer–Lemeshow test
yielded a non-significant statistic with p-value of 0.59. The clinical usefulness of the
combined CC andMLOmodel was confirmed if the threshold was between 0.02 and 0.81
in the DCA.

Conclusions: Machine learning models based on subtracted images in CESM images
were valuable for distinguishing TNBC and NTNBC. The model with the combined CC and
MLO features had the best performance compared with models that used CC or MLO
features alone.

Keywords: triple-negative breast cancer, radiomics, contrast-enhanced spectral mammography, breast cancer,
molecular subtypes
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INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for 10–20% of all
diagnosed breast cancers (1). Given the lack of the expression of
human epidermal growth factor receptor-2 (HER-2) and
estrogen and progesterone receptors, which can be used for
targeted therapy, TNBC is difficult to treat and has a high
recurrence and metastasis rate, and a low survival rate (2).

Immunohistochemistry, which analyzes part of the tumor
tissue obtained by invasive biopsy or surgery, is commonly used
for assessing the molecular subtype of breast cancer. However,
given the spatial and temporal heterogeneity of breast tumors
(3), the accuracy of biopsy is limited. In addition, invasive biopsy
is at risk of side effects such as infection, bleeding, and implant
metastasis. Therefore, an alternative method is necessary to
assess the molecular subtype of the breast cancer completely
and non-invasively.

Radiomics is a method of extracting quantitative features
from routine medical images (4). These quantitative features,
defined as radiomic features, reflect the characteristics of the
whole region of interest (ROI) in medical images (5). Several
previous studies have explored the value of radiomic features
in predicting TNBC based on MRI (6, 7) and mammography
(8, 9). However, MRI could not be performed in patients with
some medical implants, such as magnetic cardiac pacemakers,
defibrillators, and metallic clips. The high cost of MRI
also limits its clinical application. Mammography only
focuses on morphology, without functional information,
which limits its clinical application (10). Moreover, the
outline of the tumor is not sharp enough, particularly in
dense breast tissue (11).

Contrast-enhanced spectral mammography (CESM) is
a novel medical imaging method (12). In CESM, low-
energy and subtracted images are obtained using a contrast-
enhancing agent at two levels of energy (13). The low-energy
image is equal to a standard 2D mammography image, and
the subtracted image mostly shows the microcirculation
characteristics in the breast in which neovascularization is
highlighted (10, 14).

Studies focusing on the value of radiomics analysis based
on CESM for the prediction of TNBC are rare. The value of
CESM-based radiomics has been preliminarily explored in
previous studies (15, 16) to differentiate TNBC from other
types of breast cancer. Given the small number of patients,
particularly for patients with TNBC, the prediction models in
their study were not validated in the testing set. The results in
their studies are not highly reliable. Thus, the value of CESM-
based radiomics for identifying TNBC should be further
explored. In this study, a larger population of patients
divided into training and testing sets was used to evaluate
the diagnostic value of CESM for identifying TNBC.
Furthermore, radiomics models based on radiomic features
from cranial caudal (CC) and mediolateral oblique (MLO)
views and their combination were built to explore whether the
extracting features in different views impact the performance
of the prediction models.
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METHODS AND MATERIALS

Patients
Patients who underwent CESM between July 2017 and June 2020
were retrospectively analyzed. The inclusion criterion was as
follows: (a) patients were pathologically confirmed with breast
cancer. The exclusion criteria were as follows: (a) molecular
subtype of tumor was not available in the pathological result; (b)
tumor not present or not complete in the subtracted image on CC
or MLO; (c) excessive glandular overlapped with lesion to influence
the segmentation of lesion; (d) underwent treatment prior to CESM;
(e) incomplete clinical information, and (f) poor image quality (e.g.,
remarkable motion and susceptibility artefacts). Patients who
underwent CESM between July 2017 and October 2019 were
included in the training cohort. A total of 664 patients (109
TNBC and 555 non-TNBC patients) were included in the
training set. To resolve the class imbalance problem, 446 non-
TNBC patients were randomly excluded. Finally, 109 TNBC and
109 non-TNBC patients were included in the training set. Patients
who underwent CESM between November 2019 and June 2020
were included in the testing set. The testing set retained its original
distribution of TNBC and non-TNBC patients (30 TNBC and 119
non-TNBC patients). The immunohistochemical results and age of
patients were acquired from the electronic medical record system.
This retrospective analysis was approved by the local Ethics
Committee of our institution, and the requirement for patient
informed consent was waived.

CESM Examination Parameters
CESM was performed using a GE Senographe Essential
mammography unit (GE Healthcare, Milwaukee, WI, USA).
Iohexol (350 mg I/ml) was injected intravenously at a dose of 1.3
ml/kg and speed of 3.0 ml/s. The CESM examination consisted of a
low-energy exposure [kilovolt (peak) of 26–31 kV], immediately
followed by a high-energy exposure [kilovolt (peak) of 45–49 kV].
Automatic exposure control (AEC) was used to optimize X-ray
parameters automatically. Low-energy images and subtracted
images on CC and MLO were acquired in 5 min with a
recombination algorithm. No severe adverse events occurred due
to contrast administration.

ROI Segmentation
The ROI was segmented on CC and MLO by two trained
radiologists (Readers 1 and 2, each with 5 years of diagnosis
experience in CESM) by using Radcloud (Huiying Medical
Technology Co., Ltd, Beijing, China, http://radcloud.cn) in
subtracted images (Figure 1). ROIs encompassed the entire
enhancing lesion. The tumor with the largest diameter was
selected for segmentation when the breast cancer was multifocal.
The segmentation work on 70 randomly selected patients was first
performed by Readers 1 and 2 simultaneously. Reader 1 repeated
the segmentation work 2 weeks later. The segmentation work on the
remaining 297 patients was finished by Reader 1. Readers 1 and 2
were blind to the results of the pathological examination. An
experienced radiologist (Reader 3, with 13 years of diagnosis
experience in breast medical images) supervised segmentation
December 2021 | Volume 11 | Article 77319
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work. Revision will be applied if necessary (e.g., Readers 1 and 2
selected different tumors on the same patient, or contour of lesion
was not drawn precisely).

Radiomics Feature Extraction
For each CESM sequence on each image, 1,409 radiomics features
were extracted using a tool from the Radcloud platform, which
extracted radiomics features from medical image data with a large
panel of engineered hard-coded feature algorithms (http://mics.
radcloud.cn/#/project). The 1,409 features obtained were divided
into four main categories: first-order statistics, shape, texture
[gray-level co-occurrence (GLCM), gray-level run length
(GLRLM), gray-level size zone (GLSZM), neighboring gray tone
difference (NGTDM), gray-level dependence (GLDM), Matrices],
and higher-order statistics (Laplacian of Gaussian, wavelet, square,
square root, logarithm, exponential, gradient, and local binary
pattern filters) features. The CC and the MLO feature datasets
were merged into the combined dataset.

Inter- and Intra-Agreement of
Radiomics Features
The inter- and intra- agreements of radiomics features were
evaluated by using intraclass correlation coefficient (ICC) analysis
based on radiomics features for the 70 patients mentioned above.
The inter- and intra-ICCs for each radiomic feature were acquired
via the radiomic features extracted from ROIs segmented by
Readers 1 and 2 simultaneously and by Reader 1 at different
times. Radiomic features with inter- and intra-ICCs >0.75 were
selected for the subsequent statistical analysis.

Radiomic Features Selection and
Radiomic Model Building
Immunohistochemical results were selected as the gold reference.
Normalization was applied to rescale all features from the original
range to a new range of 0 and 1. Radiomic features in the training set
thatwerenotsignificantlydifferentbetweenpatientswithandwithout
Frontiers in Oncology | www.frontiersin.org 3
TNBCwerefiltered from theCC,MLO, and combinedCCandMLO
featuredatasetsbyusingunivariateanalysis.After theabovefiltration,
the least absolute shrinkage and selection operator (LASSO) (17)
method was used to decrease the high degree of redundancy of
radiomic features. The optimal coefficient of regularization (a) used
for the LASSO method was selected using the inner 10-fold cross-
validation in the training set with a maximum iteration of 5,000 via
the binomial deviance. Subsequently, the radiomic parameters with
non-zero coefficients in the LASSO model generated by the entire
training set with the optimal a were selected. CC, MLO, and
combined radiomic models were built on the basis of the
coefficients of each selected feature via the LASSOmethod.

Evaluation of Radiomic Model
The probabilities of TNBC for patients were acquired through the
CC, MLO, and combined models. Respective Youden indexes were
calculated and were selected as threshold. If probability was higher
than threshold, the respective patient was predicted as TNBC
patient. The discrimination ability of the CC, MLO, and
combined radiomic models at all thresholds in the training and
testing sets was shown through receiver operating characteristic
(ROC) curve analysis. The 95% confidence interval (CI) of the area
under the ROC curve (AUC) was acquired on the basis of the
bootstrapping. The AUCs in the testing set for each model were
compared. Prediction models were also evaluated by using the
Hosmer–Lemeshow test, which assessed whether the observed event
rates matched the expected event rates in the subgroups of the
model population. The clinical usefulness of radiomic models in the
testing set was evaluated using decision curve analysis (DCA) (18)
in the testing set. The DCA measured the net benefit which placed
benefits and harms on the same scale at each possible threshold
probability. The workflow of this study is presented in Figure 2.

Statistics Analysis
The R (version 3.6.3) was used for statistical analysis. Age and
tumor diameter of patients with and without TNBC in the
A B C

FIGURE 1 | Region of interest was segmented. A 49-year-old woman with TNBC in the left breast. (A) Low-energy, craniocaudal view. (B) Subtracted image,
craniocaudal view. (C) TNBC was manually segmented in the subtracted image manually.
December 2021 | Volume 11 | Article 773196
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training and testing sets were statistically analyzed using t test or
Mann–Whitney U test. The percentage of postmenopausal
patients in the training or testing set was statistically analyzed
using Chi-Squared Test. Univariate analysis was performed using
one-way ANOVA (19) or the Mann–Whitney U test (20). The
areas under ROC curves (AUCs) of models in the testing cohort
were compared using the Delong test (21). The sensitivities and
specificities of models in the testing set were compared based on
bootstrap. The reported statistically significant levels were all
two-sided, and the statistical significance was set at 0.05.
RESULTS

Patients
Among the 218 patients in the training set (age: mean ± SD =
54.57 ± 10.31 years, range = 29–76 years), 109 had TNBC. Of the
Frontiers in Oncology | www.frontiersin.org 4
149 patients in the testing set (age: mean ± SD = 55.07 ± 9.70
years, range = 27–76 years), 30 had TNBC. The clinical
characteristics between TNBC and non-TNBC patients in
training and testing sets were not statistically different
(p>0.05). The characteristics of the patients in the training and
testing sets are presented in Table 1.

Feature Selection and Prediction
Model Building
A total of 2,072 radiomics features were discarded for low intra-
or inter-class correlations. After univariate analysis, 164, 148,
and 312 radiomics features were significantly different (p < 0.05)
between patients with and without TNBC in the CC, MLO, and
combined feature datasets, respectively. A total of 5, 8, and 8
radiomics features (2 from the CC feature dataset and 6 from the
MLO feature dataset) were selected as useful radiomics features
by the LASSO method in the CC, MLO, and combined feature
datasets, respectively. All selected radiomic features were texture
features (GLRLM), including that after filter transformation
(logarithm in the CC, logarithm and wavelet in the MLO).
Two of the 8 radiomics features in the combined model were
original GLRLM from the CC; the other 6 features were from the
MLO feature datasets. Therefore, the radiomics features in the
combined model were the same as part of radiomics features in
the CC and MLO models. The selected features in the CC, MLO,
and combined prediction models are presented in Table 2.

Validation of Models in the Training and
Testing Sets
The AUCs of the CC, MLO, and combined models were 0.87 (95%
CI = 0.79–0.95), 0.88 (95% CI = 0.81–0.94), and 0.90 (95% CI =
0.85–0.96), respectively, in the testing set. The AUC of the
combined model was higher than that of the CC (p > 0.05) and
MLO (p > 0.05) models in the testing set. The combined model
also reached the highest sensitivity (0.97) compared with the CC
(0.93, p > 0.05) and MLO (0.93, p > 0.05) models in the testing set.
The AUCs of the CC, MLO, and combined models were 0.83 (95%
CI = 0.78–0.89), 0.84 (95% CI = 0.79–0.89), and 0.85 (95% CI =
0.80–0.90), respectively, in the training set. The sensitivity values
of the CC, MLO, and combined models in the training set were
0.87, 0.84, and 0.89, respectively. In addition, the specificity values
of the CC, MLO, and combined CC and MLO models were 0.60,
TABLE 1 | Characteristics of patients in the training and testing sets.

Training set Testing set

Characteristics p Characteristics p

Age, mean ± SD, years 54.57 ± 10.31 0.37 55.07 ± 9.70 0.45
range, years 29–76 27–76
Postmenopausal patients, no. (%) 130 (60) 0.24 87 (59) 0.29
Tumor diameter, mean ± SD, cm 3.57 ± 2.10 0.39 3.17± 1.97 0.80
range, cm 0.97–10.78 0.58–10.62
TNBC, No. (%) 109 (50) – 30 (20) –

All, no. 218 149
De
cember 2021 | Volume 11 | Article 77
SD, standard deviation; TNBC, triple-negative breast cancer.
p Values indicated difference in clinical characteristics between TNBC and non-TNBC patients in the training or testing sets.
FIGURE 2 | Workflow of this study.
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0.59, and 0.69, respectively, in the testing set and 0.71, 0.69, and
0.55, respectively, in the training set. The specificity of the
combined model was statistically higher than that of the CC and
MLOmodels (p < 0.05). The Hosmer–Lemeshow test yielded non-
significant statistical difference with p = 0.28, 0.46 and 0.59 for the
CC, MLO, and combined models, respectively. AUCs, sensitivities,
and specificities of CC, MLO, and combined models are shown in
Table 3. All three models were clinically useful in DCA. If the
threshold was between 0.05 and 0.67, the CC model added more
net benefit than the “treat-all” and “treat-none” models. If the
threshold was between 0.03 and 0.74, the MLOmodel added more
net benefit than the “treat-all” and “treat-none” models. If the
threshold was between 0.02 and 0.81, the combined model added
more net benefit than the “treat-all” and “treat-none”models. The
ROC and decision curves are shown in Figure 3.
DISCUSSION

This study indicated that machine learning models based on the
subtracted images in CESM images were valuable for
distinguishing TNBC and non-TNBC, and such models showed
Frontiers in Oncology | www.frontiersin.org 5
good performance. The combined model based on the
combination of CC and MLO features had the best performance
with the highest AUC, sensitivity, and specificity in the testing set.
The best performance of the combined model compared with the
CC and the MLOmodels may be explained by the combination of
the CC and MLO radiomic feature sets, which contained more
information than the CC or MLO radiomic feature set alone.

In the previous CESM study of MARINO et al. (16), only100
patients (12 patients with TNBC) were included. All 12 patients
with TNBC were correctly predicted. The performance of the
model in that study seemed to be better than that of our study.
However, the small number of patients, the imbalance of class,
and the lack of a testing set affected the robustness of the results.
LA FORGIA D et al. (15) evaluated CESM-based radiomic
features to predict TNBC. A total of 52 patients (68 breast
cancers) were included. The obtained AUC of 76.80% was
lower than the AUC obtained in our study. The results in that
study were also not reliable enough. In addition, the number of
patients (367) included in our study was larger than that
included in the abovementioned previous studies. The number
of patients with TNBC and non-TNBC in the training set was
equal to reduce the effect of class imbalance (22).
TABLE 2 | Features in the CC, MLO, and combined models.

Model Feature

CC original_glrlm_ShortRunLowGrayLevelEmphasis_CC
original_glrlm_ShortRunHighGrayLevelEmphasis_CC
original_glrlm_ShortRunEmphasis_CC
logarithm_glrlm_ShortRunLowGrayLevelEmphasis.1_CC
logarithm_glrlm_ShortRunHighGrayLevelEmphasis.1_CC

MLO original_glrlm_ShortRunLowGrayLevelEmphasis_MLO
original_glrlm_ShortRunHighGrayLevelEmphasis_MLO
original_glrlm_ShortRunEmphasis_MLO
logarithm_glrlm_ShortRunLowGrayLevelEmphasis.1_MLO
logarithm_glrlm_ShortRunHighGrayLevelEmphasis.1_MLO
wavelet.HHH_glszm_ZoneEntropy.12_MLO
wavelet.LLL_glrlm_ShortRunLowGrayLevelEmphasis.14_MLO
wavelet.LLL_glrlm_ShortRunHighGrayLevelEmphasis.14_MLO

combined original_glrlm_ShortRunLowGrayLevelEmphasis_CC
original_glrlm_ShortRunHighGrayLevelEmphasis_CC
original_glrlm_ShortRunLowGrayLevelEmphasis_MLO
original_glrlm_ShortRunHighGrayLevelEmphasis_MLO
original_glrlm_ShortRunEmphasis_MLO
logarithm_glrlm_ShortRunLowGrayLevelEmphasis.1_MLO
logarithm_glrlm_ShortRunHighGrayLevelEmphasis.1_MLO
wavelet.HHH_glszm_ZoneEntropy.12_MLO
TABLE 3 | Validation of models in the training and testing sets.

Training set Testing set

AUC Sensitivity Specificity AUC Sensitivity Specificity

CC 0.83 0.87 0.71 0.87
(CC vs combined, p > 0.05)

0.93
(CC vs combined, p > 0.05)

0.60
(CC vs combined,

p < 0.05)
MLO 0.84 0.84 0.69 0.88

(MLO vs combined, p > 0.05)
0.93

(MLO vs combined, p > 0.05)
0.59

(MLO vs combined,
p < 0.05)

Combined 0.85 0.89 0.55 0.90 0.97 0.69
December 2021 | Volume
 11 | Article 773196
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Radiomics features serve as the bridge between medical
images and machine learning. In our study, 1,409 radiomics
features, including first-order statistics, shape, texture (GLCM,
GLRLM, GLSZM, NGTDM, and GLDM), and high-order
statistics (Laplacian of Gaussian, wavelet, square, square root,
logarithm, exponential, gradient, and local binary pattern filters),
were included. The features are more comprehensive than those
in the study of MARINO et al. (16) (300 features) and LA
FORGIA D et al. (15) (7 features). Our study thoroughly
explored the value of CESM radiomics features to predict
TNBC. All radiomics features included in the CC, MLO, and
combined models were texture features, including that after filter
Frontiers in Oncology | www.frontiersin.org 6
transformation. Texture features quantify the inter-voxel
relationships in an image. Such features describe microscopic
characteristics in CESM images. Texture features can capture the
unique aspects of the biological heterogeneity of breast cancers
and contain part of pathological characteristics related to TNBC.

The value of MRI-based radiomics has been explored in
previous studies (6, 7, 23) to differentiate TNBC from others. In
the study of WANG et al. (6), the model based on radiomic
features in the tumor region of dynamic contrast-enhanced MRI
(DCE-MRI) has achieved an AUC of 0.78 in predicting TNBC.
Although the specificity of this model (0.95) was higher than that
of the combined model in our study (0.69), the sensitivity of the
A

B

D

E

FC

FIGURE 3 | (A) Receiver operating characteristic (ROC) curves of the CC model. (B) ROC curves of the MLO model. (C) ROC curves of the combined model.
(D) Decision curve of the CC model. (E) Decision curve of the MLO model. (F) Decision curve of the combined (COM) model.
December 2021 | Volume 11 | Article 773196
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combinedmodel in our study (0.97) was higher (0.33). In addition,
Leithner et al. (23) evaluated the performance of radiomics features
from DCE-MRI and the apparent diffusion coefficient (ADC) to
the assess the breast cancer molecular subtype and yielded an AUC
of 0.86 for predicting TNBC. In our study, the combined CC and
MLO model reached an AUC of 0.90. Moreover, patients with
TNBC in our study were muchmore than those studies, which can
comprehensively represent the characteristics of TNBC. This result
shows that the ability of CESM-based radiomic features is not
worse than that of MRI to predict TNBC.

The value of radiomics features based on mammography in
predicting TNBC has also been explored. MA et al. (9)
investigated the association of radiomic features extracted from
mammogram images with molecular subtypes of breast cancer
and yielded an AUC of 0.87 for TNBC vs. non-TNBC. The AUC
of this study was slightly lower than that of our study. The model
with combined CC and MLO radiomic features has achieved
better performance compared with that with CC or MLO
radiomic features alone. This result is consistent with that of
our study. However, the AUC of the CC-view-based model
(0.695) was lower than that of MLO-view- and CC-and-MLO-
view- based models (0.853 and 0.865, respectively) in their study.
In our study, the CC-view-based model and MLO-view-based
model also performed well, of which AUCs were just slightly
lower than that of the combined model. Therefore, we thought
that if complete images both of CC and MLO could not be
obtained, then CESM features extracted from a single orientation
can also be used to identify TNBC. The present study has several
limitations. Firstly, this study was a retrospective and single-
center study. Prospective and multicenter studies are needed to
verify the results. Secondly, manual segmentation, which is time-
consuming and subjective, was applied in this study because the
automatic segmentation algorithm is not mature enough.
Automatic segmentation algorithms need further development.
In addition, as a pilot study, radiomic features extracted from
low-energy images were not analyzed. The value of radiomic
features extracted from low-energy images will be explored in
future studies. What is more, specificities of models were low.
Parameter optimization methods and more model algorithms
will be applied in future studies to achieve good performance.
Finally, no clinical factor was used to build the prediction model.
Further studies are needed to develop and validate the prediction
model incorporating radiomic features and clinical factors.
Frontiers in Oncology | www.frontiersin.org 7
CONCLUSION

In conclusion, the radiomic features extracted from subtracted
images in the CESM were valuable to the identification of TNBC.
The prediction model based on the combination of CC and
MLO features had the best performance. Better prediction
models incorporating radiomic features extracted from low-
energy, subtracted images and clinical factors are expected to
be developed and validated in future works.
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