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Polymorphisms in miRNA binding 
sites involved in metabolic diseases 
in mice and humans
Pascal Gottmann1,2, Meriem Ouni1,2, Lisa Zellner1,2, Markus Jähnert1,2, Kilian Rittig3,4, 
Dirk Walther5 & Annette Schürmann1,2,4,6 ✉

Type 2 diabetes and obesity are well-studied metabolic diseases, which are based on genetic and 
epigenetic alterations in combination with an obesogenic lifestyle. The aim of this study was to test 
whether SNPs in miRNA-mRNA binding sites that potentially disrupt binding, elevate the expression of 
miRNA targets, which participate in the development of metabolic diseases. A computational approach 
was developed that integrates transcriptomics, linkage analysis, miRNA-target prediction data, and 
sequence information of a mouse model of obesity and diabetes. A statistical analysis demonstrated 
a significant enrichment of 566 genes for a location in obesity- and diabetes-related QTL. They are 
expressed at higher levels in metabolically relevant tissues presumably due to altered miRNA-mRNA 
binding sites. Of these, 51 genes harbor conserved and impaired miRNA-mRNA-interactions in human. 
Among these, 38 genes have been associated to metabolic diseases according to the phenotypes of 
corresponding knockout mice or other results described in the literature. The remaining 13 genes (e.g. 
Jrk, Megf9, Slfn8 and Tmem132e) could be interesting candidates and will be investigated in the future.

Obesity, the excessive accumulation of body fat, is a lifestyle-driven as well as genetically heritable disorder, and 
a major risk factor for secondary diseases like type 2 diabetes (T2D)1. In the past, several studies identified can-
didate disease genes by human genome-wide association studies (GWAS) or linkage analysis of inbreed mouse 
strains2.

Most studies identified different types of variants, which lead to an impaired protein function or different 
regulatory effects. However, investigations with respect to genomic binding sites of other translational regulators, 
such as non-coding RNAs, are still in an early state for obesity and type 2 diabetes. miRNAs are small non-coding 
RNAs of a length of 19-24 nucleotides that alter the expression or translation of the corresponding target genes3. 
The target prediction of miRNAs is still inaccurate, resulting in a high false-positive rate. The combination of 
different prediction tools4, transcriptomics5,6, pathway analysis and the examination of a biologically meaningful 
context is important to lower the false-positive rate7. In our previous study, the validity of an integrative approach 
was confirmed and led to the identification of miR-31 and the elucidation of its role in adipogenesis, also show-
ing that results obtained for mice were successfully translated to human8. We have also demonstrated that the 
combination of a computational framework and a linkage analysis of several mouse strains, that differ in their 
diabetes susceptibility, is indeed sufficient to narrow down the critical genomic region and identify genes, which 
are relevant for the metabolic syndrome9.

The aim of this study was to investigate to which extent genetic variants localized in quantitative trait loci 
(QTL) result in a loss of miRNA-mRNA binding, thereby affecting the expression of target genes in metabolically 
relevant tissues of obese and diabetic New Zealand Obese mice (NZO). The evidence for the putatively affected 
interactions to have an impact on disease development was further strengthened by comparing the data with 
altered miRNA-mRNA-interactions detected in humans and performing several statistical enrichment analyses.
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Results
Comparison of genetic variants in miRNA-mRNA binding sites and transcriptome data.  In 
order to identify SNPs within miRNA binding sites of mRNAs that may result in their dysregulated expression 
and thereby having an effect on metabolic diseases, a computational approach was developed (Fig. 1a (1)). We 
hypothesize that genetic variants in miRNA binding sites to mRNAs disrupt miRNA binding and, thus, result in 
a higher gene expression that leads to a metabolic phenotype (Fig. 1a (2-3)). The computational framework com-
bined obesity and diabetes QTL, transcriptome data, miRNA-target-prediction tools and sequence information 
on SNPs (single nucleotide polymorphisms). The polymorphisms were then examined for conservation in human 
and evaluated for metabolically relevant phenotypes detected in knockout mice, GWAS, and eQTL. (Fig. 1a 
(4-5)). Finally, it was investigated whether the resulting set of genes with potentially modified miRNA-mediated 
expression are enriched in genes that are already known to be associated with a metabolic phenotype in knockout 
mice (Fig. 1a (6)). This not only confirms the relevance of our filtering steps for metabolic diseases, but allows the 
identification of novel promising candidates which contribute to metabolic disorders.

Between lean, diabetes-resistant B6, and obese, diabetes-susceptible NZO mice a total of 7,252,111 SNPs were 
identified. Taking data from miRBase22 and selecting for miRNAs that had been detected with a read count of 
>5 resulted in 644 miRNAs which are expressed in different cell types and tissues. According to the miRanda 
prediction program10, these 644 miRNAs (Fig. 1b (1)) have 13,332,803 putative binding sites in 53,919 transcripts 
out of 103,734 annotated transcripts in mouse (Fig. 1b (2)). In order to predict targets of a miRNA with a high 
probability of specificity we have recently shown that after applying five different tools, at least three have to give 
the same result8. Using this 3-of-5 target prediction approach for the 644 miRNAs, reduced the number of puta-
tive interactions to 1,619,909 with 11,770 transcripts (Fig. 1b (3)). Within these interaction sites 46,198 SNPs were 
identified in the NZO genome (Fig. 1b (4)), which in theory, might lead to an impaired binding of a miRNA to the 
mRNA and thereby its upregulation. To test this, we intersected the gene set with SNP containing binding-sites 
with the 2,758 genes upregulated in metabolically relevant tissues of NZO mice (Fig. 1b (5)), resulting in 1,114 
candidates. The hypergeometric test confirmed that this intersection is not due to randomness (p-value: 2.2e-159; 
representation factor 2.0) supporting our hypothesis. Of these, 459 were upregulated in gWAT, 243 in BAT, 237 in 
liver and 175 in skeletal muscle (Fig. 1b (5)). Focusing on genes located in QTL reduced the numbers to 187 genes 

Figure 1.  Conceptual overview of the study design (A) and workflow (B) for the identification of 
polymorphisms in miRNA-mRNA binding sites. (a) (1) Identification of genomic variants in miRNA-mRNA 
binding sites. (2-3) Comparison of genes with an impaired miRNA binding site with genes that have higher 
expression levels in tissues of NZO mice. (4) Conservation of polymorphisms between mice and humans. 
(5) Scanning for metabolically relevant genes that have an impaired miRNA binding site and a conserved 
polymorphism. (6) Enrichment analysis of results. (b) (1) miRNAs expressed with a readcount >5 according 
to miRBase22 were filtered. (2) Results of a genome-wide screen for miRNA-mRNA binding sites as predicted 
by the miRanda tool. (3) Reduction of the number of possible miRNA-mRNA-interactions by using several 
prediction tools. (4) Identification of SNPs within miRNA-mRNA binding sites. (5) Comparison of genes 
carrying SNPs within miRNA-mRNA binding sites with transcriptome data of brown adipose tissue (BAT), 
gonadal white adipose tissue (gWAT), skeletal muscle and liver. (6) Venn diagram illustrating the number of 
genes located in QTL per tissue exhibiting higher expression levels and a SNP in a miRNA-mRNA binding site. 
Tissue images adapted from: https://smart.servier.com/.
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in gWAT, 93 in BAT, 92 in liver and 78 in muscle (Fig. 1b (6)). These data might confirm previous findings that 
miRNAs action occurs in one or a few tissues rather than ubiquitously11. About 30-50% of the genes are upregu-
lated in a tissue-specific manner; only 10 upregulated genes, that are located in QTL, show the same effects in the 
four examined tissues and could be regulated by the same miRNAs (Fig. 1b (6)).

SNP-carrying miRNA-mRNA binding sites are enriched in obesity and diabetes QTL.  In order 
to focus on genomic variants that can be linked to obesity and type-2-diabetes, we analyzed those SNPs that are 
located in eight obesity and six diabetes QTL, which partially overlap9. The circos plot shown in Fig. 2a depicts 
the chromosomal position of the QTL indicated in different color codes according to the listed traits (e.g. blood 
glucose). The plot also includes the position of genes within the QTL, which are expressed at higher levels in four 
tissues of NZO mice; the inner circle shows the SNP-frequency. Among 459 variants located in miRNA-mRNA 
binding sites, a significant enrichment (p-value: 0.0016) of genes that were upregulated in gWAT and at the 
same time located in obesity or diabetes QTL (Fig. 2a,b) was observed (187 genes). For the skeletal muscle, a 
significant enrichment (p-value: 0.023) was detected for 78 genes with SNPs among the 175 genes exhibiting a 
higher expression (Fig. 2a,c), whereas the upregulated genes of the liver exhibited only a trend for an enrichment 
(p-value: 0.048) (Fig. 2a,d). The genes harboring a SNP and being upregulated in BAT were not enriched in QTL 
(Fig. 2a,e; p-value: 0.197). After correction for multiple testing, the enrichment in gWAT and skeletal muscle was 
still significant (p-values: 0.006, 0.046 respectively); liver genes showed a trend for enrichment (p-value: 0.064). 
However, specific obesity QTL on chromosomes 3, 11, and 17 displayed a significant enrichment of genes that 
are expressed at higher levels in BAT of NZO mice and carry SNPs in putative miRNA-mRNA binding sites 
(Supplementary Table S1). A similar example of a QTL specifically enriched in the number of potentially dis-
rupted miRNA-mRNA binding sites was detected for liver on chromosome 19 (p-value: 0.000274; Supplementary 
Table S1). Thus, the observed significant enrichments in QTL suggest a link between polymorphisms in miRNA 
binding sites, causing an expression at a higher level of miRNA target genes with metabolically relevant traits.

mRNAs with SNPs in miRNA binding sites are enriched for metabolic pathways.  It is well known 
that one miRNA typically targets several transcripts, which can be linked to the same pathway12. Therefore, a 
pathway enrichment analysis of target genes, harboring a genetic variant in specific miRNA-mRNA binding sites, 
was performed. This approach revealed several miRNAs (Fig. 3, blue) affecting target-genes, which, as a set, are 

Figure 2.  Circos plot summarizing the highly abundant transcripts in tissues of NZO compared to B6 mice 
and which are located within obesity or diabetes QTL. (a) From outside to inside the plots depict chromosomal 
positions, specific QTL indicated by different color codes, upregulated genes (gWAT, muscle, liver and BAT) 
and the SNP-frequency. (b–e) Contingency tables of Chi-square tests evaluating the enrichment of upregulated 
genes with SNPs in a miRNA binding site located in QTL (values in brackets are expected at random).
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enriched for metabolically relevant pathways. In total, 14 targets of 13 miRNAs were found enriched in nine path-
ways by a p-value cutoff of <0.05 (Fig. 3; Supplementary Fig. S1).

In gWAT, miR-98-5p targets five, and miR-29b-5p 15 genes with mutated binding sites and differential 
expression behavior. A KEGG pathway enrichment analysis returned as top-hits ‘chemokine signaling’ for the 
miR-98-5p target gene set, and ‘Fc gamma R-mediated phagocytosis’ for the miR-29b-5p gene set. The poten-
tial pathway associations are tied to the genes Dock2, which is present in both target sets, Ccr7, is targeted by 
miR-98-5p, and Inpp5d, is targeted by miR-29b-5p (Supplementary Fig. S1). Even though statistical significance 
could not be established, as many potential pathways were tested necessitating multiple-testing correction with 
p-BH = 0.07 for miR-98-5p, and 0.038 for miR-29b-5p, respectively, a potential functional link to inflamma-
tion and thereby to insulin resistance processes may perhaps be explained by these target relationships13,14. 
Both miR-1843b-5p and miR-1224-5p target Atp1a4 and Itpr3, which were connected to cGMP-PKG signaling 
(Supplementary Fig. S1), another typical pathway impaired in diabetes and obesity15,16. The products of the miR-
3064-5p targets Lamc2 and Col11a2 are located in the extracellular matrix and involved in the PI3K-Akt signaling 
pathway (Fig. 3), which is impaired in insulin resistance17.

Altered expression of Abca3 and Sorl1 in the liver is related to lipid-GO-terms, Al464131/Myorg to metabolic 
processes and each of the transcripts is a target of four, five or one different miRNAs, respectively (Supplementary 
Fig. S1). This observation is in line with a higher ectopic fat storage in the liver of NZO in comparison to that of 
B6 mice18. Arsg and Hsd17b7, which are expressed at higher levels in NZO livers were linked to the GO-Term 
metabolic processes and might participate in metabolic diseases.

Comparison of impaired mouse miRNA-mRNA-interactions with corresponding human 
data.  It is well known that 3′UTR sequences, i.e. the regions of miRNA binding sites, in mice and humans are 
relatively variable. Therefore, an analysis was performed to identify conserved miRNA-mRNA binding in mouse 
and human. In NZO mice, impaired miRNA-mRNA binding sites, located in QTL and causing a higher expres-
sion of the miRNA-target genes in different tissues, were compared to human data listed in the MirSNP-database19 
(Fig. 4a (1-2)). In total, 352 out of 644 miRNAs were found conserved between mouse and human. (Fig. 4a (3-4)). 
Secondly, the 316 mouse genes that are targets of the 352 conserved miRNAs, located in QTL and upregulated in 
NZO tissues, were compared to 799 human genes harboring a SNP in a miRNA-mRNA binding site according to 
the MirSNP-database (Fig. 4a (5)). This approach resulted in 51 genes, which are supposed to exhibit an affected 
and conserved interaction with 61 miRNAs. Among the 51 targets, 23 were expressed at higher levels in gWAT, 10 
in BAT, 11 in liver, and 18 in skeletal muscle of NZO mice (Fig. 4a (6)). Some genes showed an overlapping differ-
ential expression in two to three tissues; one gene, Tox4, was affected in all four tissues (Fig. 4b). Similarly, the 61 
miRNAs show tissue specificity, as indicated in the Sankey diagram by different colors (Fig. 4b; turquoise, pink, 
orange, and red). Of these, 22 miRNAs in gonadal white adipose tissue are supposed to interact with 17 mRNAs 
via in total 34 interactions. In liver, 8 miRNAs could theoretically target 9 mRNAs via 15 binding sites. In skeletal 
muscle 12 miRNAs could affect 12 mRNAs via 17 interactions, and in brown adipose tissue 3 miRNAs had 5 
interactions with 4 mRNAs. In sum, this results in 71 interactions, which are tissue specific (Fig. 4b; turquoise, 

Figure 3.  Pathway enrichment analysis of miRNA-targets in muscle that harbor genomic variants in the 
miRNA-binding site. Solid lines mark a miRNA-target-gene interaction and dashed lines relate genes to 
indicated pathways. Blue depicts miRNAs, light blue genes and white pathways.
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pink, orange and red marked rows). In total, 2-3 miRNA-mRNA-interactions affect gene expression in two tissues 
(Fig. 4b; yellow, purple, blue, and green), while one interaction affects expression in all four tissues (grey).

We next used human-derived differential expression data of adipose tissue, skeletal muscle and liver which 
were described in the literature in order test to which extent putative miRNA-mRNA interactions affect mRNA 
levels. Concerning the gWAT, we evaluated the expression of the 23 upregulated transcripts identified in gWAT 
of NZO mice with data of adipose tissue of 6 obese non-diabetic, 14 obese diabetic, 16 healthy and 19 diabetic 
patients20,21. Of 23 candidates which exhibit SNPs in miRNA-mRNA binding sites in the human genome, eight 
showed differential expression, at least in one comparison (Supplementary Table S5). For muscle tissue, human 
expression data were described for 47 healthy, 26 glucose-intolerant and 45 diabetic patients22. Of 18 identi-
fied candidates, 11 were measured by Gallagher et al., of which only one (ITPR3) was differentially expressed 
(Supplementary Table S6). For liver tissue, Ahrens et al.23 described expression data of 14 healthy people, 27 
healthy obese, 14 patients with liver steatosis, and 18 with NASH. From 11 target genes identified in the actual 
study, 5 showed a differential expression at least in one comparison (e.g. JRK, SORL1, TOX4 and VPS52, which 
were higher abundant in the liver of patients with liver steatosis or NASH; Supplementary Table S7). However, 
the fact that not all of the candidates identified in our actual approach showed an altered expression in the corre-
sponding human tissues might be explained by the low sample size that was used in the indicated studies and the 
heterogeneity of the human genome.

To clarify, which of the detected target genes have been described to be involved in metabolic diseases before, 
the literature (PubMed), the IMPC and MGI databases, GWAS, and eQTL from GTEx were screened. The IMPC 
and MGI databases list phenotype data of knockout mice. Of 51 genes, 35 specific gene knockout mice have been 
characterized and 13 had a metabolically relevant phenotype (Table 1), which corresponds to an expression at 

Figure 4.  Identification of conserved polymorphisms in miRNA-mRNA binding sites. (a) Schematic 
illustration of the steps used for the identification of altered miRNA-mRNA binding sites that are conserved 
in mice and human. (1) and (2) indicate the prediction tools and methods used for mouse and human data. 
(3) Selection of miRNAs in mice and humans, whose binding site to mRNAs are affected and (4) conserved. 
(5) Comparison of miRNA-target-genes with polymorphisms in the miRNA-mRNA binding sites in mice 
and human. (6) Number of target genes upregulated in the indicated tissues (gWAT: gonadal white adipose 
tissue; BAT: brown adipose tissue). (b) Sankey diagram illustrating the relationship between conserved 
polymorphisms of miRNA-mRNA binding sites and their corresponding miRNAs in the indicated tissues. 
Lines between different fields determine the tissue-specific interactions. Numbers within the lines indicate how 
many conserved interactions are affected by polymorphisms. (c) Venn-diagram illustrating the comparison of 
metabolically relevant genes, according to GWAS (orange), eQTL (green), gene knockout (IMPC/MGI; blue) 
and PubMed (yellow).
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Gene symbol Database
Knockout 
phenotype Publication

Linked 
to 
GWAS

Linked 
to eQTL Associated miRNA

Ablim1 IMPC/MGI/PubMed abnormal body 
weight

GWAS: increased body 
weight (23251661) – – miR-130b-5p miR-301a-5p

Adamtsl1 — — — X — miR-378g

Amotl1 IMPC/MGI
metabolically 
irrelevant 
phenotype

— — — miR-150-5p miR-342-5p

Arhgap30 IMPC/PubMed
lower fatmass 
/ immune 
phenotyp

a hub gene in an 
adipose coexpression 
module associated 
with circulating 
triglycerides 
(23217153)

— — miR-30a-3p miR-148a-5p 
miR-204-5p

Arhgef40 IMPC abnormal body 
fat amount — X — miR-30a-3p

C4b IMPC/MGI/PubMed

impaired 
glucose 
tollerance 
(knockout 
higher glucose)

upregulated in skeletal 
muscle of T2D patiens 
(27847319)

— — miR-301a-5p

Cacna1i IMPC/PubMed
metabolically 
irrelevant 
phenotype

identified in the 
diabetes interactome 
a molecular signature 
associated with T2D-
related comorbidity 
and symptoms 
(27752041)

— — miR-22-5p miR-760

Ccnf MGI
metabolically 
irrelevant 
phenotype

— — — miR-30c-3p

Cd14 MGI/PubMed

abnormal 
cytokine 
secretion/level/
decreased body 
fat

CD14 knockout: 
lower adiposity 
and hepatosteatosis 
(18761356)

— — miR-296-3p

Cd84 IMPC/MGI decreased fat 
mass — — — miR-138-3p

Clmp/ Acam MGI/PubMed decreased body 
weight

involved in adipocytes 
maturation and 
development of 
obesity (15563274)

— — miR-138-5p

Cmya5 PubMed — methylation associated 
to obesity (29064478) — — miR-26a-5p miR-130b-5p 

miR-301a-5p

Col11a2 IMPC/MGI/PubMed
decreased 
circulating 
triglyceride level

methylation associated 
to diabetes (27477082) X X miR-193a-5p

Ddr1 MGI/PubMed
metabolically 
irrelevant 
phenotype

methylation associates 
with maternal pre-
pregnancy obesity 
(30773972), promotes 
Th17 migration in 
3D collagen and 
is involved in p38 
activation (28198034)

— — miR-148a-5p miR-331-3p

Dock5 MGI/PubMed
metabolically 
irrelevant 
phenotype

obesity gene 
(22595969) X — miR-486-3p miR-3064-5p

Ell2 IMPC
metabolically 
irrelevant 
phenotype

— X — miR-34c-5p miR-381 miR-
449a

Enah MGI decreased body 
weight — X — miR-323a-5p

Gpr179 MGI
metabolically 
irrelevant 
phenotype

— — — miR-92a-5p

Iba57 PubMed —

GWAS: trend for 
an association with 
antipsychotic-
induced weight gain 
(26323598)

— X miR-4459

Ipo9 IMPC
metabolically 
irrelevant 
phenotype

— X —
miR-323a-5p miR-342-5p 
miR-370 miR-664-3p miR-
744-5p

Itk MGI
metabolically 
irrelevant 
phenotype

— — — miR-149-5p miR-4731-5p

Continued
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Gene symbol Database
Knockout 
phenotype Publication

Linked 
to 
GWAS

Linked 
to eQTL Associated miRNA

Itpr3 MGI/PubMed
metabolically 
irrelevant 
phenotype

methylation linked to 
BMI (29998543) X — miR-34a-5p

Jrk — — — — — miR-455-3p

Kif1a MGI/PubMed decreased body 
weight

regulator of insulin 
signalling (26877087) — — miR-204-3p miR-3184-5p

Loxl4 IMPC/PubMed
improved 
glucose 
tolerance

upregulation in 
obesity, inhibition 
attenuated body 
weight gain 
(26035864)

X — miR-708-5p

Mapt MGI/PubMed increased lean 
mass/body fat

brain insulin resistance 
in Alzheimer’s disease 
(26816596)

— — miR-204-5p

Megf10 PubMed — GWAS: diabetes 
(22139925) — — miR-3065-3p

Megf9 — — — — — miR-143-5p miR-877-5p

Msi2 PubMed — methylation linked to 
T2D (28542303) X — miR-138-5p

Nlrp1b MGI/PubMed
metabolically 
irrelevant 
phenotype

obesity induced 
inflammation 
(26771112)

— — miR-129-5p miR-486-5p

Plk2 IMPC/MGI

metabolically 
irrelevant 
phenotype/
decreased body 
weight

— — — miR-23b-5p

Plxdc1 PubMed — eQTL in GWAS 
(28475862) — — miR-296-3p miR-3064-5p

Ppfia4 — — — — — miR-136-5p

Ppp1r10 MGI
metabolically 
irrelevant 
phenotype

— — X miR-455-3p

Prr11 — — — — — miR-193a-5p miR-193b-5p

Prune2 IMPC/PubMed decreased total 
body fat

associated to 
hexadecanoic acid 
(31281828)

— — miR-21-3p miR-30c-3p miR-
378g miR-4459

Qsox1 IMPC/MGI/PubMed
metabolically 
irrelevant 
phenotype

linked to obesity-
derived effects on the 
placenta (28125591); 
protein upregulated in 
WAT of diabetic mice 
(27995753)

— — miR-28-5p

Rhpn1/ Grbp IMPC; PubMed
impaired 
glucose 
tollerance

binds to the glucose 
response element and 
regulates genes for 
lipogenesiss (9873057)

— — miR-193b-5p

Scube1 MGI
metabolically 
irrelevant 
phenotype

— — — miR-23b-5p

Sh2d4b — — — — X miR-379-5p

Slc16a6 IMPC/PubMed
metabolically 
irrelevant 
phenotype

hepatic ketone 
body metabolism 
(22302940)

— — miR-542-3p miR-592

Slfn5 — — — — —
miR-92a-5p miR-125a-3p 
miR-185-3p miR-320a 
miR-640

Slfn8 — — — — — miR-574-5p

Snx19 PubMed —

hub gene in an 
obese sub-network 
(25270054); 
knockdown decreased 
insulin secretion 
(24843546)

X — miR-361-3p miR-3065-3p

Sorl1 IMPC/MGI/PubMed decreased fat insulin receptor 
signaling (27322061) — — miR-10a-3p miR-185-5p miR-

193b-5p

Stk10 MGI
metabolically 
irrelevant 
phenotype

— — — miR-30c-3p

Synj2 MGI/IMPC increased body 
weight — X — miR-490-5p

Continued
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higher levels in obesity or diabetes. As all mice were characterized on a standard diet and many knockout mice 
only show an effect on body weight or glucose homeostasis under high-fat diet conditions, it is very well possi-
ble that some more genes are involved in metabolic control. Chi-square tests confirmed that the candidates are 
significantly enriched for genes with a metabolic phenotype upon their deletion in mice (8 genes listed in IMPC; 
p-value: 0.016; odds ratio: 2.81; 7 genes listed in MGI; p-value: 0.005; odds ratio: 3.24 Table 2a,b).

Seven of the 22 genes, which did not show a metabolically relevant phenotype in the respective knockout 
mice were associated to obesity or diabetes in the literature as indicated in PubMed. The comparison with other 
databases allowed us to link some of the 51 conserved genes to metabolic dysfunctions. Thirteen were identified 
by GWAS24 and associated to metabolically relevant phenotypes (Table 1; Supplementary Table S2), four were 
detected in eQTL (Table 1; Supplementary Table S3), and for nine genes, a specific interaction to a miRNA has 
been validated by hit-clips experiments (Table 1; Supplementary Table S4). These latter findings further con-
firmed that our results and their likely relevance in metabolic disease are indeed supported by experimentally 
validated interactions and associations. The Venn diagram in Fig. 4c shows the numbers of genes, which were 
identified in one or more of the listed screens. The fact that a high percentage of genes carrying conserved pol-
ymorphisms in miRNA-mRNA binding sites in mice and human appear in one or more of the databases that 
document their biological relevance, together with the statistical evidence described above, demonstrates that 
our screen resulted in a strong enrichment of metabolically relevant genes. Thus, it can be speculated that also 
the remaining 13 genes (e.g. angiomotin like 1, Amotl1; proline rich 11, Prr11; or schlafen5, Slnf5 and Slnf8) may 
also be relevant and might be involved in metabolic diseases, which has to be evaluated in the future (Table 1).

Network analysis linking affected miRNA-mRNA-interactions to altered metabolic pheno-
types.  In order to build comprehensive networks summarizing our main findings, we associated genetically 
affected miRNA-mRNA-interactions with (i) altered metabolic phenotypes observed after deletion of specific 
target genes (IMPC and MGI databases), (ii) obesity and T2D GWA studies (light grey) and (iii) eQTL studies 
(grey). The loss of miRNA binding sites for 36 miRNAs (Fig. 5; blue) might be responsible for the dysregulation of 
26 genes (light blue), which have an impact on metabolically relevant phenotypes (white) as demonstrated by the 

Gene symbol Database
Knockout 
phenotype Publication

Linked 
to 
GWAS

Linked 
to eQTL Associated miRNA

Tmem132e — — — — — miR-23a-5p miR-485-5p 
miR-505-5p

Tox4 IMPC
decreased HDL 
chol; decreased 
body fat

— — — miR-324-3p

Usp13 IMPC abnormal body 
fat content — — — miR-4459

Vps52 MGI
metabolically 
irrelevant 
phenotype

— X — miR-671-5p

Table 1.  Genes harboring polymorphisms in miRNA-mRNA binding sites, which are conserved between mice 
and humans, expressed at higher levels in NZO mice and their link to indicated databases.

Filtered Others
Marginal 
Row Totals

a

Other phenotype 13 (17) 5102 (5098) 5115

Metabolic phenotype 8 (4) 1116 (1120) 1124

Marginal Column 
Totals 21 6218

6239 
(Grand 
Total)

P-value: 0.016

Odds ratio: 2.81

b

Other phenotype 18 (22) 14461 (14457) 14479

Metabolic phenotype 7 (3) 1738 (1742) 1745

Marginal Column 
Totals 25 16199

16224 
(Grand 
Total)

P-value: 0.005

Odds ratio: 3.24

Table 2.  Contingency table of a Chi-square test of genes with polymorphisms in miRNA binding sites located 
within QTL. Testing for an enrichment of genes with metabolically relevant phenotypes of knockout mice 
according to the IMPC (A) and MGI databases (B). Numbers describe observed occurrence, numbers in 
brackets indicate expectations if the hits would be random.
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Figure 5.  Networks of miRNA binding sites (blue), harboring a polymorphism in 26 target genes (light blue) 
that are associated to a metabolically relevant phenotype as indicated in the corresponding knockout mouse 
(white), the phenotype in GWAS (light grey) or an eQTL (grey). If experimental evidence for a miRNA-mRNA 
binding site exists, the edge is illustrated in red. (a) Association of Arhgef40 to abnormal body fat amount, Cd14 
to abnormal cytokine secretion and Dock5 to glucose homeostasis. (b) Complex network linked to an altered 
glucose tolerance and increased fat mass. (c) Network, divided in subnetworks related to (i) increased body fat 
and glucose levels, (ii) GWAS of BMI and obesity, (iii) increased body weight and (iv) to cholesterol GWAS and 
eQTL of visceral adipose tissue or muscle.
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corresponding knockout mouse. The network illustrates that these 26 genes, which are expressed at higher levels 
in NZO might be linked to a loss of a miRNA-mRNA binding site and thereby contribute to obesity and glucose 
homeostasis (Fig. 5).

Three simple networks (Fig. 5a) include a single interaction of a miRNA to a target gene. The loss of the bind-
ing site of miR-30a-3p to the target-gene Arhgef40 is possibly causing an abnormal body fat content and appeared 
in GWAS. Cd14 has a disrupted miRNA binding site for miR-296-3p and might cause an abnormal cytokine 
secretion. The third network links impaired binding sites of miR-486-3p and miR-3063-5p to Dock5, which is 
associated to glucose homeostasis according to GWAS. The fourth network includes two small sub-networks 
with single miRNA-mRNA-interactions that can be theoretically linked to an altered binding site of miR-138-3p 
in Cd84. Upregulation of Cd84 causes increased fat mass. This phenotype can also be associated to Sorl1, which 
is expressed at higher levels in NZO mice. Those expression changes might be linked to a loss of the binding sites 
to miR-10a-3p, miR-185-5p and miR-193b-5p. Binding sites of miR-193b-5p are not only impaired to the Sorl1, 
but also to Rhpn1 mRNA, which can result in an impaired glucose tolerance. Similarly, glucose tolerance and liver 
inflammation might be affected by C4b, which is higher abundant in NZO tissues possibly via the loss of a miR-
301a-5p binding site (Fig. 5b).

The fifth network can be divided into four smaller subnetworks (Fig. 5c). The first subnetwork consists of 
miR-21-3p, miR-378g, miR-30c-3p and miR-4459 that lost a miRNA-binding site in Prune2, which might lead 
to adiposity, as the Prune2 knockout mouse showed decreased body fat mass. Tox4 is linked to the same pheno-
type by the loss of a miR-324-3p binding site. Upregulation of Tox4 might contribute to a higher level of blood 
glucose (Fig. 5c). The second and biggest subnetwork indicates that nine genes, reported in GWAS for BMI 
and obesity, were more highly abundant in NZO mice, which might be due to the loss of the binding sites of 15 
miRNAs (Fig. 5c). The third subnetwork (Fig. 5c) consists of the genes Clmp, Col11a2, Enah, Kif1a and Plk2, 
whose elevated expression might lead to higher body weight could theoretically be caused by impaired miRNA 
binding (miR-138-5p, miR-193a-5p, miR-323a-5p, miR-204-3p/miR-3184-5p and miR-23b-5p). According to 
the phenotype of Col11a2−/− mice, expression of Col11a2 at higher levels in NZO mice might increase the blood 
triglyceride levels. In humans, Col11a2 has been linked to LDL cholesterol levels in a previous GWA study25. As 
Col11a2 protein is important for extracellular matrix26, muscle eQTL data suggest that SNPs within the miRNA 
binding site is correlated to altered expression of Col11a2.

In addition, Ingenuity Pathway Analyses (IPA) identified two networks related to inflammation 
(Supplementary Fig. S2). The first network links 12 genes to IFNG (interferon gamma) and IL10 (interleukin 10), 
the second network provides connections between 13 genes related to PRKAA1 (AMP-activated protein kinase 
catalytic subunit alpha-1) and IL1B (interleukin-1 beta). Although 18 genes showed no metabolically affected 
phenotype in response to their deletion in mice, underlined with dashed lines, IPA networks connected 12 of 
them to inflammation pathways.

Discussion
The application of a comprehensive bioinformatics approach resulted in the identification of 51 genes exhibiting 
genetic variants in miRNA-mRNA binding sites, which are conserved between mouse and human, and which are 
expressed at higher levels in metabolically relevant tissues in obesity and T2D. Among these affected targets, 38 
have already been linked to metabolic diseases based on the respective knockout phenotypes, literature, GWAS, 
and eQTL databases, whereas 13 targets are of particular interest, because their roles for the development of obe-
sity and T2D have not been described yet.

miRNAs suppress gene expression by binding to the 3′-untranslated region of their specific target mRNA3. 
SNPs located in the sequence of miRNA target sites can affect the binding of miRNAs to mRNAs and thereby 
result in higher expression levels. We aimed to identify genes that are dysregulated in obesity and T2D via SNPs 
in miRNA-mRNA binding sites in mice and to translate these findings to humans. Thus, the study was based 
on results collected from mice, including expression profiles, QTL and sequencing data, which were combined 
with several mice and human databases providing information on miRNA-mRNA binding sites and miRNA 
target prediction tools. Genes, which were (i) more abundant in adipose tissues, liver, and muscle of obese and 
diabetes-susceptible NZO mice than in lean B6 mice, and (ii), carried a SNP in miRNA-mRNA binding sites, 
and (iii), were mapped to obesity and diabetes QTL, which were identified in a backcross of NZO and B6 mice, 
appear to participate in the complex (dys)regulation in states like obesity and T2D9. Several of these genes seem 
to be relevant in human as indicated by (iv), filtering human databases for SNPs in miRNA binding sites, and (v), 
focusing on those miRNAs that bind to the orthologous targets in human compared to mice, and are conserved 
between mice and humans. Interestingly, about 75% of the genes, which we identified to be affected by potentially 
losing their regulation via miRNAs, have been associated to obesity and T2D according to the corresponding 
phenotypes of knockout mice, as reported in the literature or in databases. This observation clearly supports our 
assumption that complex phenotypes of metabolic diseases are indeed, beside others, mediated via the loss of 
miRNA-binding to a specific target. In addition, it might be interesting to elucidate the specific function of the 13 
remaining genes for which no knockout mouse or other functional analysis have been described so far.

In an earlier targeted approach, 10 SNPs located in diabetes-related miRNA-target-sites, which were found 
associated with the risk of T2D in a Chinese Han population, were identified27. The authors detected a variant in 
the insulin receptor (INSR) gene, in the acyl-CoA synthetase 1 (ACSL1) gene and the fatty-acid-binding protein 
2 (FABP2) gene to be associated with T2D. Later, the same group identified SNPs in the 3′UTR of apolipoprotein 
L6 (APOL6) and FABP2 to associate with traits of the metabolic syndrome28. Up to now, only one bioinformatics 
approach for the identification of variants in miRNA binding sites associating with T2D was performed29. A data-
base for SNPs in miRNA-mRNA binding sites was compared with results obtained by genome-wide association 
studies (GWAS), leading to the identification of three target genes, interleukin 7 receptor (IL7R), VPS26 retromer 
complex component A (VPS26A) and high mobility group 20 A (HMG20A). However, to our knowledge, the 
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present study is the first comprehensive analysis of variants in miRNA-target-sites in a well characterized mouse 
model for obesity and T2D, with a translation of results to humans. The strength of our study is the inclusion of 
the differential expression profiles of tissues from healthy and obese mice. This information has not been included 
in earlier studies.

In the current study, a significant enrichment of polymorphisms in miRNA-mRNA binding sites in genes 
expressed at higher levels in gWAT and muscle of NZO mice compared to B6 was identified after correcting 
for multiple testing; liver genes showed a trend for enrichment. To gain insights into the role of genes carrying 
a variant in a miRNA binding site, a pathway enrichment analysis was performed. Dock2 and Inpp5d, which 
exhibit an affected binding of miR-29b are involved in chemokine signaling and Fc gamma R-mediated phago-
cytose (Supplementary Fig. S1), thus, in pathways known to associate obesity with insulin resistance30. Lamc2 
and Col11a2, in which the binding of miR-3064-5p is affected, are involved in the PI3K-Akt signaling pathway 
(Fig. 3), which links the skeletal muscle to impaired insulin resistance17. Currently, direct experimental evidence 
for those impaired interactions is missing. However, the analysis is based on highly significant enrichments and 
transcriptome data, and thus, relies on a solid statistical basis to detect reliable interactions, as already proven in 
a previous study8. In addition, nine genes have been validated by hit-clips studies as targets of specific miRNAs 
(Table 1). False-positive interactions cannot be excluded with our approach, and reporter assays will be crucial 
for further studies.

Besides pathway analysis, network analyses were performed by including information on the phenotype of 
knockout mice as well as results from other screenings for genes exhibiting a variant in a miRNA binding site. 
The impaired binding of miR-324 to the mRNA of the transcription factor Tox4 is likely to increase blood glucose 
level and body fat (Fig. 5a). Tox4 knockout resulted in lower blood glucose levels and lower body fat. Thus, an 
impaired miRNA-mRNA binding would result in the opposite phenotype due to the higher expression. As Tox4 
is expressed at higher levels in all studied tissues of NZO mice, it appears to be an important player in obesity 
and diabetes. Further, it was already shown in a study by Wang et al.31 that miR-324 is linked to adipogenesis, 
which corresponds to the expected phenotype. Expression of Sorl1 and Rhpn1 is affected via a loss of miR-193b 
binding, which can be associated to increased fat mass and impaired glucose tolerance of NZO mice. Expression 
of miR-193b itself was shown to correlate negatively with body mass index32, and circulating miR-193b levels were 
discussed as a biomarker for prediabetes33. Sorl1 was discovered in GWAS of obesity34, underlining its potential 
role in mediating effects driven by miR-193b.

Ingenuity-Pathway-Analysis-based networks connected several genes to two different IFNG and 
IFNB1-dependent inflammatory networks (Supplementary Fig. S2). An additional indirect interaction was 
observed between 13 genes and PRKAA1 (5’-AMP-activated protein kinase catalytic subunit alpha-1), which is a 
catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor and regulator of insulin signalling. 
Three genes (ITK, SLFN5, STK10), which have not been linked to diabetes yet, might interact with IFNG and 
thereby contribute to inflammatory mechanisms usually triggered by obesity.

The described bioinformatics approach used different omics analyses in mice, which cannot be easily per-
formed in humans. However, the use of human databases allowed a translation of mouse data to human, clearly 
demonstrating that SNPs located in cis-regulatory elements e.g. in 3′UTR relevant for miRNA binding contribute 
to complex phenotypes like obesity and T2D.

Materials and Methods
Genome-wide linkage study.  Linkage data of the collective diabetes cross was utilized9. In this study N2 
crosses of NZOxB6 mice, among others were created and metabolically phenotyped and genotyped. The linkage 
between individual traits and genotypes were assessed with the software package R/qtl (version 1.04-8) using the 
Expectation-maximization (EM)-algorithm and 1,000 permutations. In the current study a LOD (logarithm of 
the odds) value above three was set as threshold for a significant linkage between genotype and phenotype. All 
significant regions utilized in the current study are available in Supplementary Table S8.

Array-based transcriptomics of B6 and NZO mice.  Array-based transcriptomics of gWAT, muscle, 
liver, and BAT were performed and analyzed as described in previous studies8,9. The thresholds for differential 
expression between B6 and NZO mice were set to p < = 0.05 and a|log2 fold change|> = 0.7. The results of the 
array analysis are available via accession ID: GSE111142/GSE144257 on GEO.

Detection of polymorphisms between B6 and NZO mice.  Sequence information and mutations in 
NZO mice was downloaded from the Welcome Sanger Institute35.

miRNA-target prediction.  The miRNA-target prediction was performed as described in a previous study8 
by the use of a 3-of-5 approach, meaning that a gene/transcript is considered as target only if at least three out 
of five tested prediction tools predict the interaction. Further, TarBase36 and miRTarBase37 were screened for 
experimentally validated miRNA-mRNA-interactions. Only upregulated miRNA-targets were considered, since 
the loss of a miRNA binding site is expected to result in an upregulation of the target gene. miRNA binding sites 
were defined by miRanda10 and compared to the mm10 genome annotation.

Comparison of mouse miRNA-mRNA-interactions with the MirSNP-database 
(human).  miRNA binding sites altered by SNPs were compared between mouse and human utilizing the 
MirSNP database19. The MirSNP database contains only SNPs annotated in the 1000 human genome project38 and 
relates them to miRNA-mRNA binding sites, identified by miRanda10 using the dataset of the 1921 human mature 
miRNAs annotated in miRBase18. The target prediction used in this study was based on mouse miRNAs anno-
tated in miRBase2239. In order to enable a comparison between the two data sets, first, the human miRBase18 
miRNAs were aligned to the mouse miRBase22 miRNAs. The alignment was performed locally, allowing gaps and 

https://doi.org/10.1038/s41598-020-64326-4


1 2Scientific Reports |         (2020) 10:7202  | https://doi.org/10.1038/s41598-020-64326-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

in addition, a miRNA was defined as being conserved if the 7mer seed-sequence was conserved. In the second 
step, the mouse genes were translated to human genes by use of the R-Package biomaRt version 2.40.140. Finally, 
an interaction was defined as valid for both species if an aligned miRNA had the same target gene.

Statistics and plotting.  P-values were calculated by Student’s t-test with Welch correction. Venn-Diagrams 
were drawn online using the InteractiVenn homepage41. R42 was used as programming language. Circos plots 
were created with R-package RCircos version 1.2.143. The SNP frequency was defined by the number of poly-
morphisms in a region 50 kb down and upstream of the position. The Sankey diagram was created by use of the 
R-packages tidyverse version 1.2.144 and networkD3 version 0.4. Statistical analyses of transcriptomics were per-
formed as already described8. Statistical significance of the intersection between two gene sets was calculated by a 
hypergeometric test assuming a total number of 22,606 genes in the mouse genome (GRCm38.p3). Connections 
between miRNA target genes and pathways were plotted using the R-package circlize version 0.4.845.

Enrichment analysis.  Pathway enrichment analysis of the predicted miRNA-target-genes was performed 
for KEGG46,47 pathways and GO-Terms48 using DAVID, version 6.849 with the number of total mouse genes as 
background. The threshold for significance was set to p-value <0.05. The probability of enrichment in QTL was 
calculated by a Chi-square tests and confirmed by Fisher tests comparing the distribution of upregulated genes 
within and outside of QTL with upregulated genes harboring a genetic variant in a miRNA-mRNA binding site. 
Correction for multiple testing was performed by use of the Benjamini-Hochberg method50. Molecular networks 
obtained with Ingenuity Pathway Analysis, IPA (Qiagen, Germany).

Utilization of the international knockout mouse consortium (IMPC) and the mouse genome 
informatics (MGI) database.  In order to evaluate whether an altered miRNA-mRNA binding site can 
influence metabolic phenotypes, the IMPC and MGI database51,52 were screened. The IMPC uses a standardized 
phenotyping protocol for the knockout mice, which were all generated on the C57BL/6 background, whereas the 
MGI database provides results of knockout mice and cell lines as available from publications. The two databases 
were screened for 12 terms (body weight, lean body mass, circulating triglyceride level, circulating glucose level, 
circulating cholesterol level, total body fat amount, circulating LDL/HDL cholesterol level, circulating free fatty 
acid level, circulating glycerol level, circulating insulin level, glucose tolerance, and fasted circulating glucose 
level) as relevant phenotypes. Due to a non-standardized phenotyping protocol in the MGI database, there are 
13,335 different phenotypes listed. Among those, 350 were manually defined to be relevant for metabolic diseases.

Screening PubMed for genes relevant for metabolic disease.  To identify genes already implicated to 
play a role in metabolic diseases, PubMed (https://pubmed.ncbi.nlm.nih.gov/) was screened with the terms “obe-
sity” and “diabetes” for all genes which exhibit a putatively impaired miRNA binding site in mouse and human.

Comparison of conserved polymorphisms in miRNA-mRNA binding sites with results obtained 
by GWAS for metabolic diseases.  The NHGRI-EBI GWAS Catalog24 was screened by the web-interface 
for all 51 conserved genes harboring an impaired miRNA-mRNA binding site.

Comparison of conserved polymorphisms in miRNA-mRNA binding sites with eQTL data-
sets.  eQTL-Datasets from the Genotype-Tissue Expression project53 (GTEx v7) obtained for visceral adipose 
tissue, liver, and muscle were downloaded and compared to conserved polymorphisms in miRNA-mRNA bind-
ing sites.

Generation of miRNA-mRNA-phenotype networks.  Networks in which miRNAs, genes, phenotypes, 
and eQTL were represented by a node were built by an R-Script (R-Version 3.6.0)42. Edges between miRNA and 
mRNA denote a loss of a miRNA-mRNA binding and edges between gene and phenotype/eQTL denote a connec-
tion between an altered metabolic phenotype. Based on that information an adjacency matrix was built using the 
as.network-function and plotted by use of the plot.network-function available via the statnet R-package Version 
2018.1054.

Downloading and preprocessing of human data.  Human datasets (GSE71416/GSE78721 for WAT; 
GSE18732 for skeletal muscle; GSE48452 for liver) were downloaded from NCBI gene expression omnibus. 
Statistical analysis was performed using the “GEO2R” processing pipeline, which includes a standardized quan-
tile normalization and the calculation of P-values and log2-fold changes55,56. The “GEO2R” pipeline provides a 
R-script downloading a specific dataset, which is normalized for calculating the differentially expressed genes.

Ethical approvement.  All procedures involving animals were approved by the animal welfare commit-
tees of Deutsche Institut fur Ernahrungsforschung (DIfE) and by local ethics committee of the State Agency of 
Environment, Health, and Consumer Protection (State of Brandenburg, Germany), under reference numbers 
V3-2347-21-2012 and 2347-10-2014. They were part of a previous study9.

All procedures were in accordance with the ethical standards of the institutional and/or national research 
committee.

Data availability
The data of transcriptome analysis are available at GEO, accession ID: GSE111142/GSE144257. Linkage data used 
in this publication can be screened via a web-interface at https://146.107.176.32/QTL-DZD-Cross/.
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