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Abstract - Generative pretrained models represent a significant advancement in 

natural language processing and computer vision, which can generate coherent and 

contextually relevant content based on the pre-training on large general datasets and 

fine-tune for specific tasks. Building foundation models using large scale omic data is 

promising to decode and understand the complex signaling language patterns within 

cells. Different from existing foundation models of omic data, we build a foundation 

model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic 

data was integrated and interpreted using a multi-level signaling graph. The model was 

pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and 

fine-turned for multi-omic data of Alzheimer’s Disease (AD). The experimental 

evaluation results showed that the model can not only improve the disease 

classification accuracy, but also is interpretable by uncovering disease targets and 

signaling interactions. And the model code are uploaded via GitHub with link: 

https://github.com/mosGraph/mosGraphGPT 
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1. Introduction 

Generative pretrained models have significantly advanced fields such as natural 

language processing and computer vision1. These models are initially trained on 

extensive datasets and later fine-tuned for specific tasks, allowing them to produce 

coherent and contextually relevant content2. In bioinformatics, the need for 

foundational models arises due to the complexity and volume of biological data3. 

Traditional models, like SVM or Autoencoders, often struggle with the variability in 

gene expression and the diverse conditions of cell types4. Foundation models 

overcome these challenges by learning generalized representations from large-scale 

datasets, capturing complex gene-gene and gene-cell interactions that simpler models 

cannot5. Additionally, foundation models benefit from extensive pretraining on massive 

datasets, efficiently extracting key features and outperforming traditional models that 

typically cannot generalize across different contexts without requiring extensively 

labeled datasets for specific tasks6. 

 

Advancements in sequencing technologies have led to the generation of multi-omic 

data7,8, which is essential for understanding the genetic diversity and complex signaling 

pathways at various levels within diseases, including cancer and Alzheimer's Disease 

(AD). The multi-omic datasets of cancer and AD are publicly available. However, the 

integrative multi-omic data analysis remains an open problem to identify the essential 

(sparse a few) signaling targets and signaling pathways from thousands of targets 

densely interacting with each other, interpreting the molecular mechanisms and novel 

therapeutic targets. AD is commonly defined using criteria such as the CERAD 

(Consortium to Establish a Registry for Alzheimer's Disease) score9, which evaluates 

the density of neurotic plaques to classify the severity of the disease. Many reports of 

omics data and analyses of AD have been published10–25. However, the pathogenesis 

of AD remains unclear and there is a lack of effective prevention and curable treatment 

medications. 
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Compared to single-omic data analysis, integrating multi-omic datasets offers a 

comprehensive perspective on intricate and multi-layered biological processes. This 

integration enhances statistical power, enabling the identification of molecular 

mechanisms that involve crucial molecular targets and signaling pathways26. Multi-

omics data integration can improve the prediction and understanding of these 

conditions by revealing the genetic, transcriptomic, proteomic, and metabolomic 

alterations associated with disease progression and severity27.  

 

Proteins within cells function as part of systematic networks and modules, regulating 

complex biological processes and dysfunctional signaling pathways in diseases such 

as cancer28. Several signaling pathways, such as those documented in KEGG29, 

WikiPathways30,31, and protein-protein interaction (PPI) databases like BioGRID32,33 

and STRING34,35, are publicly accessible. Graph neural network (GNN)-based models 

can effectively represent the flow and interactions within these signaling networks. The 

latent state of individual proteins is influenced by their multi-omics data features and 

the interacting proteins (neighbors) within the signaling network. Importantly, attention 

mechanisms can be employed to identify crucial targets and subsequent signaling 

pathways. Several models have been developed to integrate multi-omics data for a 

deeper understanding of complex diseases such as AD and Non-AD. Among them, 

M3NetFlow14 is a sophisticated model designed to incorporate multi-omics data into a 

graph-based framework. M3NetFlow leverages multi-hop information within each 

subgraph and employs global bi-directional message propagation to facilitate 

communication between genes and proteins. This approach enhances the inference 

process, allowing for a more nuanced understanding of the underlying biological 

processes36. Another noteworthy model is mosGraphGen (multi-omics signaling graph 

generator)12, which generates multi-omics signaling graphs for individual samples. 

This tool maps multi-omics data onto a biologically meaningful multi-level signaling 

network, enabling integrative and interpretable multi-omics data analysis using GNN 

models. By constructing these detailed signaling graphs, mosGraphGen provides 
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valuable insights into the multi-layered interactions within the biological systems of 

individual samples. 

 

Building upon the strengths of these models, we propose a novel approach that further 

enhances the integration and analysis of multi-omics data. The graph foundation 

model aims to address the limitations of existing models by incorporating advanced 

generative pre-trained models and graph neural networks. By leveraging the extensive 

pretraining capabilities of foundation models, our approach can capture complex gene-

gene and gene-cell interactions with higher accuracy and contextual relevance. In this 

study, we pre-trained the model using TCGA cancer multi-omic data37, and fine-turned 

the model using multi-omic data of AD to identify the key targets and signaling 

pathways of AD.  

 

2. Methodology and Materials 

2.1 Datasets 

Multi-omics datasets of Alzheimer’s Disease. The multi-omics data can be obtained 

from publicly available datasets, UCSC Xena and ROSMAP datasets (see Tables 1-

2). After downloading the multi-omics data (including epigenomics, genomics, 

transcriptomics, proteomics, etc.) from these sources, the datasets will be converted 

into 2-dimensional data frames. These data frames will have columns for sample IDs, 

sample names, etc., and rows for probes, gene symbols, gene IDs, etc. To integrate 

multi-omics data with clinical data, identical samples across the datasets must be 

identified. Similarly, the process must involve converting rows (probes, gene symbols, 

gene IDs, etc.) into an identical standard: gene-level data by either aggregating the 

same measurements for each gene or eliminating duplicates due to gene synonyms. 

Genes are then aligned according to a reference genome, ensuring that the final 

annotation for each gene in the multi-omics data is accurate. Finally, standardizing 

gene counts across multi-omics datasets and addressing missing values by imputing 

with zeros or negative one values where necessary. After aligning all the columns to 
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standard sample IDs and all the rows to standard gene IDs and unifying identical 

number of samples and genes, the data were prepared for integration into Graph 

Neural Network (GNN) models. The epigenomics, genomics, transcriptomics, and 

proteomics data will be utilized as features of protein nodes within the GNN models. 

 

KEGG regulatory network. Genes for constructing the knowledge graph were 

selected by intersecting multi-omics datasets with gene regulatory networks from the 

KEGG database, which comprises 2121 genes, 19751 protein-protein interactions and 

26114 edges for UCSC Xena dataset; 2146 genes, 19867 protein-protein interactions 

and 26305 edges. After this intersection, the resulting number of entities in constructed 

biomedical knowledge graph was 8484 and 8584 for UCSC Xena and ROSMAP 

respectively. 

 

Table 1. UCSC Database resources 

Database Description Link 

UCSC Xena DNA 

methylation (450k) 

 

DNA methylation dataset generated 

using the Illumina Infinium 

HumanMethylation450 BeadChip 

array. 

https://xenabrowser.net/datapages/?dataset=jhu- 

usc.edu_PANCAN_HumanMethylation450.betaValue_

whitelisted.tsv.synapse_download_5096262.xena&host

=https%3A%2F%2Fpancanatlas.xenahubs.net&remove

Hub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3

A443 

protein expression - RPPA Quantifying protein expression https://xenabrowser.net/datapages/?dataset=TCGA-

RPPA-pancan-

clean.xena&host=https%3A%2F%2Fpancanatlas.xena

hubs.net&removeHub=https%3A%2F%2Fxena.treehou

se.gi.ucsc.edu%3A443 

somatic mutation (SNP 

and INDEL) - Gene level 

non-silent mutation 

The TCGA Unified Ensemble "MC3" 

gene-level mutation dataset identifies 

somatic mutations in various cancers, 

https://xenabrowser.net/datapages/?dataset=mc3.v0.2.

8.PUBLIC.nonsilentGene.xena&host=https%3A%2F%2
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 marking non-silent mutations (1) that 

alter protein sequences and wild type 

(0) for no mutations. 

Fpancanatlas.xenahubs.net&removeHub=https%3A%2

F%2Fxena.treehouse.gi.ucsc.edu%3A443 

Gene expression RNAseq 

- TOIL RSEM fpkm 

 

 

gene expression data derived from 

RNAseq, processed using the TOIL 

pipeline, with expression levels 

estimated using RSEM and 

normalized as FPKM values. 

https://xenabrowser.net/datapages/?dataset=tcga_RSE

M_gene_fpkm&host=https%3A%2F%2Ftoil.xenahubs.n

et&removeHub=https%3A%2F%2Fxena.treehouse.gi.u

csc.edu%3A443 

GEO GPL16304 Platform 

 

Illumina HumanMethylation450 

BeadChip [UBC enhanced annotation 

v1.0] 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

PL16304 

 

 

Curated clinical data 

 

Contains patient clinical features, 

achieved from paper "An Integrated 

TCGA Pan-Cancer Clinical Data 

Resource (TCGA-CDR) to drive high 

quality survival outcome analytics". 

https://xenabrowser.net/datapages/?dataset=Survival_

SupplementalTable_S1_20171025_xena_sp&host=http

s%3A%2F%2Fpancanatlas.xenahubs.net&removeHub

=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A44

3 

Immune subtype Model based immune subtype https://xenabrowser.net/datapages/?dataset=Subtype_I

mmune_Model_Based.txt&host=https%3A%2F%2Fpan

canatlas.xenahubs.net&removeHub=https%3A%2F%2

Fxena.treehouse.gi.ucsc.edu%3A443 

Molecular subtype Phenotype data https://xenabrowser.net/datapages/?dataset=TCGASub

type.20170308.tsv&host=https%3A%2F%2Fpancanatla

s.xenahubs.net&removeHub=https%3A%2F%2Fxena.tr

eehouse.gi.ucsc.edu%3A443 

sample type and primary 

disease 

sample type and primary disease 

information combined from all 

individual TCGA cohorts 

https://xenabrowser.net/datapages/?dataset=TCGA_ph

enotype_denseDataOnlyDownload.tsv&host=https%3A

%2F%2Fpancanatlas.xenahubs.net&removeHub=https

%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 
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Table 2. ROSMAP Database resources  

Database Description Link 

ROSMAP_arrayMethylatio

n_imputed 

 

Methylation data was generated on prefrontal cortex samples collected 

from 708 individuals using the Illumina HumanMethylation450 BeadChip 

https://www.synapse

.org/#!Synapse:syn3

168763     

C2.median_polish_correct

ed_log2(Proteomics) 

Data generated from isobaric TMT peptide labeling of ROSMAP brain 

tissues were submitted to the AD Knowledge Portal in two rounds. Round 

1 (submitted in 2018) provides data from 400 individuals. Round 2 

(submitted in 2022) provides data from an additional 210 individuals. 

https://www.synapse

.org/#!Synapse:syn2

1266454 

ROSMAP_RNAseq_FPK

M_gene 

Samples were extracted using Qiagen's miRNeasy mini kit (cat. no. 

217004) and the RNase free DNase Set (cat. no. 79254), and quantified 

by Nanodrop and quality was evaluated by Agilent Bioanalyzer. 

https://www.synapse

.org/#!Synapse:syn3

505720 

ROSMAP.CNV.Matrix(Mut

ation) 

The TCGA Unified Ensemble "MC3" gene-level mutation dataset identifies 

somatic mutations in various cancers, marking non-silent mutations (1) that 

alter protein sequences and wild type (0) for no mutations. 

https://www.synapse

.org/#!Synapse:syn2

6263118 

GEO GPL16304 Platform Illumina HumanMethylation450 BeadChip [UBC enhanced annotation 

v1.0] 

https://www.ncbi.nlm

.nih.gov/geo/query/a

cc.cgi?acc=GPL163

04 

ROSMAP_clinical Contains patient clinical features. A large amount of clinical and 

pathological data have been collected from individuals in the ROSMAP 

studies. The remainder of the clinical and pathological data may be 

accessed directly from the Rush Alzheimer's Disease Center. 

https://www.synapse

.org/#!Synapse:syn3

191087 

 

2.2 The mosGraphGPT model 

Problem Formulation The overall architecture of mosGraphGPT model was 

demonstrated in Figure 1. Given the bulk-seq multi-omics datasets of 𝒳(Epi)  for 
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epigenomics, 𝒳(Geno)  for genomics, 𝒳(Tran)  for transcriptomics and 𝒳(Prot)  for 

proteomics and clinical dataset 𝒴(𝑐), the integration over biomedical knowledge graph 

was completed by mosGraphGen2 with 𝒢 = (𝑉, 𝐸), which can be decomposed into 

subgraphs 𝒢int = (𝑉int, 𝐸int) , where |𝑉int| = 𝑛Epi + 𝑛Geno + 𝑛Tran + 𝑛Prot = 𝑛 = |𝑉| 

and 𝒢PPI = (𝑉PPI, 𝐸PPI), where |𝑉PPI| = 𝑛Prot  and 𝒢int = 𝒢 \ 𝒢PPI. Correspondingly, 

adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛  for whole graph 𝒢  will be generated and adjacency 

matrix 𝐴int ∈ ℝ𝑛×𝑛 for internal signaling flows from promoters to proteins via central 

dogma. What’s more, protein-protein interactions will be represented by adjacency 

matrix 𝐴PPI ∈ ℝ𝑛×𝑛  and 𝐴 = 𝐴int + 𝐴PPI . Furthermore, patient multi-omics feature 

𝒳 = {𝑋(1), 𝑋(2), … , 𝑋(𝑚), … , 𝑋(𝑀)} will be generated, where 𝑋(𝑚) ∈ ℝ𝑛×𝑑  , 𝑑  equals 

the number of multi-omics data features and 𝑛 equals the number of nodes. With 

above processed pretraining datasets, the encoder model, 𝑓pre(⋅), will be pretrained 

by self-supervised learning by reconstructing edges and degree of nodes. Similarly, 

the input bulk-seq multi-omics datasets with clinical features can also be generated 

with 𝒳′ = {𝑋′(1)
, 𝑋′(2)

, … , 𝑋′(𝑘)
, … , 𝑋′(𝐾)

}  and 𝒴′ = {𝑦′(1), 𝑦′(2), … , 𝑦′(𝑘), … , 𝑦′(𝐾)} 

(𝑋′(𝑘) ∈ ℝ𝑛×𝑑 , 𝑦′(𝑘) ∈ ℝ𝐶′
 and 𝐶′  is the number of patient types). Regarding the 

biomedical knowledge graph, internal signaling flows graph, protein-protein 

interactions graph, all of them share the same network structures with 𝒢, 𝒢int, 𝒢PPI 

and adjacency matrices 𝐴 , 𝐴int , 𝐴PPI . Hence, the similar graph structures were 

generated by 𝒢′ , 𝒢′int , 𝒢′PPI  and adjacency matrices 𝐴′ , 𝐴′int , 𝐴′PPI .And our 

proposed model can be denoted as 𝑓(⋅)  to predict the patient types with 𝒴′̂ =

𝑓(𝒳′, 𝐴′). 
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Figure 1. Architecture of mosGraphGPT. 

 

Pretrain Foundation Model During the pretraining stage, the constructed biomedical 

knowledge graph 𝐴 can be decomposed into 2 subgraph paths 𝐴int and 𝐴PPI, where 

message propagation will also be separated with 2 steps for internal signaling flows 

from promoters to proteins and protein signaling flows between protein-protein 

interactions. Since, it is the protein-protein interactions that the mosGraphGPT model 
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would like to reconstruct, earlier stage message passing was accomplished to 

propagate information to the protein nodes with: 

𝐻int
(𝑚)

= GNNint(𝑋(𝑚), 𝐴int) (1) 

, where 𝐻int
(𝑚)

∈ ℝ𝑛×𝑑int is the node features which was diffused from epigenomics, 

genomics, transcriptomics and proteomics onto the ending protein nodes and GNNint 

is the internal signaling flows encoder. Meanwhile, to mask the edges for pretrain 

model to reconstruct, the random masking function Γ will be generated following a 

specific distribution, e.g., Bernoulli distribution: 

𝐸mask ~ Bernoulli(𝑝) (2) 

, where 𝑝 < 1 is the ratio of the masked edges for the protein-protein interactions 

graph 𝒢PPI. Hence, the masked protein-protein interactions graph will be denoted as 

𝒢mask and the unmasked or visual protein-protein interactions graph will be denoted 

as 𝒢vis, where 𝒢PPI = 𝒢vis ⋃ 𝒢mask. Correspondingly, the masked adjacency matrix 

𝐴mask and visual adjacency matrix 𝐴vis will be generated by the masking function Γ. 

Afterwards, the global encoder will be used to generate the node embeddings by 

𝐻(𝑚) = GNNglobal (𝐻int
(𝑚)

, 𝐴) (3) 

, where 𝐻(𝑚) ∈ ℝ𝑛×𝑑global and GNNglobal  is the graph neural network message 

propagation for signaling flows in global paths. With the global node embeddings, 

structural decoder and degree decoder were built to learn the pretrain model. In details, 

the structural decoder 𝑢𝜔 with parameters 𝜔 will decode to probability of the edge 

connection between node 𝑝 and 𝑞 by 

𝑢𝜔 (ℎ𝑝
(𝑚)

, ℎ𝑞
(𝑚)

) = 𝜎 (MLP (ℎ𝑝
(𝑚)

⊙ ℎ𝑞
(𝑚)

)) (4) 

, where ℎ𝑝
(𝑚)

, ℎ𝑞
(𝑚)

∈ ℝ𝑑global are global node embedding for node 𝑝 and 𝑞 for patient 

𝑚; MLP is the multilayer perceptron and ⊙ is the element-wise product. Moreover, 

the degree decoder 𝑣𝜙 was constructed by 

𝑣𝜙 (ℎ𝑝
(𝑚)

) =  MLP (ℎ𝑝
(𝑚)

) (5) 
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, where 𝜙 is the parameter learnt from the degree decoder and the decoder aims to 

reconstruct the node degree with regression. 

 

In sum, the pretrain model reconstruction loss, ℒ(𝑚) , will be calculated  by edge 

reconstruction loss, which measures how well the model can rebuild the edge connect 

in the protein-protein interactions network and degree regression loss, which 

measures how closely the prediction of the node degree matches the degree of nodes 

in original graph 𝒢 with 

ℒ(𝑚) = ℒGAEs
(𝑚)

+ ℒdeg
(𝑚) (6) 

, where edge reconstruction loss, ℒGAEs, is self-supervised learning objective loss by 

optimizing the cross-entropy loss via 

(ℒ(𝑚))+ =
1

|𝐸+|
∑ log 𝑢𝜔 (ℎ𝑝

(𝑚)
, ℎ𝑞

(𝑚)
)

(𝑝,𝑞)∈𝐸+

(7) 

(ℒ(𝑚))− =
1

|𝐸−|
∑ log (1 − 𝑢𝜔 (ℎ𝑝

(𝑚)
, ℎ𝑞

(𝑚)
))

(𝑝,𝑞)∈𝐸−

(8) 

ℒGAEs
(𝑚)

= −((ℒ(𝑚))+ + (ℒ(𝑚))−) (9) 

, where 𝐸+ is a set of positive edges while 𝐸− is a set of negative edges sampled 

from the protein-protein interaction graph 𝒢PPI and degree reconstruction loss will be 

calculated with mean squared error (MSE) between the original degree of nodes and 

the predicted ones 

ℒdeg
(𝑚)

=
1

|𝑉|
∑ ‖𝑣𝜙 (ℎ𝑝

(𝑚)
) − deg(𝑝(𝑚))‖

𝐹

2

𝑝∈𝑉

(10) 

, where deg(⋅) is the degree function which can generate the degree of node 𝑝 for 

patient 𝑚 over whole graph 𝒢. 

 

Graph Model Construction With the pretrained encoder function 𝑓pre: ℝ𝑑 → ℝ𝑑pre 

composed of internal encoder and global encoder shown in formula (1) and (3), the 

input feature can generate embedding 𝐻′(𝑘)
= 𝑓pre (𝑋′(𝑘)

) which can be used as the 

graph canonization via residual process with 
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𝐻mix
′ (𝑘)

= CONCAT [𝑋′(𝑘)
, 𝐻′(𝑘)

] (11) 

, where 𝐻mix
′ (𝑘)

∈ ℝ𝑑+𝑑pre is the concatenated node features for patient 𝑘. To predict 

the patient 𝑘 outcome, the global message propagation was conducted via 

𝑍′(𝑘)
= GNNfinal (𝐻mix

′ (𝑘)
, 𝐴′) (12) 

, where 𝑍′(𝑘)
∈ ℝ𝑑final  and transformer-based message passing network was 

leveraged here as the GNNfinal. The cross-entropy (CE) function was used via 

ℒ′(𝑘)
= CE (𝑦′(𝑘)

, MLP (AVG [𝑍′(𝑘)
])) (13) 

, where mean aggregation pooling function AVG in PyTorch and linear transformation 

with MLP was leverage.  

 

2.3 Downstream Tasks 

Predict patient types Given the embedded features 𝑍′(𝑘)
 for patient 𝑘 , the 

prediction of the patient type can be generated by 

𝑦′(𝑘)̂ = arg max (MLP (AVG [𝑍′(𝑘)
])) (14) 

, where 𝑦′(𝑘)̂ ∈ ℝ.  

 

Biomarkers Identification via Attention Based on the attention extracted from 

transformer, the weighted adjacency matrix 𝐴′𝑤
(𝑘)

∈ ℝ𝑛×𝑛  will be generated. 

Furthermore, the average weighted adjacency matrix of specific patient type 𝑐 can be 

calculated by 

[𝐴′𝑤](𝑐) =
1

|𝒳 ′(𝑐)|
∑ 𝐴′𝑤

(𝑘)

𝑘∈𝒳′(𝑐)

(15) 

, where 𝒳 ′(𝑐)
 is the set of specific patient type 𝑐. 
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3. Results 

3.1 mosGraphGPT model results 

Experimental settings The UCSC xena multi-omics dataset was used as the pretrain 

model, which contains 3592 cancer patients with 2121 genes, 8484 node entities, 

19751 protein-protein interactions and 26114 relations. Early stopping strategies was 

employed for self-supervised pretraining process. Afterwards, for training the whole 

model, ROSMAP was loaded with 128 samples with 2146 genes, 8584 node entities, 

19867 protein-protein interactions and 26305 relations. Specifically, the 5 fold cross 

validation was used to train and test the proposed model, mosGraphGPT. To evaluate 

the model performance in terms of synergy score prediction for drug combinations, we 

conducted 5-fold cross validation. The mosGraphGPT model was implemented using 

PyTorch and PyTorch Geometric, with the Adam optimizer of setting weight decay as 

1 × 10−20 and 𝜖 as 1 × 10−7 employed for training.  

 

Model performance and comparison The average prediction accuracy was about 

75.09% the test data on ROSMAP AD dataset. The results indicated the feasibility of 

patient outcome prediction using a graph neural network with a small set of core 

signaling pathways genes. Moreover, the proposed model was compared with other 

graph neural networks (see Table 3), which included the GNN model with mean 

aggregation in transductive mode38 (no sampling for neighborhood function) and 

Graph Attention network39 (GAT), Graph Isomorphism Network (GIN)40 and UniMP41.  

Table 3. Model comparison with other GNN networks (AD vs. Non-AD) 

Models Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg ± Std 

GCN 56.00% 76.00% 72.00% 64.00% 64.29% 66.46% ± 6.96% 

GAT 68.00% 76.00% 68.00% 72.00% 53.57% 67.51% ± 7.58% 

GIN 52.00% 72.00% 64.00% 64.00% 71.43% 64.69% ± 7.22% 

UniMP 52.00% 72.00% 72.00% 76.00% 71.43% 68.69% ± 8.50% 

mosGraphGPT 68.00% 80.00% 76.00% 80.00% 71.43% 75.09% ± 4.75% 
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3.2  Downstream tasks 

To investigate the potential MoS, a core signaling subnetwork was generated based 

on the trained model. Specifically, the integrated signaling flow networks were obtained 

from the large signaling network based on the averaged trained directional weight 

matrices on the 5 splits of test datasets on ROSMAP-AD. With averaging the attention 

weight adjacency matrices [𝐴′𝑤](𝐴𝐷𝑖) and [𝐴′𝑤](𝑁𝑜𝑛−𝐴𝐷𝑖) (𝑖 = 1,2, … ,5) on each fold, 

the weight adjacency matrices [𝐴′𝑤](𝐴𝐷) for AD samples and [𝐴′𝑤](𝑁𝑜𝑛−𝐴𝐷) for Non-

AD samples are generated. Afterwards, the cell line specific gene degrees will be 

calculated based on following formula: 

𝑑𝑖
(𝑐)

= (∑ 𝑎𝑐
(𝑖𝑗)

𝑛

𝑗=1

) (16) 

, where 𝑎𝑐
(𝑖𝑗)

 is the element in the 𝑖-th row and 𝑗-th column of the matrices [𝐴′𝑤](𝐴𝐷) 

for AD samples (𝑐 = 𝐴𝐷) and [𝐴′𝑤](𝑁𝑜𝑛−𝐴𝐷) for Non-AD patients (𝑐 = 𝑁𝑜𝑛 − 𝐴𝐷), 

which measures the link strength between node 𝑖 and node 𝑗. Hence, 𝑑𝑖
(𝑐)

 is the 

weighted degree for node 𝑖 from specific sample type 𝑐.  

 

Afterwards, the unimportant signaling flows in the attention-based matrix for certain 

type of patient will be filtered out by 

𝑊𝐹
(𝑐)

= 𝐹(𝑊(𝑐), 𝜃) (8) 

, where 𝐹(⋅) is the filtering mapping function by providing selection of each element 

in the matrix with  

𝐹(𝑤, 𝜃) = {
𝑤, if 𝑤 > 𝜃
0, if 𝑤 ≤ 𝜃

(9) 

, where 𝑤 ∈ ℝ is the element in the input matrix and 𝑊𝐹
(𝑐)

∈ ℝ𝑛(𝑝𝑟𝑜𝑡)×𝑛(𝑝𝑟𝑜𝑡)
 is the 

filtered matrix. Hence, the filtered node set for patient type 𝑐, 𝑉𝐹
(𝑐)

, will be generated 

by removing independent nodes and nodes in those small connected components with 

number of nodes lower than 𝜙, resulting in |𝑉𝐹
(𝑐)

| nodes. 
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Subsequently, p-values for the gene features, such as methylations in promoter nodes, 

mutations and genes expression in gene nodes and proteins expression in protein 

nodes were calculated. The p-value calculation for these features was conducted by 

using the chi-squared test to check the differences between AD/non-AD samples or 

female/male of AD patients. This statistical method determined whether there were 

significant differences in the gene features between the samples of AD/non-AD or 

female/male from AD. By constructing contingency tables and performing the chi-

squared test for each gene feature, p-values indicating the statistical significance of 

the observed differences were obtained. Ultimately, the top 𝑇  gene features 

associated with AD or gender were selected based on these p-values. 

 

After finalized important gene features ranked by p-values in top 𝑇, the network was 

pruned by iteratively removing the nodes which are only connected to one another 

unimportant node in a linear branch with node recursive algorithm (check details of this 

algorithm in Appendix A and Figure S1). This ensures that each remaining nodes is 

either linked to an important node or is part of a more complex interaction network, 

enhancing the purity and reliability of the gene interaction data.  

 

Subsequently, nodes degree were calculated to identify hub node (node degree larger 

than 2). The set of middle nodes for certain path 𝑡 which connects two hub nodes 𝑢 

and 𝑣 can be denoted as 𝑃𝑢→𝑣
(𝑡)

= {𝑛1, 𝑛2, … , 𝑛𝑟 , … , 𝑛𝑅}(𝑡), where 𝜆 + 1 is the length of 

path. Hence, the average edge weight on the path 𝑃𝑢→𝑣
(𝑡)

 can be generated by 

𝑂𝑢→𝑣
(𝑡)

=
1

𝜆
∑ 𝑊𝑛𝑟,𝑛𝑟+1

(𝑐)

𝜆−1

𝑟=1

(10) 

, where 𝑊𝑛𝑟,𝑛𝑟+1

(𝑐)
 is the edge weight from node 𝑛𝑟 to node 𝑛𝑟+1. For all of the paths 

detected between the hub node 𝑢 and hub node 𝑣, the nodes on the top 𝛽 paths will 

be kept. Additionally, p-value middle nodes, which are crucial due to their statistical 
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significance, will be retained along with middle nodes that are adjacent to these p-

value nodes. (check Appendix Section A.2 for details). 

 

Uncovering AD associated targets and signaling pathways Setting the edge 

threshold 𝜃 as 0.15 and filtering out small components with nodes fewer than 25 

(𝜙=25), the core signaling network flows for AD and non-AD samples were generated.  

The AD core signaling network included 335 potential important protein nodes, and the 

non-AD network contained 408 potential important protein nodes. To further discover 

the top 100 important node entities in the whole network, p-value was leveraged to 

measure the importance of the nodes in this core signaling network. Visualization of 

the core signaling networks were also accomplished with the pruning algorithm (check 

Appendix A) to mark the important nodes in the network (shown in Figures 2-4). 

Through the polished algorithm, the AD network was refined to 256 protein nodes and 

the non-AD network to 267 protein nodes. This significantly reduced the impact of 

irrelevant nodes on the core signaling networks visualization, providing a clearer 

depiction of protein-protein interactions.  
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Figure 2. Important signaling network flows for AD patients with top 100 gene features 

ranked by p-values 
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Figure 3. Important signaling network flows for non-AD patients with top 100 gene 

features ranked by p-values 
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Figure 4. Top 100 important gene features for AD samples ranked by p-value 

 

3.3 Validation on identified biomarkers 

Based on the top 100 gene features, which include promoters, mutations, 

transcriptions, and proteins, selected for Alzheimer's disease (AD) samples through 

the use of p-values, a comprehensive validation process has been undertaken. This 

selection was made to identify the most statistically significant gene features relevant 

to AD, thereby enabling a focused analysis of the underlying biological mechanisms. 

The subsequent validation involved conducting a pathway enrichment analysis, which 

is a critical step in understanding the functional implications of these gene features. 

This analysis helps to identify biological pathways that are significantly enriched in the 

dataset, providing insights into the molecular processes and pathways that may be 

disrupted in AD. The results of this pathway enrichment analysis are presented in 

Figures 5-6 and detailed in Table 4. These findings are essential for corroborating the 
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initial selection of gene features and for highlighting potential targets for further 

investigation. The integration of these results into the broader context of AD research 

underscores the importance of pathway enrichment analysis in validating genetic and 

molecular data, thus contributing to a more nuanced understanding of the disease's 

pathogenesis and potential therapeutic avenues. 

 

 

Figure 5. Top 20 pathways lollipop plot 
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Figure 6. Top 20 pathways Sankey chart 

Table 4. Pathway enrichment analysis for top 20 gene features ranked by p-values  

Type Pathway Number of 

Genes 

Genes P-Value FDR 

Signaling 

Pathways 

hsa05200: Pathways in 

cancer 

19 BDKRB1,MMP2,DDB2,TRAF4,K

NG1,EGFR,PTGER1,FADD,IGF1

6.1E-12 4.1E-10 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.606222doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606222
http://creativecommons.org/licenses/by-nc-nd/4.0/


,PMAIP1,STAT5A,ARNT,NFKB2,

JUN,MMP9,TRAF1,TRAF6,BDK

RB2,TRAF3 

Cellular 

Proceses 

hsa04080: Neuroactive 

ligand-receptor 

interaction 

17 BDKRB1,GNRH2,KNG1,GNRH1,

ADRA2A,CYSLTR2,PTGER1,CC

KAR,NTSR1,EDN2,GRPR,HRH1

,POMC,ADRA2C,TBXA2R,OPR

M1,BDKRB2 

5.42E-13 6.07E-11 

Cell Death and 

Survival 

Signalig 

Pathways 

hsa04115: p53 signaling 

pathway 

14 TP53I3,CCNB1,DDB2,IGF1,PMA

IP1,SFN,SIAH1,RRM2,MDM4,C

HEK1,PERP,GTSE1,SESN3,AIF

M2 

3.49E-18 1.17E-15 

Innate Immune 

Signalig 

Pathways 

hsa04621: NOD-like 

receptor signaling 

pathway 

14 MEFV,NOD2,FADD,PYDC1,RNA

SEL,AIM2,JUN,ITPR3,ITPR2,NL

RX1,MYD88,TRAF6,PSTPIP1,T

RAF3 

2.52E-13 4.23E-11 

Signaling 

Pathways 

hsa04020: Calcium 

signaling pathway 

14 BDKRB1,GNA15,EGFR,CYSLTR

2,PTGER1,CCKAR,NTSR1,ITPR

3,GNA14,GRPR,ITPR2,HRH1,TB

XA2R,BDKRB2 

9.45E-13 7.94E-11 

Viral Infections hsa05161: Hepatitis B 10 DDB2,CASP10,TLR3,FADD,STA

T5A,JUN,MMP9,MYD88,TRAF6,

TRAF3 

7.38E-09 3.1E-07 

Bacterial 

Infections 

hsa05152: Tuberculosis 10 IRAK2,CASP10,NOD2,FADD,CD

209,CLEC4M,TLR9,BCL10,MYD

88,TRAF6 

1.21E-08 4.53E-07 
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Signaling 

Pathways 

hsa04010: MAPK 

signaling pathway 

10 RAP1B,CACNG6,CACNG4,RPS

6KA6,EGFR,IGF1,NFKB2,JUN,M

YD88,TRAF6 

1.47E-06 2.9E-05 

Parasitic 

Infections 

hsa05142: Chagas 

disease 

9 GNA15,KNG1,FADD,TLR9,JUN,

GNA14,MYD88,TRAF6,BDKRB2 

2.13E-09 1.19E-07 

Signaling 

Pathways 

hsa04064: NF-kappa B 

signaling pathway 

9 PRKCQ,NFKB2,BCL10,CD40LG,

PLAU,TRAF1,MYD88,TRAF6,TR

AF3 

2.51E-09 1.2E-07 

Viral Infections hsa05162: Measles 9 FADD,CD209,CLEC4M,STAT5A,

TLR9,JUN,MYD88,TRAF6,TRAF

3 

3.22E-08 9.02E-07 

Signaling 

Pathways 

hsa04657: IL-17 

signaling pathway 

8 ANAPC5,TRAF4,FADD,IL25,JUN

,MMP9,TRAF6,TRAF3 

2.41E-08 8.09E-07 

Cellular 

Processes 

hsa04750: Inflammatory 

mediator regulation of 

TRP channels 

8 BDKRB1,PRKCQ,KNG1,IGF1,IT

PR3,ITPR2,HRH1,BDKRB2 

2.81E-08 8.6E-07 

Innate Immune 

Signaling 

Pathways 

hsa04625: C-type lectin 

receptor signaling 

pathway 

8 CLEC4D,CD209,CLEC4M,NFKB

2,BCL10,JUN,ITPR3,ITPR2 

5.1E-08 1.32E-06 

Signaling 

Pathways 

hsa04915: Estrogen 

signaling pathway 

8 MMP2,EGFR,JUN,MMP9,ITPR3,

ITPR2,POMC,OPRM1 

3.5E-07 8.39E-06 

Signaling 

Pathways 

hsa04912: GnRH 

signaling pathway 

7 MMP2,GNRH2,EGFR,GNRH1,J

UN,ITPR3,ITPR2 

3.57E-07 8.39E-06 

Innate Immune 

Signaling 

Pathways 

hsa04620: Toll-like 

receptor signaling 

pathway 

7 TLR3,FADD,TLR9,JUN,MYD88,T

RAF6,TRAF3 

7.97E-07 1.67E-05 
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Signaling 

Pathways 

hsa04668: TNF 

signaling pathway 

7 CASP10,NOD2,FADD,JUN,MMP

9,TRAF1,TRAF3 

1.54E-06 2.9E-05 

Cell Death and 

Survival 

Signaling 

Pathways 

hsa04210: Apoptosis 7 CASP10,FADD,PMAIP1,JUN,TR

AF1,ITPR3,ITPR2 

4.33E-06 7.28E-05 

 

Cell Death and Survival Signaling As a crucial transcription factor, p53 regulates 

DNA repair, cell cycle control, apoptosis, and oxidative stress response. In AD, p53 

function is notably disrupted, leading to increased DNA damage and impaired repair 

mechanisms. Elevated phosphorylated p53 levels and altered oligomerization states 

in AD patients' temporal lobes indicate compromised DNA damage response and 

repair capabilities42. p53 also forms oligomers and fibrils that interact with tau 

oligomers, potentially seeding further p53 aggregation and mislocalization outside the 

nucleus, impairing its nuclear functions43. This aggregation and tau interaction may 

contribute to lethal cell cycle re-entry and abnormal cell death in AD. Additionally, p53 

signaling intersects with other dysregulated pathways in AD, such as WNT and NFkB, 

particularly in inhibitory neurons, where decreased p53 activity and altered 

transcription factor activity are observed44. The complexity of p53's role in AD is 

heightened by its regulation through post-translational modifications, affecting its 

conformation and function, and potentially influencing amyloid and tau pathways45. 

Oxidative stress in AD patients exacerbates p53 dysfunction, as indicated by increased 

protein carbonylation and impaired cGAS-STING-interferon signaling, crucial for 

immune-stimulated DNA repair42.  

 

Apoptosis is a programmed cell death mechanism essential for maintaining cellular 

homeostasis and regulating cell turnover, but its dysregulation can lead to 

neurodegenerative disorders, including AD46,47. In AD, several pathological features 

such as Aβ plaques, hyperphosphorylated tau tangles, inflammation, mitochondrial 
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dysfunction, and oxidative stress trigger an abnormal apoptotic cascade in critical brain 

regions like the cerebral cortex and hippocampus46. This cascade involves various 

molecular pathways, including PI3K/AKT, JNK, MAPK, and mTOR signaling, which 

ultimately result in neuronal death and correlate with the severity of dementia46. 

Additionally, apoptosis interacts with necroptosis, another form of programmed cell 

death, which is also activated in AD brains and contributes to neuroinflammation and 

neuronal death48–50. The interplay between apoptosis and necroptosis exacerbates the 

neurodegenerative process, as necroptosis can be triggered by factors such as 

hyperglycemia and reactive oxygen species, which are prevalent in AD. Therapeutic 

strategies targeting apoptotic pathways, such as caspases and other apoptotic 

regulators, have been explored to mitigate neuronal loss and slow disease 

progression46,47.  

 

Signaling Pathways NF-κβ signaling is central to neuroinflammation and oxidative 

stress, exacerbating neurodegeneration by interacting with reactive microglia, 

astrocytes, and various molecular factors, while also influencing amyloid plaque 

clearance and neuronal survival51. Dysregulated calcium signaling disrupts neuronal 

function and survival by causing mitochondrial failure, oxidative stress, and chronic 

neuroinflammation, leading to NFTs and Aβ plaques52. The ER-mitochondria 

membrane contact site is particularly critical for calcium homeostasis, and its disruption 

further exacerbates AD pathology53. Estrogen signaling, particularly in women, plays 

a multifaceted role in AD, with estrogen deficiency post-menopause promoting amyloid 

precursor protein processing into senile plaques and increasing tau phosphorylation54. 

Estrogen also affects glucose metabolism and WNT signaling, contributing to 

neuropathology. The interaction between estrogen and APOE genotype modulates AD 

risk, with estrogen receptors' reduced activity accelerating disease progression55.  

 

GnRH, along with luteinizing hormone (LH) and activins, possesses neuronal 

receptors that are distributed throughout the limbic system, which is crucial for 

cognitive functions and is notably affected in AD56. Dysregulation of the HPG axis 
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during menopause and andropause leads to elevated levels of GnRH and LH, while 

sex steroid signaling decreases, potentially promoting neurodegenerative changes56. 

Elevated LH levels, which are a consequence of this dysregulation, have been 

implicated in the amyloidogenic processing of APP56,57. Furthermore, LH is known to 

cross the blood-brain barrier and its receptors are highly concentrated in the 

hippocampus, a region particularly vulnerable to AD56. Pharmacological interventions 

that suppress LH release, such as leuprolide acetate, have shown promise in reducing 

Aβ deposition and improving cognitive performance in animal models of AD, 

suggesting a potential therapeutic avenue56,57. Epidemiological data also support this 

connection, as reduced neurodegenerative disease incidence has been observed 

among prostate cancer patients treated with GnRH agonists, which lower LH levels56.  

 

Dysregulation of MAPK signaling, particularly through the ERK/MAPK1 pathway, has 

been implicated in the development of AD pathogenesis58. Specifically, 

phosphorylated ERK (p-ERK) has been identified as a critical regulator of pro-

inflammatory activation of microglia, which are immune cells in the brain that contribute 

to neuroinflammation in AD59,60. This pro-inflammatory state is further exacerbated by 

the JAK/STAT signaling pathway, which is activated by overactive microglia and 

astrocytes, leading to a chronic neuroinflammatory environment that is characteristic 

of AD. Additionally, the PI3K-Akt pathway, which interacts with MAPK signaling, is 

involved in regulating cell survival and metabolic functions, and its dysregulation is 

linked to Aβ and NFTs61. The complex interplay between these pathways is evident as 

the PKR/P38/RIPK1 signaling axis, part of the stress-activated MAPK pathway, is 

highly activated in AD brains, leading to Aβ accumulation, tau phosphorylation, and 

cognitive decline62. Experimental models have shown that modulating miRNAs that 

regulate MAPK signaling can improve cognitive deficits, highlighting the therapeutic 

potential of targeting this pathway61.  

 

In AD, TNF signaling has been implicated in promoting necroptosis. This is evidenced 

by increased expression of necroptosis-related proteins such as phosphorylated 
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RIPK3 and MLKL in the AD brain, particularly in CA1 pyramidal neurons, which 

correlates inversely with neuron density63. Additionally, TNF exposure in human iPSC-

derived neurons increases necroptotic cell death, which can be mitigated by inhibitors 

targeting RIPK1, RIPK3, and MLKL, suggesting potential therapeutic intervention 

points63. Furthermore, TNF-mediated neuroinflammation is exacerbated by the 

interaction of misfolded proteins with pattern recognition receptors on astroglia and 

microglia, leading to the release of inflammatory mediators that contribute to disease 

progression64. Genome-wide analyses have identified several genes associated with 

sporadic AD that control inflammatory responses and glial clearance of misfolded 

proteins, highlighting the critical role of immune processes in AD pathogenesis64. 

Interestingly, patients with rheumatoid arthritis and other systemic inflammatory 

diseases treated with TNF-α blocking agents show a reduced probability of developing 

dementia, suggesting that TNF-α inhibition could be a viable strategy for preventing 

AD and preserving cognitive function65.  

 

Studies have shown that IL-17A levels are elevated in the brains of AD patients and 

animal models, suggesting its involvement in disease progression66,67. When IL-7A is 

overexpressed, worsening of cognitive functions is observed67. IL-17A also 

exacerbates neuroinflammation by facilitating the infiltration of immune cells such as 

CD8+ T lymphocytes and myeloid cells into the brain, which in turn accelerates the 

production of pro-inflammatory chemokines like CXCL1 and CXCL9/10 by glial cells67. 

This inflammatory milieu promotes Aβ accumulation and synaptic dysfunction, leading 

to cognitive deficits. Furthermore, IL-17A has been shown to induce neural damage 

directly when administered to primary hippocampal neurons, and its inhibition via 

neutralizing antibodies can ameliorate Aβ-induced neurotoxicity and cognitive decline 

by downregulating the TRAF6/NF-κB pathway66. Additionally, the depletion of gut 

bacteria, which reduces IL-17A-expressing T cells, has been found to lower cerebral 

Aβ levels and inhibit inflammatory activation in the brain, highlighting the gut-brain 

axis's role in AD pathophysiology68.  
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Innate Immune Signaling Pathways The NOD-like receptor signaling pathway, 

particularly the NLRP3 inflammasome, promotes the release of proinflammatory 

cytokines such as IL-1β and IL-18, exacerbating neuroinflammation and contributing 

to AD progression69. This pathway is further activated by dysregulated ions like K+ and 

Ca2+, prevalent in AD, which heightens the inflammatory response69. TLR signaling, 

notably through TLR3 and TLR4, influences Aβ dynamics and mediates 

neuroinflammation. TLR4 activation by Aβ in microglia triggers proinflammatory 

cytokine production, leading to amyloid-dependent neuronal death70. Similarly, 

dysregulated TLR pathways activate NF-κB and MAPK pathways, resulting in further 

inflammation and apoptosis71. The RLR pathway, although primarily known for antiviral 

responses, may exacerbate AD by promoting chronic inflammation through cytokine 

production. Lastly, T cells, particularly CD8+ T cells, infiltrate the brain and 

cerebrospinal fluid of AD patients, displaying increased expression of inflammatory 

pathways and significant clonal expansion72. Studies have demonstrated that T cells, 

especially cytotoxic T cells, are markedly increased in areas with tau pathology, 

correlating with neuronal loss and dynamically transforming from activated to 

exhausted states, which indicates their involvement in neurodegeneration73. 

Furthermore, the depletion of T cells has been shown to block tau-mediated 

neurodegeneration, suggesting that T cell activity directly contributes to disease 

progression73.  

C-type lectin receptors (CLRs), such as CLEC-2, are found on the surface of platelets 

and are involved in the regulation of intestinal barrier function through their interaction 

with zonulin, a key modulator of intestinal permeability. Elevated levels of CLEC-2 and 

zonulin have been observed in patients with mild cognitive impairment and AD, 

suggesting a link between gut permeability and AD pathology. These elevated levels 

are also associated with reduced cognitive function as measured by the Mini-Mental 

State Examination score74. Additionally, CLRs are expressed by myeloid cells and 

recognize pathogen-associated molecular patterns and damage-associated molecular 

patterns, initiating immune responses that can contribute to inflammation, a known risk 
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factor for AD75. Specifically, the scavenger receptor with C-type lectin (SRCL) has been 

implicated in the clearance of Aβ. SRCL is upregulated in astrocytes and vascular cells 

in AD patients and mouse models, suggesting its role in binding and clearing Aβ, 

thereby potentially mitigating AD progression76. Furthermore, the Dectin-1 cluster of 

CLRs, which includes receptors like CLEC-2, is involved in various pathophysiological 

processes, including inflammation and immune regulation, both of which are critical in 

the context of AD.  

Cellular Processes Neuroactive ligand-receptor interactions maintain brain 

homeostasis and regulate neurotransmitter systems, inflammatory responses, and 

neuroprotective mechanisms. In AD, disruptions in ligand-receptor networks, 

particularly those involving inflammatory pathways, are significant. For instance, 

microglial receptors interact with danger-associated molecular patterns to clear 

neurotoxic substances like Aβ and hyperphosphorylated tau77,78. Impairments in these 

interactions reduce the clearance of these toxic proteins, exacerbating disease 

progression. Chemokines and their receptors, part of neuroactive ligand-receptor 

interactions, have a dual role in AD: promoting neuroprotection and synaptic plasticity 

under normal conditions but leading to chronic inflammation when overexpressed, 

further contributing to Aβ aggregation and tau hyperphosphorylation79. 

Neurotransmitter receptors, such as cholinergic, glutamatergic, and serotonergic 

receptors, are also modulated in response to AD pathology, affecting cognitive 

functions and contributing to symptoms like memory loss and cognitive decline80. Multi-

target-directed ligands that modulate these neurotransmitter systems show promise in 

providing symptomatic relief and potentially modifying disease progression by 

targeting multiple pathways involved in AD, including neuroinflammation and oxidative 

stress81. Therefore, understanding and targeting neuroactive ligand-receptor 

interactions offer significant potential for developing therapeutic strategies to combat 

AD. 
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TRP channels, such as TRPV1 and TRPA1, are implicated in the regulation of 

inflammatory processes in the brain. TRPV1, a non-selective cation channel, is 

involved in neuroinflammation and has been shown to influence microglial function. 

Activation of TRPV1 can rescue microglial dysfunction, restore metabolic impairments, 

and enhance immune responses, thereby reducing amyloid pathology and memory 

deficits in AD models82,83. On the other hand, TRPA1 channels, predominantly 

expressed in astrocytes, are activated by Aβ and mediate Ca2+ influx, which in turn 

triggers the production of pro-inflammatory cytokines and activation of transcription 

factors such as NF-κB and NFAT. Inhibition of TRPA1 channels reduces Aβ-induced 

inflammation and behavioral dysfunction, highlighting their role in AD pathogenesis84. 

Additionally, TRPC channels, particularly TRPC6, have been implicated in AD 

development, suggesting that TRP channels broadly contribute to the disease through 

their involvement in calcium homeostasis and glial cell activation85. The regulation of 

these channels by inflammatory mediators underscores their potential as therapeutic 

targets. Pharmacological modulation of TRP channels, such as using TRPV1 agonists, 

has shown promise in alleviating AD symptoms by reducing neuroinflammation and 

improving cellular functions82,83.  

 

Bacterial Infections Studies show tuberculosis (TB) patients have a higher risk of AD, 

potentially due to TB-induced chronic inflammation, which is a known AD risk factor86. 

Treatments for TB, like the BCG vaccine and rifampicin, show potential in modulating 

immune responses and reducing neuroinflammation, which could slow AD 

progression87. Again, maintaining gut and managing bacterial infections promptly, 

might mitigate risks for AD.  

 

Viral Infections Measles virus (MeV) has been implicated in neurodegenerative 

processes, as seen in subacute sclerosing panencephalitis, where persistent infection 

leads to neurofibrillary tangle formation, similar to AD88. This suggests that viral 

infections can contribute to neurodegenerative changes. The immune response to 

MeV, characterized by prolonged virus clearance and immunosuppression, may create 
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a chronic inflammatory environment conducive to neurodegeneration89. Liver function 

markers, such as elevated AST to ALT ratios, are associated with AD diagnosis and 

cognitive dysfunction, suggesting metabolic disturbances linked to liver function 

influence AD pathophysiology90.  

 

Hepatitis B virus (HBV), though less directly linked to AD, has been explored for its 

potential therapeutic avenues. Innovative research using HBV core protein to develop 

a vaccine targeting truncated tau proteins showed promising results in reducing tau 

pathology and cognitive deficits in a mouse model91.  

 

Parasitic Infections Chagas disease is primarily known for its impact on cardiac and 

gastrointestinal systems, but its potential role in the pathogenesis of AD can be inferred 

through its immunological and inflammatory mechanisms. The chronic infection with T. 

cruzi leads to a persistent inflammatory response and structural derangement in 

cardiac tissues, which is a hallmark of Chagas heart disease92. This inflammatory 

process is driven by the host's immune response to the parasite, involving altered 

immunoregulatory mechanisms and pathogen persistence. Similarly, AD is 

characterized by neuroinflammation, where the accumulation of misfolded proteins 

activates an innate immune response, releasing inflammatory mediators that 

exacerbate the disease93. The cGAS–STING signaling pathway, which triggers type-I 

interferon-mediated neuroinflammation, is a critical component in AD pathogenesis93. 

Given that Chagas disease involves significant immune activation and inflammation, it 

is plausible that T. cruzi infection could influence neuroinflammatory pathways similar 

to those seen in AD. Additionally, the vascular pathogenesis of Chagas disease, 

involving functional changes in vasoactive peptides like endothelin-1 and kinins, could 

further contribute to neurovascular dysfunction, a known factor in AD progression94. 

Thus, while direct evidence linking Chagas disease to Alzheimer's disease is limited, 

the shared mechanisms of chronic inflammation and immune dysregulation provide a 

basis for further investigation into their potential connection. 
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4. Discussion and conclusion 

This study introduces mosGraphGPT, a generative pre-trained model designed for the 

integration and interpretation of multi-omics data. The primary aim was to enhance the 

understanding of Alzheimer's disease (AD) pathogenesis by identifying significant 

signaling pathways and potential biomarkers through advanced graph neural networks 

(GNNs). The novel approach leverages extensive pre-training capabilities to capture 

complex gene-gene and gene-cell interactions with high accuracy and contextual 

relevance. 

 

The integration of multi-omics data is crucial for understanding the intricate and multi-

layered biological processes underlying complex diseases such as AD. Traditional 

models often struggle with the variability in gene expression and the diverse conditions 

of cell types. In contrast, foundation models like mosGraphGPT learn generalized 

representations from large-scale datasets, capturing complex interactions that simpler 

models cannot. This study utilized multi-omics datasets from UCSC Xena, 

encompassing epigenomics, genomics, transcriptomics, and proteomics data. The 

comprehensive dataset included 3592 cancer patients, 2121 genes, 8484 node entities, 

19751 protein-protein interactions, and 26114 relations. 

 

The experimental evaluation demonstrated that mosGraphGPT significantly improved 

disease classification accuracy and interpretability by uncovering disease targets and 

signaling interactions. The model achieved an average prediction accuracy of 75.09% 

on the ROSMAP AD dataset, outperforming other graph neural networks such as GCN, 

GAT, GIN, and UniMP. The results indicate the feasibility of patient outcome prediction 

using a GNN with a small set of core signaling pathways genes. The model's ability to 

identify biomarkers and key signaling pathways was validated through attention 

mechanisms and statistical analyses. The integration of multi-omics data allowed for 

the identification of molecular mechanisms involving crucial molecular targets and 

signaling pathways. Notably, pathways such as the p53 signaling pathway, NF-kappa 
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B signaling, and MAPK signaling were highlighted as significant in the context of AD. 

These findings are consistent with existing literature, underscoring the importance of 

these pathways in neurodegenerative diseases. 

 

The findings from this study have significant implications for the field of bioinformatics 

and precision medicine. The ability of mosGraphGPT to integrate and interpret multi-

omics data at a granular level provides a robust framework for understanding complex 

diseases. Future research could expand this model to other diseases and incorporate 

additional omics data to further refine the understanding of disease mechanisms and 

therapeutic targets. Additionally, the application of such models in clinical settings 

could enhance the precision of diagnostic and therapeutic strategies, paving the way 

for more personalized medicine approaches. 

 

In conclusion, mosGraphGPT represents a significant advancement in the integration 

and interpretation of multi-omics data. By leveraging the extensive capabilities of 

generative pre-trained models and graph neural networks, this study has provided 

valuable insights into the molecular mechanisms of Alzheimer's disease. The findings 

highlight the potential of such models to revolutionize the field of bioinformatics and 

precision medicine, offering a powerful tool for the study of complex diseases. 
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Appendix 

Section A 

 

Figure S1. Diagram of the pruning procedures for core signaling networks visualization.  

 

This pruning elucidates the systematic process of filtering and pruning network 

connections, essential for refining the network to its most significant components. The 

process begins with edge threshold filtering and small component threshold filtering. 

Edge threshold filtering eliminates edges that do not meet a specified significance level, 

thereby reducing the overall number of connections in the network. Small component 

threshold filtering removes smaller, less significant components from the network, 

focusing on the more substantial and potentially meaningful parts. Once the initial 

filtering is completed, a recursive node pruning algorithm is applied. This algorithm 

iteratively removes nodes that are deemed insignificant based on specific criteria, such 

as low connectivity or minimal contribution to the network's overall structure. The 

purpose of this pruning is to simplify the network by eliminating nodes that do not add 
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substantial value to the analysis, ensuring that only the most relevant nodes are 

retained. 

 

After pruning, the algorithm checks whether any single branches remain within the 

network. A single branch is defined as a linear path with no bifurcations, which might 

not be as informative in the context of complex network structures. If a single branch 

is detected, pathway filtering is performed. Pathway filtering ensures that the remaining 

connections form biologically relevant pathways, thereby enhancing the network's 

interpretability and utility for further analysis. The final result is a filtered network 

connection that retains the most significant elements, providing a clearer and more 

focused representation of the network's structure. The diagram also includes examples 

of the initial and filtered network connections, illustrating the transformation that occurs 

through each stage of the process. Detailed steps of the recursive node pruning and 

pathway filtering algorithms are provided, enhancing the understanding of the 

methodology employed. 

 

This meticulous approach to filtering and pruning ensures that the resulting network is 

not only simpler but also more biologically meaningful. By focusing on the most 

significant connections and pathways, researchers can achieve more accurate and 

insightful analyses, ultimately contributing to a deeper understanding of the underlying 

biological processes. 
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