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Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein 
expressed by both innate and adaptive immune cells, including natural killer (NK) cells, 
CD8+ T  cells, invariant NKT cells, γδ T  cells, and some CD4+ T  cells under certain 
pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity 
and production of cytokines by effector cells and supports their proliferation and survival 
upon engagement with its ligands. In both innate and T cell populations, NKG2D can 
costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in 
NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expres-
sion was typically attributed to stressed, infected, or transformed cells, thus signaling 
“dysregulated-self.” However, many reports indicated their expression under homeo-
static conditions, usually in the context of cell activation and/or proliferation. Myeloid 
cells, including macrophages and dendritic cells (DCs), are among the first cells sensing 

 and responding to pathogens and tissue damage. By secreting a plethora of soluble 
mediators, by presenting antigens to T cells and by expressing costimulatory molecules, 
myeloid cells play vital roles in inducing and supporting responses of other immune 
cells in lymphoid organs and tissues. When activated, both macrophages and DCs 
upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating 
lymphocyte responses. In this review, we will focus on the expression of NKG2D by 
innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid 
cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells 
with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological 
conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative 
involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in 
these diseases.

Keywords: NKG2D, NKG2D ligands, myeloid cells, natural killer cells, NKG2D+ T cells

THe NATURAL KiLLeR GROUP 2, MeMBeR D (NKG2D) 
ReCePTOR

Natural killer group 2, member D is a type II transmembrane protein with a C-type lectin-like extra-
cellular domain, expressed on the cell surface as a disulfide-linked homodimer. The receptor possesses 
a short intracellular tail with charged amino acid residues that enable its association with the adaptor 
molecules DAP10 and/or DAP12, which is essential for NKG2D surface expression (1–3). In mice, 
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alternative splicing of NKG2D results in two distinct isoforms: 
NKG2D-short and NKG2D-long. The NKG2D-short isoform can 
associate with both DAP10 and DAP12, whereas the NKG2D-long 
isoform associates only with DAP10 (2). Freshly isolated naïve 
natural killer (NK) cells express only the NKG2D-long isoform 
that forms complexes with DAP10. Activated NK  cells express 
both NKG2D isoforms and can therefore pair with both adapters 
(2). However, human NK  cells only express the NKG2D-long 
isoform, and consequently, NKG2D appears to only use DAP10 
for signal transduction. NKG2D triggering induces cytotoxic 
responses, secretion of cytokines and chemokines, and supports 
proliferation and survival of responding effector cells (4).

The NKG2D receptor gene (KLRK1, killer cell lectin-like 
receptor K1) was first described in 1991 in human NK cells (5). 
Since then, several other lymphocytes have been shown to express 
NKG2D, namely, all αβCD8+ T  cells in human, activated, but 
not naïve, αβCD8+ T  cells in mice, γδ T  cells, invariant NKT 
(iNKT) cells, and some CD4+ T cells under certain pathological 
conditions. More recently, NKG2D was detected on the surface 
of innate lymphoid cells (ILCs), including helper ILC1 and ILC3 
(6–8). Importantly, those different NKG2D-expressing immune 
cell types reside in distinct morphological sites, such as lymphoid 
organs, skin, and epithelial and sub-epithelial tissues. Indeed, 
NKG2D-expressing cells and upregulation of NKG2D ligands 
(NKG2DLs) were shown to play important roles in inflammation, 
anti-tumor, and anti-viral responses in different organs (9, 10). 
In addition, the pathophysiology of several autoimmune condi-
tions, as well as acute and chronic allograft rejection, involved 
dysregulated expression or/and activation of NKG2D and its 
ligands (11–17).

Expression of NKG2D on immune effector cells is regulated 
by cell activation and microenvironmental factors. In NK cells, 
which constitutively express NKG2D, the cytokines IL-2, IL-12, 
and IL-15 were shown to upregulate, while IL-21, IFN-γ, and 
TGF-β negatively regulated NKG2D surface expression (18). The 
triggering of the NKG2D receptor in mouse and human NK cells 
can induce effector functions, such as cytotoxicity and cytokine 
production. However, several studies revealed that pre-activation 
with cytokines, such as IL-2 or IL-15, was required to trigger 
NK  cell responses upon NKG2D engagement (19, 20). This 
feature might have evolved to assure NKG2D activation only in 
cases when potential “danger signals” are present in the context of 
inflammation, characterized by the production of inflammatory 
cytokines. In addition, NKG2D can act as a costimulatory mol-
ecule, able to induce cytolytic activity in resting NK cells, when 
cotriggered with other activating receptors, such as NKp46 or 2B4 
(9). Several mechanisms account for cytokine-mediated priming 
of NKG2D responsiveness, such as IL-2-mediated activation of 
mTORC1 and upregulation of amino acid transporters (20), or 
IL-15-induced phosphorylation of the adaptor molecule DAP10 
(19) and activation of cytosolic phospholipase A2 accompanied 
by production of arachidonic acid (21). In human NK cells and 
resting mouse NK cells, which express the NKG2D-long isoform, 
the signal is transduced via DAP10 and propagates through 
Grb2/Vav and the PI3K pathway, similar to the costimulatory 
molecule CD28 (22), which might explain the need for additional 
signals for cell activation. In mouse, activation induces changes 

in Nkg2d mRNA alternative splicing, leading to the expression 
of the NKG2D-short isoform. Its coupling to the ITAM-bearing 
adaptor DAP12, which recruits and activates signaling via Syk 
and ZAP70 protein kinases, has been implicated in the trigger-
ing of the NKG2D-short isoform without the need of cytokine 
“priming” or coreceptor activation (22). These results signify that 
NKG2D function on NK  cells depends on the NK  cell activa-
tion status and tightly correlates with the presence of additional 
microenvironmental signals, such as cytokines or ligands of other 
receptors expressed on target or neighboring cells. Therefore, 
it is not surprising that NKG2D-deficient mice do not show a 
major phenotype until crossed to TRAMP or Eμ-Myc mice, 
which spontaneously develop prostate cancer and lymphoma, 
respectively (23).

NKG2DLs: eXPReSSiON AND 
ReGULATiON

Although NKG2D is largely not polymorphic (only two alleles 
with a single aa difference exist in human) and shows strong 
evolutionary conservation with ~70% sequence identity between 
mouse and human, this receptor is able to bind a broad range 
of stress-induced ligands that, in contrast, show a high degree 
of polymorphism (24, 25). In the context of transplantation, 
polymorphic NKG2DLs can cause donor–recipient incompat-
ibility and lead to allograft rejection by inducing the formation of 
antibodies directed against NKG2DL epitopes and complement-
dependent cytotoxicity (26–29).

NKG2D ligands comprise several MHC class I-like molecules, 
which include murine UL16-binding protein-like transcript 1 
(MULT1), retinoic acid early transcripts α-ε (RAE-1 α-ε) and 
H60 a-c in mice, and MHC class I-related genes A and B (MICA 
and MICB) and UL16-binding protein (ULBP) family in human. 
All NKG2DLs have α1α2 domains responsible for binding to the 
NKG2D receptor, however, only low sequence similarity can be 
observed between various ligands, indicating a significant level 
of variability. It was proposed that the variability of these ligands 
increased with coevolution with pathogens, allowing their dif-
ferential expression patterns among cells and tissues, distinct 
intracellular trafficking, and differential affinity for the NKG2D 
receptor, which might influence the strength of the delivered 
signal (24).

NKG2D ligand expression is most frequently associated 
with infection, cell stress, and transformation, thus alerting for 
“stressed- and damaged-self.” Distinct forms of cell stress can 
induce cell surface expression of NKG2DLs, including DNA 
damage, oxidative stress, heat-shock, or the ER stress response 
(30–35). For example, the p53 pathway, involved in the DNA 
damage response, was shown to strongly upregulate ULBP1 and 
ULBP2 at both mRNA and protein level. Similarly, heat-shock-
induced transcription factor HSF1 can drive MICA promoter 
activation (36). Other transcription factors, including E2F, 
NF-kB, ATF4, the Sp-family, and AP-1, were also shown to be 
involved in NKG2DL mRNA transcription (36–38). Sauer et al. 
showed that histone acetylation and binding of acetyltransferases 
CBP and p300 to NKG2DL promoter regions increased NKG2DL 
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expression by tumor cells (39), suggesting the importance of an 
open chromatin state in the regulation of NKG2DL expression. 
In addition, NKG2DL expression has been associated with viral 
infections, including CMV, influenza, hepatitis B, Epstein–Barr, 
and adenovirus (40), as well with as some bacterial infections 
(e.g., E. coli, M. tuberculosis) (24). Accordingly, triggering of toll-
like receptors (TLRs), that sense microbial products, also induced 
NKG2DL expression in macrophages and dendritic cells (DCs) 
(41, 42). Certain viruses, such as HIV, engage the DNA damage 
pathway, while other viruses, such as MCMV, induce NKG2DL 
expression via PI3K-mediated activation (35).

NKG2D ligand expression is regulated at several levels 
(transcriptional, post-transcriptional, and post-translational) 
and depends on the cell type, its activation and metabolic state, 
and the microenvironmental context (35, 36). Cytokines, such as 
IFN-γ, IFN-α, and TGF-β, were reported to regulate NKG2DL 
expression on mouse and human cell lines (10). NKG2DL surface 
expression is further controlled by miRNAs and mRNA-binding 
proteins that target NKG2DLs at the transcript level (43–45), 
by alternative splicing (37), and by Ub-mediated degradation 
of NKG2DL protein(s) (46, 47). In various cell types and tis-
sues, NKG2DL RNA transcripts were detected in the absence 
of protein (40). In gut and bronchial epithelia, ligands can be 
stored intracellularly and transferred to the cell surface upon 
stimulation (40). In addition, NKG2DLs can be delivered to 
effector cells via exosome secretion, which represents a potent 
mechanism exploited by cancer cells to downregulate NKG2D 
expression on effector cells (48). NKG2DL surface expression 
can be downregulated by proteolytic shedding at the plasma 
membrane; however, this process depends on the type of ligand, 
and it seems to be regulated by the microenvironment (49). For 
example, elevated serum levels of soluble MIC proteins were 
detected in patients with different types of cancer and correlated 
with unfavorable prognosis. Soluble MIC was shown to induce 
NK and CD8+ T cell dysfunction by inducing loss of the CD3ζ 
signaling molecule, or by decreasing NKG2D surface expression 
through endocytosis and degradation upon its engagement (50). 
By contrast, soluble MULT1, a high affinity mouse NKG2DL, was 
shown to counteract NK cell desensitization and to cause NK cell 
activation and tumor rejection in vivo (51). Opposite to cancer, in 
autoimmune disease, although increased levels of MIC proteins 
in serum have been detected, NKG2D expression was not affected 
in the analyzed patients (50).

Although most frequently associated with infection, cellular 
stress, and transformation, NKG2DLs are also detected on certain 
cell types in the absence of pathophysiological conditions [reviewed 
in Ref. (40)]. These include subsets of uncommitted thymocytes, 
activated T and myeloid cells, class-switching B cells, regulatory 
T cells, myeloid-derived suppressor cells (MDSCs), bone marrow 
stromal cells, committed myelomonocytic progenitors, pluripotent 
mesenchymal cells, and epithelial cells of the respiratory and gut 
mucosa. Other cells, such as myoblasts, hepatocytes, neurons, and 
mouse embryonic cells, were also reported to express NKG2DLs, 
but their regulation and function on these cells is less clear. In the 
case of hematopoietic cells, it has been reported that NK cells can 
eliminate activated immune cells in an NKG2D-dependent man-
ner, thereby restraining T cell responses or excessive inflammation 

mediated by myeloid cell activation. In the thymus, NKG2D might 
be involved in the regulation of the T cell repertoire (40), while at 
the epithelial barriers, NKG2D/NKG2DL expression can be linked 
to continuous presence of commensal microbiota and constitutive 
state of low-grade, the so-called physiological inflammation (52). 
Recently, Thompson and colleagues reported that endothelial cells 
in lymph nodes constitutively expressed Rae-1, whose engagement 
at steady state led to downmodulation of NKG2D expression and 
function in circulating NK cells (53). Human activated NK cells 
can themselves upregulate certain ULBP family members after 
culture with the cytokines IL-12/15/18 (54). In this case, inter-
cellular NKG2D activation led to ADAM17-mediated release of 
TNF-α, thus promoting NK  cell cytokine release. By contrast, 
NKG2DLs expressed on NK  cells from diabetic NOD mice 
were postulated to negatively regulate expression of the NKG2D 
receptor (55). Moreover, NK  cells could acquire NKG2DLs via 
trogocytosis upon interaction with target cells, which led to their 
fratricide, thereby resulting in downmodulation of the immune 
response (56).

eXPReSSiON OF NKG2DLs BY MYeLOiD 
CeLLS

In both human and mice, various myeloid cell subsets were 
reported to express NKG2DLs (Figure 1). In many cases, NKG2DL 
induction on myeloid cells is a direct consequence of infection. 
For example, human macrophages upregulate NKG2DL expres-
sion upon influenza or Sendai virus infection (57). In infection 
settings, macrophages can directly sense pathogens using various 
innate immune receptors, some of which have been shown to 
directly regulate NKG2DL expression when triggered in  vitro. 
Signaling via different TLRs can induce NKG2DLs in both mono-
cytes and macrophages, but the nature of the induced ligand(s), 
the levels of their expression, and the magnitude of subsequent 
NKG2D-driven responses might vary. It is tempting to speculate 
that such differential responses were evolutionarily driven and 
tailored to fit the defense strategy against an invading pathogen. 
In primary human macrophages, TLR triggering induces MICA 
and MICB expression. Eissmann et  al. showed that LPS not 
only induced MICA expression, but also decreased the levels of 
miRNAs involved in targeting MICA transcripts for degradation 
(58). In addition, while TLR4 signaling was required for MICA 
gene transcription, the ATM/ATR pathway, involved in the DNA 
damage response, controlled the expression of the MICA protein 
(58), highlighting the complexity of regulation of NKG2DL 
expression. The Davis lab also showed that TLR7/8, but not 
TLR3 ligation, induced both MICA and MICB, and that MICA 
expression correlated with macrophage activation, measured by 
the production of proinflammatory cytokines (58). Similar to 
macrophages, TLR-stimulated monocytes upregulated MICA, 
but not other NKG2DLs, along with CD80 and MHC class I and II 
(59). Besides MICA/B, monocytes and macrophages can express 
other NKG2DLs. TLR2-driven ULBP1 expression was reported 
on M. tuberculosis infected monocytes and alveolar macrophages, 
leading to their NKG2D-dependent lysis by NK cells (60). ULBP1 
could also be induced on monocytes by growth factors, but not 
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FiGURe 1 | Macrophages and dendritic cells (DCs) activated by toll-like receptor (TLR) ligands, cytokines, viral or bacterial infection upregulate NKG2D ligands 
(NKG2DLs) and regulate natural killer (NK) cell effector responses. In both mouse and human, TLR activation and viral and bacterial infection were shown to 
upregulate NKG2DLs on macrophages and DCs. In addition, cytokines produced by myeloid cells upon infection, such as IL-15 or type I IFNs, can also induce 
NKG2DL expression on DCs and, importantly, increase natural killer group 2, member D (NKG2D) expression on interacting lymphocytes. Induced NKG2DLs 
interact with NKG2D expressed by NK cells and lead to their activation, resulting in secretion of IFN-γ, cytotoxicity, CD69 upregulation, and increased killing of 
antibody-coated cells by antibody-dependent cellular cytotoxicity (ADCC). NKG2DLs and IL-15Rα/IL-15 can also be delivered to NKG2D+ effector cells via 
exosomes. NK cell responses are further supported by soluble factors released by myeloid cells, including IL-12 and IL-18, which strongly synergize in IFN-γ 
induction. In turn, IFN-γ released by NK cells supports myeloid cell activation and release of soluble factors, creating a myeloid-lymphoid feedback activation loop. In 
some instances, activated NK cells can kill NKG2DL-expressing macrophages and DCs, thereby limiting their numbers, their responses, or improper stimulation. 
Abbreviations: RSV, respiratory syncytial virus; MCMV, mouse cytomegalovirus.
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by the cytokines TNF-α, IL-1β, and IFN-α, or by the TLR4 ligand 
LPS (61).

Similar to human monocytes and macrophages, mouse mac-
rophages were reported to express NKG2DLs in the context of 
infection, such as M. tuberculosis (62) or P. aeruginosa (63). Murine 
peritoneal macrophages expressed Rae-1, but not other NKG2DLs, 
upon stimulation via TLRs, both in vitro and in vivo (42). Exposure 
to G− (E. coli) and G+ (S. aureus, L.  monocytogenes) bacteria, 
Mycobacterium bovis BCG or infection with CMV, all induced 
Rae-1 expression (42, 64), reinforcing that macrophage activation 
and pathogen recognition is linked to NKG2DL upregulation. 
Cytokines produced upon response to pathogens, such as TNF-α, 
type I IFNs, or IFN-γ, were not required for Rae-1 expression in 
these settings.

Besides infection, evidence exists of NKG2DL association with 
myeloid cell differentiation and acquisition of an activated effec-
tor phenotype. This is not surprising, as induction of NKG2DLs 
was correlated with cell proliferation (65) and DNA damage (30, 
31), which might occur during effector responses in tissues. It 

was shown that human CD34+ hematopoietic stem cells (HSC) 
expressed low levels of NKG2DLs, which were increased upon 
commitment to the myeloid lineage (61, 66). In mice, HSC 
transplantation in irradiated animals gave rise to Gr1+ and 
CD11b+ cells expressing Rae-1 and H60 in the bone marrow 
(29). Similarly, myeloid cells with immunosuppressive function 
that accumulated in tumor-bearing mice were reported to express 
Rae-1 (51, 67). So far, the reason for NKG2DL expression by 
immature myeloid cells is unclear. In tumor settings, engagement 
of NKG2D on NK cells led to NK cell activation and cytolysis of 
Rae-1-expressing myeloid cells (67). Whether NK cells can con-
trol myeloid lineage differentiation via regulating the numbers of 
developing progenitors is, so far, elusive.

Of note, besides expressing NKG2DLs, there are some indi-
cations that activated macrophages could also upregulate the 
NKG2D receptor, although these observations remain contro-
versial. Thioglycolate-induction in vivo or stimuli, such as LPS, 
type I IFNs, and IFN-γ, were shown to drive mRNA and protein 
NKG2D expression on peritoneal and bone marrow-derived 
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macrophages, respectively. When stimulated with immobilized 
ligands or ligand-expressing cells, NKG2D+ macrophages 
produced nitric oxide and TNF-α (2, 68, 69), indicating that 
this system might enhance macrophage-mediated elimination 
of pathogens, pathogen-infected or tumor cells. Indeed, it was 
also suggested that crosstalk with certain NKG2DL+ tumor 
cells might contribute to macrophage activation and lower the 
threshold for their responses (70). However, this effect might 
also be exploited in tumor settings and facilitate cancer immune 
evasion. For example, Qian et  al. detected NKG2D expression 
on Gr1+ CD11b+ myeloid cells accumulating in blood, spleen, 
and bone marrow of tumor-bearing mice. Blockade of NKG2D 
in vitro impaired IL-4 and IL-10 production by these cells, while 
in vivo neutralization reduced their accumulation in mice bearing 
Rae-1+ tumors (71).

In DCs, NKG2DL upregulation was also associated with 
activation caused by infection and/or cellular stress (Figure 1). 
In mouse, vaccinia virus infection induced Rae-1 (72), while 
pulse with Toxoplasma gondii lysates led to both Rae-1 and 
MULT1 expression on the DC surface (73). In infected human 
monocyte-derived DCs, influenza virus induced ULBP proteins 
(74). Other RNA viruses, such as respiratory syncytial virus, led 
to ULBP1 upregulation, while measles virus, as well as exposure 
to poly(I:C), upregulated ULBP2 (41). These data indicate that 
different mechanisms can be employed by DCs to induce expres-
sion of distinct NKG2DLs in response to various virus types. 
IFN-α, which is primarily produced during viral infections, 
was reported to induce MIC ligand expression on human DCs. 
A similar effect was attributed to IL-15, while stimulation with 
LPS, poly(I:C), CD40L, TNF-α, IL-12, and IL-18 did not affect 
NKG2DL expression (75, 76). MICA expression was also induced 
by Hsp70 (77), although bacterial products or other molecules 
might as well have contributed to this effect (78). TLR ligands, 
such as LPS and poly(I:C), were able to upregulate ULBPs on 
human monocyte-derived DCs (41). ULBP1 was also detected 
on mature DCs in T cell areas of lymph nodes in situ, in close 
proximity to NKG2D-expressing CD8+ T cells (79), indicating 
its possible involvement in T cell priming.

THe NKG2D/NKG2DL AXiS iN THe 
CROSSTALK OF MYeLOiD CeLLS  
AND NK CeLLS

Myeloid cells and innate lymphocytes form the first line of 
defense against invading pathogens. Their activation leads not 
only to the direct elimination of pathogens and their products, 
but also to the activation of proper adaptive immune responses. 
Moreover, it is becoming appreciated that these cells also 
respond to cues indicating tissue damage and, in addition to 
defense, orchestrate mechanisms of tissue repair (80). Since (i) 
both infection and damage were shown to upregulate NKG2DLs 
on myeloid cells, and (ii) factors produced in response to these 
events (by stroma, parenchymal, and immune cells) can induce 
or upregulate NKG2D on lymphocytes, an NKG2D-driven lym-
phocyte-myeloid cell crosstalk is expected to play an important 
role in these processes. Indeed, in many animal models, NKG2D 

genetic deletion or Ab-mediated blockade in vivo affected disease 
development and tissue repair, including tumor progression, 
autoimmunity, and wound healing (12, 13, 23, 65). However, the 
contribution of the individual cell populations to these observa-
tions remain not fully addressed. This particularly applies to cells 
expressing NKG2DLs, whose depletion or conditional targeting 
is experimentally challenging. In addition, the generation of 
NKG2DL-deficient mice is complicated by the existence of mul-
tiple ligands organized as gene families. However, recent success 
in creating Rae-1-deficient mice (51) opens the possibility to 
generate bone marrow chimeras and to address the contribution 
of Rae-1 expression, at least in the hematopoietic versus non-
hematopoietic compartment, in disease settings in vivo.

In the case of myeloid cells, while their role in activating 
NKG2D-expressing cells in  vivo via NKG2DLs remains largely 
unknown, in vitro data provide convincing evidence of an NK cell 
crosstalk with DCs and macrophages (Figure 1). For example, in 
the MCMV model, virus-infected mouse DCs play a crucial role 
in NK cell activation by both inducing IFN-γ release (through 
IL-12/18 production) and NK cell cytotoxic responses via IFNα 
and NKG2D engagement (81). In human in vitro system, it was 
shown that DCs infected with influenza virus supported CD69 
upregulation and IFN-γ production by NK cells via NKG2D and 
NKp46 (74). In addition, it was shown that human DC-derived 
exosomes displayed ULBP1, together with IL-15Rα, on their 
surface and were able to promote NKG2D-dependent activation 
of NK cells (82). Also, MICA and MICB, induced on DCs upon 
IFN-α or IL-15 treatment, contributed to NK cell activation (75, 
76). In these studies, the authors showed that type I IFNs and 
IL-15 induced MIC molecules on DCs, which was impaired in 
patients with chronic hepatitis C infection. Similarly, coculture 
of NK cells and DCs pulsed with T. gondii lysate increased DC 
IL-12 production and their ability to prime Ag-specific CD8+ 
T cell responses, which was impaired by NKG2D blockade (73). 
Besides mutual activation, the NK/DC crosstalk can also result in 
an NK cell cytolytic response, leading to DC elimination, which is 
considered essential in the regulation of the numbers and quality 
of the activated DCs and, consequently, the extent of the overall 
immune response. The outcome of the NK/DC crosstalk depends 
on the activation/maturation status of both interacting cell types 
and their relative abundance. Accordingly, human IL-2-activated 
NK cells increased mature DC responses, measured by the level 
of IL-12 release and ability to induce CD4+ T cell activation (83). 
In coculture with immature DCs (iDCs), activated NK cells were 
shown to support autologous DC maturation and activation at 
low NK/DC ratios, while increased numbers of NK cells resulted 
in iDC lysis (84). In these settings, cytotoxic NK cell responses 
were mainly mediated via the activating receptors NKp30 and 
DNAM-1 (85), although a partial contribution of NKG2D has 
also been observed (86). However, treatment of mature DCs with 
IL-10 induced their elimination by NK cells, which was mediated 
via NKG2D, while IL-10-treated iDCs resisted to NK-mediated 
cytotoxicity (87). As the authors of this study suggested, aberrant 
accumulation of iDCs in patients with chronic infections that are 
frequently associated with increased levels of IL-10 production, 
such as HIV, thus might be the consequence of IL-10-induced 
DC resistance to NK cell elimination (87). Remarkably, Schulz 
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and colleagues showed that IL-10 also rendered autologous 
human macrophages susceptible to NK cell lysis, which involved 
NKG2D. In the presence of IL-10, NKG2D receptor expression 
on NK  cells increased, while macrophages induced NKG2DL 
expression (88). Thus, IL-10 might exert its immunomodulatory 
pleotropic effect, not only via suppressing T cell responses, but 
also via inducing NK cell-mediated killing of activated myeloid 
cells, including antigen-presenting cells (APCs).

Similar to DCs, monocyte-derived macrophages were 
reported to express MICA and ULBP1-3 upon stimulation with 
LPS, rendering them susceptible to NK cell-mediated lysis (89). 
In alveolar macrophages, M. tuberculosis infection led to ULBP1 
induction and their NKG2D-dependent lysis by NK cells (60). 
However, it was also reported that TLR-stimulated monocytes, 
which upregulate MICA, promoted IFN-γ release via interac-
tion with NKG2D-expressing NK cells (59). In the presence of 
IL-12, NKG2DL-expressing monocytes were shown to not only 
stimulate IFN-γ release, but also to enhance antibody-dependent 
cellular cytotoxicity toward Ab-coated target cells (90). Results 
from the Davis lab indicated that NK cells and autologous human 
macrophages can engage two distinct types of interactions. On 
the one hand, low-dose LPS-stimulated macrophages can trigger 
NK cell proliferation, secretion of cytokines and increased kill-
ing of tumor targets via the 2B4/CD48 axis, while, on the other 
hand, macrophages activated with high doses of LPS expressed 
MICA and ULPBs, formed the so-called lytic synapse, and were 
lysed by NK cells via NKG2D (89). These data indicate that the 
activation status of macrophages can determine the outcome of 
their crosstalk with NK cells and that NKG2DL expression might 
be a signal for removal of activated macrophages to prevent exag-
gerated inflammation and tissue damage. In mice, activation of 
peritoneal macrophages with poly(I:C) induced Rae-1, H60, 
and MULT1 expression, along with IL-15, IL-18, and type I IFN 
production. These soluble factors could increase NKG2D expres-
sion on NK cells, leading to increased cytotoxicity in response 
to tumor cells expressing NKG2DLs. However, macrophages 
remained resistant to NK cell lysis due to the expression of Qa-1, 
a surface molecule engaging the inhibitory NK  cell receptor 
NKG2A (91).

Besides a direct interaction that triggers immediate effec-
tor responses, such as cytokine production and cytotoxicity, 
myeloid cells expressing NKG2DLs can indirectly control the 
function of NKG2D expressed on effector lymphoid cells. It was 
shown that NKG2DL engagement can lead to NKG2D down-
regulation and that the constitutive presence of NKG2DLs can 
cause long-term desensitization of the NKG2D pathway (53, 
92, 93). This phenomenon can be mediated by both membrane 
bound ligands and by ligands released in soluble form upon 
proteolytic shedding or via exosomes. While the effect of 
tumor-released soluble ligands/exosomes has been extensively 
studied, mainly as a mechanism of immune evasion, the con-
tribution of myeloid cells to this phenomenon remains largely 
unrevealed. Only recently, a study showed that in vivo overex-
pression of Rae-1 on CD11chigh cells, comprising mainly DCs 
in mice, led to reduced NK cell-mediated cytotoxicity toward 
NKG2DL+ or MHC class I-deficient targets, compromising the 
ability of these animals to reject NKG2DL-expressing tumor 

cells, while the control of viral infection (MCMV) remained 
unaffected (94). Of note, continuous engagement of NKG2D 
was shown not only to affect NKG2D-dependent responses, but 
also to desensitize the signaling downstream of other activat-
ing receptors, such as NK1.1 and NKp46 (92, 95). Accordingly, 
Rae-1 expression on lymph node endothelial cells in steady 
state (53) or by myeloid cells in tumor-bearing animals (51) 
is responsible for NKG2D downregulaton and global desensi-
tization of NK cells. Similarly, in cancer patients, the presence 
of MICA- and ULBP1-expressing myeloid cells in blood and 
tumor correlated with reduced NKG2D expression on NK cells 
(96). However, it will be important to further improve the 
mechanistic understanding of NKG2D downmodulation in 
disease conditions and to dissect whether NKG2D downregula-
tion in patients truly results from the engagement with soluble 
and cell-expressing ligands or if other factors, such as TGF-β, 
might contribute in these settings.

In the past few years, ILCs, which mainly reside in tissues, have 
been identified as novel players in the regulation of tissue homeo-
stasis, regeneration, and response to infection (80). Since helper 
ILC1 and ILC3 populations express NKG2D (6–8), investigating 
the importance of the NKG2D/NKG2DL axis in the putative 
crosstalk between ILCs and myeloid cells, particularly in tissues 
and/or pathologies where ILC populations play an important 
role, would be of high relevance.

NKG2D eXPReSSiON ON T CeLL 
SUBSeTS: wHeN AND wHeRe?

As referred above, NKG2D is a widely expressed receptor detect-
able on NK cells and several subsets of T cells, including CD8+ 
T cells, subsets of γδ T cells and NKT cells in steady state, and 
CD4+ T cells under certain pathological conditions. This trans-
versal expression from innate to adaptive immune lymphocytes 
makes NKG2D a remarkable NK receptor. Thus, the focus on 
the dynamics of a NKG2D/NKG2DL axis should go beyond 
the NK cell-myeloid cell crosstalk. Below, we discuss the so far 
described NKG2D-expressing T cell subsets (see Figure 2).

αβ CD8+ T Cells. CD8+ T cells are the most representative 
T  cell subset expressing NKG2D. While in mice expression of 
NKG2D is restricted to activated CD8+ T cells, in humans, all 
CD8+ T cells express NKG2D constitutively (97). In human, as 
with NK cells, CD8+ T cells do not express the short NKG2D 
isoform. In mice, although activated CD8+ T  cells express 
both NKG2D isoforms, they usually lack expression of DAP12, 
contrarily to NK cells. Thus, for both species, NKG2D in CD8+ 
T cells seems to primarily signal via DAP10 (2, 3). It was reported 
that DAP12 could also be expressed by T cells and that, unlike 
NK cells, human activated CD8+ T cells required simultaneous 
signaling mediated by both DAP10 and DAP12 pathways (98). 
However, several studies support that DAP10 appears to be the 
most important adaptor for NKG2D signaling in CD8+ T cells 
(3, 22, 99).

In conventional CD8+ T  cells, NKG2D has been shown 
to mainly serve as a costimulatory receptor for TCR-induced 
signaling (22, 69, 99–101). Although the costimulatory 
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function of NKG2D was more evident for activated CD8+ 
T cells that lack CD28 (99, 100), it was also observed in naïve 
CD8+ T cells (101). In fact, the cytoplasmic domain of DAP10 
comprises a signaling motif similar to CD28, which activates 
PI3K and leads to similar, though not identical effects on T cell 
costimulation (102, 103). Besides its role in decreasing the 
TCR threshold in CD8+ T cells, as a costimulatory receptor, 
several studies have shown that NKG2D can also work as an 
activating receptor per se on CD8+ T cells under certain con-
ditions, namely upon prolonged exposure to IL-15 (104–106). 
In fact, IL-15 appears to be a key factor in arming the NKG2D-
mediated cytolysis of effector CD8+ T  cells. Meresse et  al. 
showed that, in celiac disease, NKG2D expressed on intraepi-
thelial intestinal lymphocytes could mediate direct cytolysis, 
putatively due to overexpression of IL-15 in this disease 
(104). Other studies demonstrated that prolonged exposure of 
human peripheral blood CD8+ T cells to IL-15 in vitro led to 
a functional NKG2D receptor per se, without the need of TCR 
coengagement for activation. IL-15, besides being involved in 
NKG2D and DAP10 induction and upregulation (104–108), 
was demonstrated to synergize with the NKG2D downstream 
signaling pathway through activation of PI3K, JNK, ERK, 
and cPLA2 (21, 104, 109, 110), thereby enabling NKG2D to 
mediate direct activation and cytolysis in a TCR-independent 
manner. Also, it was shown that NKG2D could enhance IL-15-
mediated PI3K signaling in activated CD8+ T cells, promoting 
CD8+ T cell survival and memory formation (111), showing a 

bi-directional importance of the IL-15–NKG2D downstream 
signaling interaction. Moreover, NKG2D on CD8+ T  cells 
was shown to rescue CD4-unhelped CD8+ T  cell memory 
recall responses, but not effector responses, by repressing the 
transcription factor T-bet (112). Accordingly, besides activat-
ing CD8+ T  cells and driving cytotoxicity, NKG2D has also 
been implied in the survival and memory formation of CD8+ 
T cells.

αβ CD4+ T Cells. Under physiological conditions, expression 
of NKG2D is not detectable on conventional αβCD4+ T  cells. 
However, NKG2D-expressing CD4+ T cells have been described 
in human under certain pathological conditions. NKG2D+ 
CD4+ T cells were initially found on peripheral blood and syno-
vial fluid from rheumatoid arthritis (RA) patients, putatively as 
result of increased TNF-α and IL-15 levels in this disease. Groh 
et  al. showed that those cells promoted the cytotoxic damage 
against synoviocytes with anomalous expression of NKG2DLs 
(14). Later on, NKG2D+ CD4+ T cells have been associated with 
several other autoimmune diseases, such as Crohn’s disease (108, 
113, 114), Wegener granulomatosis (115, 116), type 2 diabetes 
(117), multiple sclerosis (118), and systemic lupus erythematosus 
(SLE) (119, 120). Moreover, NKG2D+ CD4+ T cells accumulated 
in patients with MIC+ tumors (121) and cervical carcinoma 
(122–124). Also, NKG2D+ CD4+ T  cells were identified in 
patients suffering from a human T cell lymphotropic virus type 
I-associated neurological disease (125) and linked with human 
cytomegalovirus infection (126).
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Of note, NKG2D+ CD4+ T cells appear to have similar features 
to a previously described CD4+ CD28− T cell phenotype, which 
prevails in several pathologies, namely autoimmune disorders 
(127–132). In fact, NKG2D+ CD4+ T cells have been detected 
mainly within the CD4+ CD28− T  cell population (14, 126, 
133). Thus, previous studies describing the CD4+ CD28− T cell 
population should be revisited by addressing a putative role of 
NKG2D in disease progression and severity.

Similar to CD8+ T  cells, NKG2D plays a major role as a 
costimulatory receptor, enhancing TCR-mediated responses in 
NKG2D+ CD4+ T  cells. Several studies showed the involve-
ment of this population in the pathology of autoimmune 
diseases contributing to disease progression or severity in an 
NKG2D-dependent manner. However, increased frequencies of 
NKG2D+ CD4+ T cells inversely correlated with disease activ-
ity in juvenile-onset SLE, suggesting that these T cells may also 
have regulatory effects (134). Moreover, a recent study showed 
that NKG2D+ CD4+ T cells were involved in Treg killing in an 
NKG2D–NKG2DL-dependent manner in SLE (120).

Besides the existence of mounting evidence about the asso-
ciation of NKG2D+ CD4+ T cells and pathological conditions, 
shown to correlate with an increase in NKG2DLs, the functional 
crosstalk between myeloid cells expressing NKG2DL and 
NKG2D+ CD4+ T cells remains mainly unaddressed.

γδ T Cells. In both humans and mice, γδ T cells comprise a 
small population of peripheral blood cells (around 2–5%), but 
are abundant in tissues, particularly in the intestine, reproduc-
tive tract, and skin (135–137). Vγ9Vδ2 T cells (also known as 
Vγ2Vδ2), are the most abundant population in human periph-
eral blood (50–95%) (138), while Vδ1 γδ T  cells are mainly 
enriched in the intestine (together with Vδ3 γδ T cells) and in 
the skin. Both Vγ9Vδ2 and Vδ1 γδ T cell subsets are described 
to express NKG2D on their cell surface, associating with DAP10 
for signal triggering. In human, the IL-17+ Vγ9Vδ2 T popula-
tion was reported to lack the expression of NKG2D, although 
the majority of circulating Vγ9Vδ2 T cells expressed NKG2D 
receptor (139).

In 1998, Groh and colleagues described that MICA and MICB 
could be recognized by intestinal Vδ1 γδ T cells through their 
γδ TCR (140). Shortly after, the same group showed that the cell 
surface NKG2D expressed on intestinal Vδ1 γδ T cells recognized 
MICA, and that NKG2D–MICA engagement resulted in target 
cell recognition and killing, suggesting that NKG2D might func-
tion as a costimulatory receptor on γδ T cells (141). MICA was 
later confirmed to be directly recognized by Vδ1 T cells through 
their γδ TCR, although weakly compared to recognition by 
NKG2D (142). Several studies showed that Vδ1 γδ T cells can 
recognize NKG2DLs expressed on cancer cells, triggering their 
cytotoxicity against targets (143, 144).

Das and colleagues showed that infection with M. tuberculosis 
induced MICA on the surface of dendritic and epithelial cells, 
both in vitro and in vivo (145). Moreover, MICA engagement by 
NKG2D expressed on Vγ9Vδ2 T cells resulted in a considerable 
increase of the TCR-dependent Vγ9Vδ2 T cells response (145). 
In the absence of antigen, NKG2D+ Vγ9Vδ2 T cells did not lyse 
MICA+ targets, indicating that the NKG2D–MICA interaction 
is not sufficient to trigger Vγ9Vδ2 T  cell-mediated lysis (145). 

By contrast, a subsequent study showed that NKG2D expressed 
on Vγ9Vδ2 T cell could induce by itself Vγ9Vδ2 T cell activation 
and NKG2D-dependent cytolysis of target cells (146). NKG2D 
has been shown to be involved in Vγ9Vδ2 T  cell recognition 
of leukemia and lymphoma (147), as well as of solid tumors 
(148, 149). Similar to Vδ1 γδ T cell recognition of MICA, ULBP4 
was described to bind to both NKG2D and γδ TCR of Vγ9Vδ2 
T cells, mediating their activation and cytotoxicity (150). Thus, 
altogether those studies indicate that tumor-expressed NKG2DLs 
can be specifically recognized by both TCR and NKG2D expressed 
on human γδ T cells.

Dendritic epidermal T cells (DETCs) are epithelial γδ T cells 
that reside in murine skin. While it is described that only 25% of 
splenic γδ T cells and 5% of thymic γδ T cells express NKG2D, 
basically all DETCs are NKG2D+ in mice (69). So far, human 
counterparts of mouse skin γδ T cells with the same dendritic-
like characteristics have not been identified. Girardi and col-
leagues have shown that DETCs can kill carcinoma cells in an 
NKG2D-dependent manner (151), providing the first evidence 
of NKG2D-mediated DETC activation. Afterward, it was found 
that DETCs displayed impaired wound healing properties upon 
NKG2DL blocking (65, 152) and, as well, that the NKG2D/
NKG2DL interaction was involved in allergen-induced activation 
of DETCs in contact hypersensitivity (153).

As with the other γδ T  cell subsets, whether NKG2D 
expressed on DETCs works as a costimulatory receptor or as 
an activation receptor by itself is still controversial (153–156). 
Ibusuki et  al. showed that NKG2D engagement alone was 
sufficient to trigger degranulation, but not cytokine produc-
tion, in DETCs, which was mainly mediated via the DAP10–
PI3K-dependent signaling pathway (157). However, in this 
study, DETCs were expanded in culture with IL-2, which 
may account for the observed surpass of the need for TCR 
cotriggering. In fact, NKG2D could not trigger cytotoxicity in 
freshly ex vivo isolated DETCs (157). Of note, since it is known 
that cytokines, such as IL-15, can synergize with the NKG2D 
downstream signaling pathway, it is important to consider that 
the majority of protocols using γδ T cells are preceded by an 
expansion phase including IL-2 or IL-15 cytokines. This fact 
might account for controversial views of NKG2D as costimula-
tory or stimulatory receptor by itself in NKG2D-expressing 
populations.

iNKT Cells. Invariant NKT  cells represent a small popula-
tion of blood cells (0.01–1% among peripheral blood T cells) in 
human that, however, can be found highly enriched in the liver, 
particularly in mice. Those cells express a semi-invariant TCR, 
characterized by Vα14-Jα18 in mice and Vα24-Jα18 in humans, 
which recognizes lipid-based antigens in the context of CD1d 
molecules. iNKT cells can be functionally distinguished by the 
expression of CD4 on the cell surface, both in human and mice. 
In general, CD4+ iNKT cells display a Th2-like profile, whereas 
CD4− iNKT are rather skewed toward Th1-like responses (158, 
159). NKG2D surface expression is restricted mainly to the CD4 
negative subset of iNKT  cells (158, 160). Kuylenstierna and 
colleagues found that NKG2D stimulation in CD4− NKT cells 
could act as a costimulatory signal in response to suboptimal 
anti-CD3 triggering or CD1d-presented ligands. In the same 
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study, NKG2D stimulation in CD4− NKT  cells also mediated 
a direct NKG2D-dependent lysis of target cells, independent of 
invariant TCR engagement, thus demonstrating both a stimula-
tory and costimulatory role of NKG2D in those cells (160). Wang 
et  al. showed that tumor-derived soluble MICs downregulated 
NKT cell NKG2D expression and consequently tumor cell killing 
in vitro (161), supporting an anti-tumor function of NKG2D+ 
NKT cells.

Besides playing a role in cancer, NKG2D+ NKT  cells were 
shown to be enriched in certain pathologies, namely autoim-
mune diseases. Patients with type 2 diabetes showed increased 
NKG2D+ NKT cells in peripheral blood, when compared with 
healthy controls (162). Early onset SLE was associated with 
changes in the ratio of NKG2D/NKG2A expression in multiple 
cell types, including NKT cells (163). NKG2D+ NKT cells with 
a Th1-like profile were also increased in pre-eclampsia (164). 
Further studies focusing on the specific role of NKG2D expressed 
by iNKT  cells, in both cancer and other pathologies, and on 
the potential crosstalk with myeloid cells via interaction with 
NKG2DLs, would be important.

Noteworthy, besides the existence of mounting evidence 
associating several subsets of NKG2D+ T cells and pathologi-
cal conditions characterized by an increase in NKG2DLs, the 
functional crosstalk between myeloid cells expressing NKG2DL 
and NKG2D+ T cell subsets remains mainly unaddressed. In 
this regard, it would be important on the one hand, to deter-
mine the specific role of NKG2D in conditional knockout 
mice, where NKG2D could be selectively deleted on different 
cell populations; and on the other hand, to dissect in paral-
lel the importance of the NKG2DL-expressing myeloid cells. 
Since myeloid cells are important APCs, the putative crosstalk 
between myeloid cells and T  cells expressing NKG2D might 
be highly relevant. Particularly in pathological conditions, 
myeloid cells could not only trigger NKG2D expressed by 
T cells via NKG2DL but could also in parallel activate T cells 
via antigen presentation by MHC molecules, further enhanc-
ing or controlling specific T cell-mediated responses. As such, 
further studies focusing on the impact of NKG2DL expressed 
on myeloid cells in the crosstalk with T cells would be of major 
relevance.

Importantly, a connection between NKG2D, autoimmunity, 
and IL-15 is getting increasingly evident. First, several autoim-
mune diseases have been correlated with increased IL-15 cytokine 
levels (165, 166). Second, NKG2D induction, upregulation and its 
role in autoimmunity has been extensively demonstrated (167). 
Finally, a role of IL-15 in NKG2D upregulation and enhancement 
of downstream signaling has been shown. Interestingly, myeloid 
cells are widely regarded as main producers of IL-15, particu-
larly under pathological conditions, trans-presenting IL-15 
to responding cells. On the one hand, it is known that IL-15 is 
involved in NKG2DL upregulation (104, 110) and, on the other 
hand, it has been shown that this cytokine can upregulate or 
induce NKG2D expression (104–106, 110). In this regard, it is 
tempting to imagine a scenario where myeloid cells trans-present 
IL-15 to effector cells, leading to NKG2D induction and/or sup-
port of its signaling, while these cells at the same time trigger 
NKG2D via NKG2DL interaction.

NKG2DLs AND MYeLOiD CeLLS iN 
DiSeASe SeTTiNGS

Multiple diseases are associated with NKG2DL upregulation, 
where its expression might be either protective or detrimental. 
Dysregulated receptor/ligand expression was reported in various 
autoimmune diseases, such as RA, colitis, celiac disease, multiple 
sclerosis, type 1 diabetes, or atherosclerosis, where their involve-
ment was postulated to mainly promote inflammation (11–17, 
104). By contrast, in conditions such as wound healing, although 
NKG2DLs were induced by initial tissue damage and cellular 
stress, NKG2D was shown to support tissue remodeling and 
regeneration (65). However, in many of the studied diseases and 
respective animal models, it remains unclear which cells express 
NKG2DLs in the affected tissues and what is the myeloid cell 
contribution to the overall ligand expression and NKG2D-driven 
responses.

In tumor-bearing mice, Rae-1 was detected on a subset of 
MDSCs and contributed to NK  cell activation (67). In glio-
blastoma multiforme (GBM) patients, MICA and ULBP1 were 
detected on microglia, tumor-infiltrating myeloid cells, and 
circulating monocytes (96). In this study, the authors showed that 
lactate dehydrogenase isoform 5 (LDH5), secreted by tumor cells, 
was elevated in GBM patients’ sera and responsible for NKG2DL 
upregulation on healthy monocytes. In vitro, IL-2-activated 
NK cells degranulated, produced IFN-γ, and induced apoptosis 
of autologous NKG2DL-bearing monocytes. However, in  vivo, 
LDH5-mediated induction of NKG2DLs might serve as a cancer 
immune evasion mechanism, as NK  cells from GBM patients 
displayed reduced surface NKG2D expression and impaired 
function (96). Similarly, NKG2DL-expressing monocytes were 
detected in the blood of breast, prostate, and virus-induced liver 
cancer patients (96).

In atherosclerotic plaques, both endothelial cells and mac-
rophages have been reported to express MICA/B (15). In line with 
that, exposure of monocyte-derived macrophages to acetylated 
low-density lipoproteins in  vitro led to MICA/B induction 
(168). In a mouse model of atherosclerosis, Rae-1 expression 
was detected on macrophages, not only in plaques but also in 
the liver, which is affected by metabolic changes associated with 
disease (15). The liver is enriched in NKG2D-expressing ILCs 
and NKT cells, whose crosstalk with the myeloid compartment 
might play a significant role in atherosclerosis. Consistent with 
that hypothesis, it was shown that NKG2D-deficient animals 
displayed smaller plaques in aortas, reduced liver damage, and 
reduced levels of proinflammatory cytokines, cholesterol, and 
triglycerides in serum (15).

La Scaleia et  al. reported increased NKG2DL expression in 
the colon mucosa of pediatric patients with active inflammatory 
bowel disease (IBD). Their results indicated that the NKG2DL+ 
cells displayed a macrophage-like morphological phenotype (17). 
In addition, in active ulcerative colitis, MICA and MICB expres-
sion was significantly upregulated in peripheral blood monocytes 
(17). MICA/B+ macrophages were also detected in the duodenal 
tissue of patients with celiac disease, where those ligands were 
distributed intracellularly in the form of cytoplasmic aggregates 
(169). These data suggest that the crosstalk of myeloid cells with 
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NKG2D+ innate and adaptive lymphocytes might play a signifi-
cant role in IBD-associated inflammation. Moreover, intracellular 
NKG2DLs might have a specific, so far unappreciated function, 
not only in myeloid cells, but also in enterocytes, where peri- and 
supra-nuclear NKG2DL aggregates were also detected (169).

In experimental autoimmune encephalomyelitis, a mouse 
model of multiple sclerosis, Rae-1δ and Rae-1γ were induced 
at mRNA and protein level in spinal cord early upon disease 
onset. Djelloul et al. demonstrated that myeloid cells, including 
macrophages and microglia, expressed both Rae-1 and MULT1 
(170). Expression of these ligands correlated with myeloid 
cell recruitment to affected tissue and their proliferation. 
Furthermore, this study identified M-CSF as factor driving 
NKG2DL expression on microglia.

As in the diseases discussed above NKG2D-expressing 
lymphocytes play significant roles, displaying either protec-
tive or detrimental properties, and myeloid cells exert potent 
regulatory roles in their activation, it would be of great 
importance to determine the contribution of NKG2D to their 
interaction. Moreover, NKG2D seems to play a costimulatory 
role in lymphocyte activation, acting often in the context of 
the proinflammatory environment. As myeloid cells contribute 
to an inflammatory environment via both soluble factors and 
NKG2DLs, it is tempting to speculate that their therapeutic 
targeting in combination with existing treatments might help 
to reduce tissue damage, especially in context of autoimmune 
diseases.

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

NKG2D is considered a major lymphocyte receptor detect-
ing dysregulated cell homeostasis induced by infection or 
transformation. Distinct pathways activated by cellular stress 
can upregulate various NKG2DLs, thus conveying an alert-
signal of potential cell dysfunction to the immune system. 
Importantly, NKG2DL upregulation is frequently accompanied 
by specific microenvironmental milieus that support NKG2D 
upregulation, NKG2D function, and NKG2DL induction. 
These milieus are characterized by the presence of proinflam-
matory cytokines, among which, IL-15 plays a central role. In 
tissues, tissue-resident and recruited NKG2D+ lymphocytes 
are crucial for detecting and eliminating infected and trans-
formed cells. However, this function is greatly supported by the 
myeloid immune compartment. Similar mechanisms, leading 
to NKG2DL upregulation in infected and transformed cells, 
operate to induce their expression in myeloid cells as well. 
Thus, besides their classical functions, that include Ag pres-
entation to T  cells or cytokine-mediated activation of innate 
lymphocytes, myeloid cells use the NKG2D/NKG2DL axis to 
support a regulatory loop, leading to lymphocyte activation 
via NKG2D, which in turn can activate or eliminate myeloid 
cells. The NKG2D-mediated myeloid–lymphocyte interaction 
can have a dual effect on the lymphoid effector cell. On the one 
hand, it can lead to cell activation, which promotes cytotoxic-
ity, survival, and/or cytokine production. On the other hand, 

it causes cell inactivation, as a consequence of ligand-induced 
receptor internalization and desensitization of activating 
pathways beyond NKG2D. Although some of the factors that 
regulate these processes are known, such as soluble ligands 
and chronic stimulation, it would be highly relevant to define 
molecular events that can shift NKG2D engagement toward 
activation, e.g., during anti-tumor responses, or inactivation 
in the case of autoimmunity.

In many experimental settings, especially in disease, the 
importance of the myeloid–lymphocyte activation/inactivation 
loop has not been fully addressed, namely due to the existence of 
a broad variety of NKG2DLs and due to their expression beyond 
the myeloid compartment, including stromal and parenchymal 
cells. Accordingly, it remains a major challenge to address the 
contribution of the myeloid compartment to NKG2D-dependent 
lymphocyte activation, especially in pathological settings. So 
far, conditional knockout animals lacking all NKG2DLs were 
not generated, but mice overexpressing Rae-1 ligands exist and 
their overexpression in specific cell types was obtained by the 
use of Cre-lox technology (94). However, the complexity of the 
NKG2DL system, concerning their differential expression, differ-
ential shedding susceptibility and the ability to induce NKG2D 
downregulation, might compromise the full understanding of 
complex pathologies. In addition, recent data indicating that 
the continuous engagement of the NKG2D receptor in steady 
state regulates its activity (53), suggest that the use of inducible 
systems of deletion or overexpression would be a better experi-
mental choice.

Although the NKG2D-mediated crosstalk of myeloid cells 
and NK cells is relatively well understood, the outcome of the 
interaction of the different NKG2D-expressing T cell subsets 
with NKG2DL+ myeloid cells remain largely unknown. In 
many diseases, especially in autoimmune disorders, that are 
often associated with aberrant activation of myeloid cells, the 
presence of NKG2D-expressing T cells is well documented. It 
would be of great value to gain understanding of the relative 
contribution of NKG2D-expressing T cells in these settings 
and the involvement of NKG2D, especially for therapeutic 
targeting. For this purpose, mice carrying a conditional 
NKG2D deletion specifically in T  cells would be valuable 
tools. In addition, novel populations of tissue-resident lym-
phocytes are emerging and their importance in regulating 
inflammation, tissue homeostasis, and regeneration is now 
eminent. Their topological position and fast responses to tis-
sue damage, in cooperation with the myeloid compartment, 
along with the fact that NKG2DLs are the messengers of dam-
age, impose them as attractive candidates that might utilize 
the NKG2D system to perform their functions. It is known 
that such scenarios operate in skin with tissue-resident γδ 
T cells being major players. Other barrier sites are awaiting 
further evaluation in the context of the NKG2DL/NKG2D 
crosstalk.
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