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SUMMARY
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association
studies have identified genetic variants for BP, but functional insights into causality and related molecular
mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in
vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of
regulatory variants at BP loci (i.e., ULK4,MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic
association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factormo-
tifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring,
we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9,
SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a
catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a bet-
ter understanding of BP gene regulation.
INTRODUCTION

Blood pressure (BP) is a complex multifactorial polygenic

trait controlled by genetic and environmental factors and physi-

ologic processes (cardiac, vascular, renal, neural, and endocrine

mechanisms). High BP (hypertension) is the leading cause of car-

diovascular disease (CVD), currently affecting an estimated 1.25

billion people and contributing to mortality from non-communi-

cable disease worldwide. The prevalence and absolute burden

of hypertension and CVD are expected to continue to increase.1

Genome-wide association studies (GWASs) have identified ge-

netic variants for BP2–14 that explain one-third of the estimated

30%–50% heritability of BP.3,15 However, most of these genetic

variants map to the non-coding genome.16,17 Identifying mecha-

nisms underlying non-coding genetic association is challenging,

because incompletely annotated regulatory elements are

coupled with highly diverse non-coding functions.18 Specifically,

genetic variants map to cis-regulatory elements (CREs), such as

open chromatin, enhancers, promoters, and RNA genes,16,19

and modulate transcriptional programs by altering transcription

factor binding sites (TFBSs).5,16
This is an open access article under the CC BY-N
GWASs lack functional relevance, because determining

causal variants that manifest phenotypes is difficult.20 Indeed,

most GWAS variants are often not causal themselves, but rather

are associated with causal variants in linkage disequilibrium

(LD).21,22 Yet, prediction tools for variant pathogenicity have

limited accuracy, especially for non-coding loci.23 Recently,

there has been an increasing number of studies wherein re-

searchers integrate fine-mapping approaches with functional

follow-up experiments.24–26 However, fine-mapping, such as co-

localization, has limitations, because it works under the assump-

tion of only a single causal variant,27 which does not reflect the

genetic architecture of complex traits.28,29 Thus, experimental

studies assaying all variants in LD with GWAS variants to define

putative causal variants are paramount.30 Such systems-level

approaches will unravel genetic variants regulating BP genes

and their genomic architecture to advance hypertension geno-

mics and molecular precision medicine.15 Massively parallel re-

porter assays (MPRAs) can accomplish this aim because they

efficiently assess regulatory activities of thousands of genomic

loci by coupling candidate regions to a reporter gene and linking

them to unique molecular identifiers (barcodes).21,31,32 So far,
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:marta.mele@bsc.es
mailto:Philipp.maass@sickkids.ca
https://doi.org/10.1016/j.xgen.2023.100330
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100330&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Resource
ll

OPEN ACCESS
MPRAs have successfully identified likely causal variants for

specific quantitative traits,28,29,31,33 such as coronary artery

disease (CAD)34 and red blood cell traits.33

We systematically test 4,608 genetic variants and identified

hundreds of regulatory variants in two BP-related cell types

that generate the contractile tonus: vascular smooth muscle

cells (VSMCs) and cardiomyocytes (CMs). We find that some

loci show high density of hundreds of regulatory variants at

distinct known and novel BP candidate genes. Most regulatory

variants are in LD to GWAS variants, are enriched in SINE/Alu

elements, disrupt TFBSs of transcription factors (TFs) required

for BP regulation, and are in spatial genomic proximity to cardio-

vascular genes. Developing heuristic scoring with functional

epigenomics defines a set of the most likely causal variants

per locus. Using CRISPR prime editing, we finally link causal

regulatory variants to target genes. Our findings illuminate the

functional genomic architecture of BP genes, and our resource

of BP variants will facilitate the study of responses to hyperten-

sion in cardiac and vascular tissue to accelerate approaches

employing genomic markers for BP and hypertension.15

RESULTS

MPRA identifies regulatory variants at BP loci
We selected 135 previously reported GWAS variants4,5,7,11,35

associated with BP and hypertension and 4,473 variants in high

LD (Figure 1A; Table S1; STAR Methods).36 These variants were

mostly located in introns, promoters, and UTRs (Pearson’s chi-

square test, FDR < 0.05, Figure 1B).37 To determine regulatory ef-

fects, we cloned variantswith their genomic context (±67bp, each

allele represented by 25 barcodes), together with 335 random

sequences (5 barcodes each) and six known regulatory variants

identified previously (100 barcodes each)5,21 in�233,000 uniquely

barcoded plasmids (Figure 1C; STAR Methods).

We conducted MPRAs in VSMCs and CMs, because these

cells generate the contractile tonus regulating BP and they

respond to hypertension-induced structural changes in the car-

diovascular system38–40 (Figures S1A–S1H; Video S1). We first

quantified the ability of each sequence to regulate reporter tran-

scription in either cell type. Regardless of the included allele,

�5% of sequences drove transcription, similar to previous

MPRAs33,41 (Figure 1D). We found 340 (7.37%) variants active

in CMs and 350 (7.6%) in VSMCs. Barcode recovery was lower

in VSMCs, and sequences showed a wider distribution of

MPRA activity compared with CMs (Figures 1D, S1F, and S1I),

likely due to lower transfection efficiency. Forty-four percent of

active variants were shared between cell types (Figure S1J).

We then addressed whether the active sequences were

preferentially located in CREs of cardiovascular-related tissues

by interrogating the overlap with DNase-hypersensitive

sites (DHSs) and chromatin immunoprecipitation sequencing

(ChIP-seq) data from the compendium of epigenomic maps

(EpiMap).42 To test this, we used DHS regions, active enhancers,

promoters, and repressed regions in cardiac tissues, brain

VSMCs, coronary artery, and smooth muscle. In both CMs and

VSMCs, we found that elements with significant transcriptional

activity are preferentially located at promoter elements (Fig-

ure S1K; Pearson’s chi-square test). Similar to previous find-
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ings,21 variants in promoters had higherMPRAactivity than those

located in enhancers, DHS regions, or closed chromatin regions

(Figure S1L; two-sidedMann-Whitney testing, p < 0.05). The sig-

nificant enrichment of active sequences in promoter elements is

probably due to their higher transcriptional activity compared

with sequences located in enhancers.

We next set out to identify variants with significant allelic skew-

ing (FDR < 0.05), termed regulatory variants. We identified 1,788

(39%) in CMs and 391 (8.5%) in VSMCs (overlap 66.5%; overlap

calculated by dividing the number of regulatory variants in both

cell types by the smallest set of regulatory variants; Figures 1E

and S2A–S2D; Tables S2, S3, and S4; STAR Methods), and reg-

ulatory variant effect sizes were highly correlated between cell

types, consistent with recent findings31,43 (r = 0.71; Figure 1F).

Most known variants identified in previousMPRAs21 or luciferase

assays5 showed regulatory capacity in both cell types (five and

four of six in CMs and VSMCs, respectively; Figure S2E), con-

firming the robustness and capacity of our analysis to detect

true regulatory variants. Differences in the number of regulatory

variants detected between cell types may result from larger bar-

code recovery associated with higher transfection efficiencies

and consequently more statistical power to detect regulatory

variants in CMs. Finally, we found that of the original GWAS var-

iants, 91% in CMs and 63% in VSMCs had at least one regulato-

ry variant in LD.

We further characterized the regulatory variants with EpiMap

and determined that CM regulatory variants are preferentially

located at both promoters and enhancers, while VSMC regulato-

ry variants are found at promoters (Figure 1G; Pearson’s chi-

square test, p < 0.05). These enrichments occur for closely

related cell-type enhancer/promoter annotations, such as car-

diac myocytes for CMs and cardiac muscle for VSMCs. As ex-

pected,21 regulatory variants at promoters had higher effect

sizes than those located at enhancers, at DHSs, or in closed

chromatin (two-sided Mann-Whitney testing, p < 0.05; Fig-

ure S2F). The functional enrichment of regulatory variant nearest

genes showed an association with BP-related phenotypes

(Figure 1H).

Next, we assessed if regulatory variants are associated with

gene expression changes by studying expression quantitative

trait loci (eQTLs) in cardiovascular-related tissues from GTEx

(atrial appendage, left ventricle, coronary artery, tibial artery,

and aorta).44 We found that regulatory variants with directionality

concordant with the eQTL (sign of MPRA effect size concordant

with sign of eQTL beta) had higher regulatory effect sizes than

discordant regulatory variants (Figure S2G). More than 60% of

our regulatory variants overlap with eQTLs (Figure 1I) and more

than 25% with eQTLs in tissues from other BP-related systems

(i.e., vascular, neural, and endocrine systems; Figure S2H). The

higher proportion of regulatory variants overlapping tibial artery

and aorta eQTLs (Figure 1I) may be explained by the larger num-

ber of GTEx eQTLs available for those tissues (Figure S2I). eQTL

target genes are enriched in BP-relevant terms (Figure 1J). These

results suggest that regulatory variants detected in MPRAs

could mediate gene expression changes in tissues involved in

BP regulation.

The simple overlap between genomic coordinates of GWAS-

associated variants and eQTLs does not imply that the same



Figure 1. Functional characterization of genetic variants associated with blood pressure

(A) Genomic location of GWAS sentinel variants (colored, p < 5 3 10�8) and variants in high LD (gray, ±500 kb, r2 > 0.8) for each of the blood pressure traits.

(B) Enrichment of GWAS variants at DNA and RNA regulatory elements using ChIPseeker.37 Bars above odds ratio >1 (dotted line) denote enrichment, with black

bars indicating significance (*adjusted p < 0.05), while odds ratios <1 denote depletion. Downstream, gene end (<3 kb); dist., distal.

(C) MPRA design. Each reference and alternative allele (centered in 135 bp elements) was linked to 25 unique barcodes and cloned in front of a minimal CMV

promoter and GFP reporter. Differentiated cardiomyocytes (CMs) and vascular smooth muscle cells (VSMCs) were transfected with the plasmid pool and

barcodes were quantified.

(D) MPRA activity distribution of active sequences for CMs (5.46%) and VSMCs (5.39%).

(E) Variant effect sizes (log2 fold change) of reference allele activity vs. alternative allele in CMs (left) and VSMCs (right). Variants with significant regulatory

activities are colored. Log2 fold change >0 indicates higher activity for reference sequence, while <0 indicates more activity of the alternative sequence.

(F) Effect size correlation between regulatory variants in CMs and VSMCs. Spearman’s rho (r) and number of sequences (n) are shown.

(G) Enrichment of regulatory elements at enhancer and promoter elements in five tissues. Thick black outlines represent significance at adjusted p < 0.05.

(H) Functional enrichment analysis of regulatory variants nearest neighboring genes. MBP, mean blood pressure; DBP, diastolic blood pressure; SBP, systolic

blood pressure.

(I) Regulatory variants overlap GTEx eQTLs in BP-related tissues, especially in aorta and tibial artery.

(J) Functional enrichment analysis of nearest-neighbor genes of regulatory variants overlapping eQTLs.

(K) Colocalization analysis of regulatory variants. Upper bar plot shows the number of eGenes (target gene of an eQTL) colocalized with all analyzed BPGWAS loci

(coloc) and GWAS loci with at least one regulatory variant in LD (reg. coloc). Bottom bar plot shows the number of all analyzed BP GWAS loci and GWAS loci with

at least one regulatory variant in LD that colocalizes with eQTLs. Only eQTLs defined in GTEx cardiovascular-related tissues are shown. See also Figures S1 and

S2; Tables S1, S2, S3, and S4.
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genetic variant is driving both associations. To address the pro-

portion of GWAS loci associated with BP that could be explained

by gene expression changes, statistical colocalization analysis

of GWAS variants and eQTLs was developed to evaluate

whether both association analyses are driven by the same set

of genetic variants.45 We performed a colocalization analysis

between our BP-related variants with eQTLs from cardiovascu-

lar-related tissues.44 From the 135 tested loci, 48% (65/135

loci) colocalized with 151 eGenes (target genes of an eQTL).

Further filtering for loci having at least one regulatory variant in

LD, we were able to link 47% (63/135) of regulatory loci with

149 likely target genes (Figure 1K). Furthermore, we were able

to link 39%of our regulatory loci with 124 likely target genes (Fig-

ure S2J) in tissues from other BP-related systems (i.e., vascular,

renal, neural, and endocrine systems). Overall, these results sug-

gest that at least half of the GWAS BP associations are driven by

at least one variant affecting gene expression. The remaining loci

could still be driven by changes in gene expression if the relevant

eQTLs were highly cell-type specific or context dependent

and had not been identified by current eQTL catalogs. An alter-

native explanation is that they could be driven by post-transcrip-

tional mechanisms not captured in eQTL analysis, such as

translation.

BP-associated regulatory variants disrupt TFBSs
required for cardiovascular function
Changes in regulatory activity between alleles often relate

to altered TFBSs.21,22,31 To uncover this relationship in our

MPRA, we first addressed whether prediction of TFBS correlated

with higher activity. The total number of TFs predicted to bind at

active variants is larger than in non-active sequences (Figure 2A;

Mann-Whitney, p = 6.135 3 10�33). Next, we applied a linear

regression model to find TFBSs that significantly explained

MPRAactivity variance.Wedetermined that 87 TFBSswere asso-

ciatedwithMPRAactivity (86 TFBSs in both cell types and 1 TFBS

in CMs alone; Figure S3A; STAR Methods). Most of these TFBSs

were enriched at active sequences (88% in CMs and 65% in

VSMCs), and half of them were also significantly enriched in se-

quences with regulatory variants (52% in CMs and 34% in

VSMCs, hypergeometric test, FDR< 0.05; Figure 2B). Importantly,

TFs predicted to bind at regulatory variants were enriched in car-

diovascular terms. Among the TFs, we find T-box and RARA

TFs, which are involved in various processes underlying formation
Figure 2. Transcription factor binding sites (TFBSs) and their disruptio
(A) Comparison of the total numbers of TFBSs between active variants accordin

servations per group is written below each boxplot, and asterisks denote signific

limits represent upper and lower quartiles. Central boxplot line represents the m

outliers.

(B) Colored dots denote significant enrichment of predicted TF motifs across ac

multicomp.multipletests function in Python with the Benjamini and Hochberg pro

(C) Enrichment analysis of TFs predicted to bind regulatory variants revealed car

(D) Comparison of the total numbers of different TFBSs (absolute [number of T

regulatory variants according to their significance (regulatory in none, CMs [*p =

(E) Counts of TFBS disruptions at regulatory variants for the top TFs in CMs and

(F) Enrichment analysis revealed important cardiac and BP terms of TFs that are

(G) Examples of TFBSs disrupted by regulatory variants on either reference or al

(H)Bar plot depicting numberof regulatory variants boundbyexpressedTFs in the ca

(I) Overlap between TFs bound (ChIP-seq in cardiovascular cell-types) at regulat
and integration of heart components and vasculature (Figures 2C,

S3B, and S3C).46,47

We then looked at TFBSs that were disrupted by one of the

regulatory variant alleles. Twenty-four percent of regulatory var-

iants (CMs, 431/1,788, and VSMCs, 95/391) disrupt at least one

TFBS, similar to a recent study.48 The number of disruptedmotifs

is larger at regulatory variants compared with non-significant

variants in both CMs and VSMCs (Figures 2D, 2E, and S3D–

S3F; Mann-Whitney, p = 0.00073). Remarkably, TFs predicted

to differentially bind regulatory variant alleles were enriched in

terms related to heart and kidney development and in pathways

known to play important roles in hypertension, such as the

interleukin 18 pathway49 and the orexin receptor pathway50

(Figure 2F). For example, TFBSs for cardiovascular TFs, such

as GATA1/3,51 MEF2A,52 TBX1 and TBX19,53 and RARA,47

were disrupted, and MPRA-activity changes ensued (Figure 2G).

To further study TF binding at our regulatory variants in their

genomic context, we queried 417 ChIP-seq experiments of indi-

vidual TFs in 33 cardiovascular cell lines for a total of 61 different

TFs.54 One hundred thirty-six (7.6%) and 36 (9%) regulatory var-

iants had at least one ChIP-Seq peak, corresponding to 43

different TFs in CMs and 36 in VSMCs (Figures 2H and 2I). The

majority of them were shared between the two cell types (Fig-

ure 2I). Analyzing ChIP-seq data of individual TFs in cell lines

derived from kidney and the neural system, which are BP-rele-

vant tissues, we observed that 25% and 16% of our regulatory

variants in CMs and VSMCs had at least one ChIP-seq peak in

kidney and in the neural system, respectively. In addition, 9

and 7 TFs that we previously predicted to significantly explain

MPRA variance are bound to regulatory variants found in CMs

and VSMCs in the kidney and in the neural system, respectively.

Furthermore, 74 and 20 regulatory variants in CMs and VSMCs,

respectively, had TFs bound in all different BP-related systems

assayed (Figure S3G). Thus, our MPRA approach determined

genetic variants that are bound by TFs in BP-relevant cell types.

Collectively, our set of regulatory variants harbors TFBSs that

may relate to cardiovascular function by influencing the binding

of distinct TFs relevant for BP regulation.

Alu elements preferentially harbor BP-associated
regulatory variants
We wanted to address whether our regulatory variants

were located in evolutionarily conserved regions. We observed
n at active and regulatory variants
g to their significance (active in none, CMs, VSMCs, or both). Number of ob-

ance determined by two-sided Mann-Whitney tests (**p = 6.135 3 10�33). Box

edian and whiskers represent 1.53 interquartile range (IQR). Points represent

tive and regulatory variants (hypergeometric testing, FDR calculated using the

cedure, significance at FDR < 0.05).

diac and BP terms (top 10 terms are shown).

FBSs in reference allele] � [number of TFBSs in alternative allele]) between

0.014], VSMCs, or both [*p = 0.00073]).

VSMCs.

predicted to be mostly disrupted at sites of regulatory variants.

ternative alleles. Horizontal black lines represent means.

rdiovascular system (onlyTFsbound to>2 regulatory variants inCMsare shown).

ory variants in CMs and VSMCs. See also Figure S3.

Cell Genomics 3, 100330, July 12, 2023 5



Figure 3. Regulatory variants in repetitive sequences have higher

MPRA activity

(A) Number of regulatory variants within repeats. Asterisks indicate significant

enrichments (BH adjusted p value determined by a Pearson’s chi-square test).

OR, odds ratio.

(B) MPRA activities of variants in repetitive sequences (rep. seq.) or unique

sequences for all variants (left), active variants (middle), and regulatory variants

(right) in CMs (top) and VSCMs (bottom). Number of observations per group

are written below each boxplot. Asterisks indicate significant differences be-

tween distributions determined by two-sided Mann-Whitney tests at p < 0.05.

P values are depicted above plots. Box limits represent upper and lower

quartiles. Central boxplot line represents the median and whiskers represent

1.53 IQR. Points represent outliers. These comparisons are considered to be

independent. Therefore, multiple-testing correction was not applied.

(C) Total numbers of predicted TFBSs located in repetitive regions vs. non-

repetitive regions (unique seq.): other variants for all MPRA-tested variants

(left), regulatory sequences in CMs (middle), and regulatory sequences in

VSMCs (right). Asterisks denote significance (**two-sided Mann-Whitney tests
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that a minority of variants were in ultra-conserved elements,

defined by PhastCons scores of >0.855 (77 variants in CMs,

12 in VSMCs; Figure S4A; Tables S5 and S6), suggesting that

most regulatory variants are in non-conserved regions. Recent

findings addressing the dichotomy of enhancer activity show

that ‘‘fragile’’ enhancers are less conserved, at both the

sequence and the functional levels,56 while evolutionarily

conserved ‘‘stable’’ enhancers stably regulate developmental

processes.56,57 Therefore, we hypothesized that the majority

of our regulatory variants function in fragile enhancers. In

fact, regions harboring regulatory variants in both cell types

(window of ±10 bp surrounding the variant; variant position

was excluded from the analysis) had significantly lower conser-

vation values compared with regions harboring variants with no

MPRA regulatory capacity (Figure S4B; Mann-Whitney. p =

0.00558). Considering that most regulatory variants appeared

as non-conserved polymorphisms, we next asked if they pre-

dominantly mapped to repetitive sequences of transposable el-

ements. We found a significant enrichment of CM regulatory

variants in repetitive regions (p = 0.0234, Z score = 1.955, re-

gioneR package with permutation test).58 We then explored

whether this enrichment was driven by specific classes of re-

petitive elements. Indeed, 54% of regulatory variants were

located in SINE/Alu elements, which is more than expected

by chance (FDR = 0.0044 in CMs, FDR = 1.21 3 10�8 in

VSMCs; Figures 3A and S4C). To explore this further, we as-

sessed the relationship between being located in repetitive se-

quences and MPRA activity. In general, sequences in repetitive

regions harboring regulatory variants had overall higher MPRA

activity (Figure 3B; Mann-Whitney tests range from p = 0.00016

to p = 1.81 3 10�12). This was also true for all MPRA-tested

sequences (Figure 3B; Mann-Whitney tests range from p =

0.00016 to p = 6.38 3 10�20). Consistent with this, the number

of TFBSs was larger for regulatory variants located in repeats

(Figure 3C; Mann-Whitney, p = 8.109 3 10�26, p = 2.754 3

10�11, and p = 3.1841 3 10�9). On average, regulatory se-

quences in CMs and VSMCs had two times more TFBSs

when located in repeats compared with unique sequences

(8 vs. 4 in CMs, 10 vs. 4 in VSMCs, Mann-Whitney, p =

2.44 3 10�11 and p = 2.61 3 10�9, respectively).

In general, many individual TFBSs (71%–81% in CMs, 62%–

72% in VSMCs) associated with MPRA activity variance were

significantly enriched in sequences located in repeats (hyper-

geometric test, FDR < 0.05; Figure 3D). We noticed that many

zinc-finger TFs were among the enriched TFs in repetitive

sequences. Kruppel-associated (KRAB) zinc-finger proteins
at p < 0.05). Box limits represent upper and lower quartiles. Central boxplot line

represents the median and whiskers represent 1.53 IQR. Points represent

outliers. These comparisons are considered to be independent. Therefore,

multiple-testing correction was not applied.

(D) Colored dots denote significant enrichment of predicted TFBSs across

variants in repetitive sequences (hypergeometric testing, FDR < 0.05).

(E) Examples of two zinc-finger TFs harboring KRAB domains that act as re-

pressors (left and middle, CMs; right, VSMCs). Numbers in plots represent the

total number of regulatory variants with a disrupted TFBS for the respective TF

and p values. Box limits represent upper and lower quartiles. Central boxplot

line represents the median and whiskers represent 1.53 IQR. See also Fig-

ure S4; Tables S5 and S6.



Figure 4. GWAS loci can have high densities of regulatory variants

(A) Density plot of the number of variants in LDper GWAS variant permegabase. Red line denotesmedian (572 variants/Mb), geneswith high number of regulatory

variants (B) are labeled.

(B) Density plot of the ratio between the number of regulatory variants in LD per GWAS variant and the number of variants per megabase in each LD block in CMs

(left) and VSMCs (right). Red lines denote medians.

(C) Genome browser examples with numbers of aggregated regulatory variants at ULK4, MAP4, CFDP1, and 10q24.32 loci. Black lines indicate LD blocks.

(D) Scheme for luciferase assays. Reference and alternative sequences of every haplotype of concatenated regulatory alleles were analyzed in the 50 / 30

direction 50 of luciferase. Number of variants concatenated for luciferase assays per locus is shown.

(E) Fold changes in luciferase activity comparing haplotypes of reference vs. alternative sequences to empty vector (four biological replicates). Asterisks show

significance determined by unpaired two-tailed t tests (***p < 0.004, ****p < 0.0001). These comparisons are considered to be independent. Therefore, multiple-

testing correction was not applied.

(F) Bubble plot showing the MPRA regulatory capacity of variants tested in the luciferase assay. See also Figure S4; Tables S7, S8, S9, S10, S11, S12, S13,

and S14.
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(KZFPs) represent one of the largest families of DNA binding

proteins.59 Recent studies demonstrate the preferential location

of those TFs to transposable elements and suggest they act

as repressors.60 Of the 11 TFBSs for zinc-finger TFs enriched

in repeats, 10 feature KRAB domains and, consequently, disrup-

tion of ZNF sites resulted in higher MPRA activities (Figure 3E; p

values determined by Mann-Whitney tests). Our results suggest

that repetitive sequences have an intrinsic capacity to contribute

to transcription. However, further in vitro and in vivo work is

needed to addresswhether regulatory variants in these repetitive

sequences functionally contribute to BP, hypertension risk,

and CVD.
Loci harboring BP candidate genes can have high
densities of regulatory variants
Recently publishedMPRA studies indicate that several regulato-

ry variants in a haplotype may act synergistically within eQTLs

and GWAS loci by cooperatively influencing target gene regula-

tion.28,29,61 To explore this further, we studied the distribution of

the number of variants per GWAS locus and found them to be

highly variable (Figure 4A). When looking at the number of vari-

ants per GWAS locus, we observed that some GWAS loci had

a large number of active variants (Figure S4D; Tables S7 and

S8) and even more regulatory variants when normalizing for

both number of variants in LD and length of haplotype block
Cell Genomics 3, 100330, July 12, 2023 7
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(Figures 4B, S4E, and S4F; Tables S9, S10, S11, and S12). These

loci harbor genes that either had been reported in independent

experimental studies in addition to the initial GWAS, such as

MAP4,62 PDE5A,63 and CPEB4,64 and in chromosomal region

10q24.32,65 or had been recently proposed to be involved in

BP regulation, such as ULK4,66,67 CFDP1,68 FBN1,69 and

ESR170 (Figures 4B and 4C). Notably, some loci with up to hun-

dreds of regulatory variants also showed high numbers of DHS

peaks (i.e., 110 for ULK4, 57 for MAP4, 63 for CFDP1, etc.; Fig-

ure S4G), which may partially explain the clustering of regulatory

variants.

Thus far, MPRAs cannot test synergistic effects on the tran-

scription of multiple regulatory variants and the cooperative

binding of TFs. We sought to test whether synergistic regulato-

ry haplotypes had larger effects on transcription than single

variants using concatenated regulatory variants (either refer-

ence or alternative sequence). To do this, we selected 29 reg-

ulatory variants with high regulatory activity (CMs, q % 0.01;

VSMCs, q % 0.1; both log2 FC ±1, 83% in repeats) that also

mapped to loci with high densities of regulatory variants

(Table S13). Specifically, we chose 10 variants at ULK4, four

at MAP4, four at SMARCC1, and two each at the CPEB4,

ESR1, PDE5A, and INSR loci. We concatenated the variants

(each centered in 135 bp oligos) according to their genomic or-

der (Figure 4D; Table S14), and compared the activity of the

reference haplotype with its alternative haplotype (sentinel var-

iants defined the naming of reference/alternative) over an

empty vector in luciferase assays. We found that haplotypes

with more regulatory variants (i.e., at SMARRC1, MAP4, and

ULK4 loci) showed higher luciferase activity fold changes

than those with fewer variants (Figure 4E; t tests, p < 0.005).

Thus far, it remains unclear why more variants with higher ac-

tivities derive from the reference alleles than expected in both

cell types (Figure 4F; expectation 50%, Pearson’s chi-square

test, p = 0.0015).

Loci with regulatory variants spatially converge with
cardiovascular genes outside of their LD blocks
BP loci can have various densities of regulatory variants. There-

fore, it is interesting to consider if these genomic regions

harboring regulatory variants interact in three-dimensional (3D)

genome organization with trait-relevant genes, similar to 3D

proximity of genes and regulators in transcription fac-

tories.42,71–75 We addressed this question using chromosome

conformation capture data of stem cell-derived stages of cardiac

differentiation76 and VSMCs (Figure 5A; STAR Methods). We

binned the genome in 50 kb bins, filtered for bins with at least

one regulatory variant (CMs, 258 bins; VSMCs, 157 bins; Fig-

ure S5A) and interrogated these bins to identify significantly in-

teracting regions. We analyzed only targets outside of the

GWAS loci to not confound functional enrichment analysis

with genes that had been identified in GWASs. We determined

that bins with regulatory variants significantly interacted with re-

gions harboring BP-related genes (within 50 kb bins, p < 0.001),

for example, for heart morphogenesis and smooth muscle-

related signaling (Figure 5B; Table S15). Excluding all BP

GWAS loci and using 1,0003 permuted random sets of interac-

tions (p < 0.05) showed that our bins with regulatory variants in-
8 Cell Genomics 3, 100330, July 12, 2023
teracted more than random genomic regions, in both CMs and

VSMCs (Figure 5C; p < 0.001).

Next, we assessed whether regulatory variant density per

genomic bin affected the numbers of genomic interactions by

considering ratios of regulatory/non-regulatory variants (Fig-

ure 5A). Overall, bins with more regulatory variants (higher ratios)

did not show more genomic interactions than bins with more

non-regulatory variants, presumably because 3D genome orga-

nization happens on scales of chromosomal domains (i.e., topo-

logically associated domains [TADs] and compartments), rather

than sizes of LD blocks (Figures S5B–S5F). By focusing on the

ULK4 andMAP4 loci with the highest densities of regulatory var-

iants, we investigated their contribution to particular cardiovas-

cular signal transductions. We found that consecutive bins with

high densities of regulatory variants concertedly interacted

with target genes that were significantly enriched in very specific

cardiovascular pathways, such as cardiac and vasculature

development and the RhoA GTPase cycle77 and SLIT-ROBO

signaling78 (Figures 5D, 5E, S5G, and S6A). The last two path-

ways represent promising therapeutical targets for BP

regulation.

The 3D proximity of regions with regulatory variants can entail a

certain subset of genes that is different from the linear genomic

lineupof all genes aroundall regulatory variants (Figure 1H). There-

fore, to determine these genes and their biological relevance in

cardiovascular pathways, we next addressed directly (recipro-

cally) interacting bins with regulatory variants (Figures 5F, S5H,

and S5I). Interestingly, we found that a majority of bins with regu-

latory variants are involved in reciprocal interactions in all datasets

(82.6% in CMs [213 bins] and 67.5% in VSMCs [106 bins];

Figures 5G, S5H, and S5I). For example, bins with regulatory var-

iants atULK4,MAP4,CACNA2D2,RYK,MECOM, andNEP,which

are all linked to cardiovascular function, interacted directly

(Figures S6B and S6C). In functional enrichments, we further

explored the genes involved in these reciprocal contacts and

found specific cardiovascular pathways, such as keratinization

and leptin signaling during heart development79–81 and sialic

acid transport and guanylate cyclase activity in smooth mus-

cle82–84 (Figure 5H; Table S16). Reciprocal interactions occurred

more frequently than in 1,0003 randomly selected sets of interac-

tions (p<0.05; FigureS6D).Byanalyzingspatial genomeorganiza-

tion,weuncovered the genomic architecture of regulatory variants

inGWAS loci and showed that they converge in spatial hubs. Spe-

cifically, bins harboring regulatory variants spatially interact with

target genes that are involved in specific cardiovascular signaling

cascades, and they can be far away in the linear genome.

Heuristic scoring identifies the most likely causal
variants
Our MPRA uncovered regulatory variants that are potential

candidates to drive the association with BP regulation identified

in GWASs. To determine the most likely causal variants, we

developed a heuristic scoring algorithm to rank variants based

on functional annotation and likeliness to affect targets. To do

this, we utilized functional genomic properties (MPRA effect

sizes [active and/or regulatory variants], LD association), genetic

features (GWAS p value, variants in LD, ultra-conserved element,

predicted TFBSs, GTEx eQTLs), and the epigenetic state (DHS,



Figure 5. Regulatory variants spatially converge with trait-relevant genes in 3D genome organization
(A) Scheme of Hi-C/Omni-C analysis with genome binned in 50 kb bins to analyze significant interactions of bins harboring regulatory variants with target genes.

Ratios of regulatory over non-regulatory variants of each bin were generated to account for variant distribution per bin.

(B) Enrichment analysis of genes within 50 kb bins of significantly interacting bins with at least one regulatory variant. Cutoff p <0.001 to reduce number of genes

for enrichment analysis. Terms listed are related to cardiovascular function according to the literature; BP-related terms are highlighted in bold.

(C) Number of genomic interactions for binswith regulatory variants comparedwith 1,0003 permuted random sets of interactions. Red line denotesmean number

of interactions per bin, asterisks denote significance (****empirical p = 0).

(D and E) Arch plots (10%opacity) across entire chromosomes showing all significant genomic contacts of bins (50 kb) with regulatory variants at (D)ULK4 and (E)

MAP4 in three Hi-C and in two Omni-C datasets. Numbers in arch plots indicate total number of interactions. Z scores indicate interactions occurring more

(positive) or less (negative) often than expected considering the genomic linear distance. Zoomed-in windows exemplify that consecutive bins interact with the

same targets.

(F) Scheme of Hi-C/Omni-C analysis to determine solely genomic contacts between bins harboring regulatory variants (reciprocal interactions).

(G) Number of reciprocal interactions per cell type.

(H) Enrichment analysis of genes involved in reciprocal interactions revealed specific cardiovascular pathways (highlighted in bold font). See also Figures S5 and

S6; Table S15.
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Figure 6. Heuristic scoring identifies likely causal variants, and CRISPR prime editing definitively determines variant target genes

(A) Distribution of heuristic scores for all regulatory variants. Numbers above bars indicate numbers of regulatory variants per score.

(B) Comparison of the heuristic ranking scores between loci with high regulatory variants density (top 10%) and low variant density (bottom 10%). Significance

from Mann Whitney test, CMs: p = 0.00011, VSMCs: p = 0.038. Number of variants under each category is shown inside each box.

(C) Significant associations between genetically predicted gene expression (GPGE) of ULK4, MAP4, CFDP1, and NT5C2 genes with SBP, DBP, and PP (pulse

pressure) traits in BP-relevant tissues.

(D) CRISPR prime editing (PE) comprising Cas9 nickase, reverse transcriptase (RT), and pegRNAs precisely edited regulatory variants at allelic ratios: 100%

reference sequence, low editing (�30% of reference sequence), medium editing (�60% of reference sequence), and �100% alternative sequence.

(E) Gene model for variant rs4631439 determining KCNK9.

(F) PE efficiencies (%) shown in Sanger sequencing tracks of rs4631439.

(G) Correlation between KCNK9 gene expression and PE allelic ratios for rs4631439.

(H) Arch plots (25% opacity) show genomic interactions as Z scores of locus harboring rs4631439 (in 50 kb bin) in Hi-C data of ventricular CMs (day 80) and in

Omni-C data of VSMCs (day 21).

(I) Selection of predicted TFBSs that are disrupted at the variant’s position. Ambiguousmapping of TFmotifs tomultiple positions around variants is highlighted in

gray.

(J) Gene model for variant rs3824754, SFXN2, and PCGF6.

(K) PE efficiencies (%) of rs4631439 and predicted TFBSs for ZNF619 that get disrupted at the variant’s position.

(L) Correlations between gene expression for SFXN2 and PCGF6 and rs3824754 allelic ratios from PE.

(legend continued on next page)
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histone marks) in relevant cell types (see STAR Methods). Most

regulatory variants (93%) overlapped with two ormore functional

annotations, while some had up to six functional annotations

(Figure 6A). Of note, nearest-neighbor genes of regulatory vari-

ants with high ranking scores (>median; Tables S17 and S18)

had more significant enrichment in cGMP-PKG signaling,

which regulates systemic and pulmonary BP,85 and in vascular

processes compared with low-ranked variants (Figure S6E).

Exploring the scores revealed that the top 10% densely spread

regulatory variants in comparison with less dense variants had

significantly higher scores (Mann-Whitney, p = 0.00011; Fig-

ure 6B), indicating that loci with aggregated regulatory variants

harbor more regulatory potential than loci with sparse variant

distribution.

We then wanted to further address whether our candidate

genes at loci with highly ranked scores and highly dense regula-

tory variants (i.e., ULK4, MAP4, etc.) are putatively causal for BP

traits both in cardiovascular and in other BP-relevant tissues

(kidney, aorta, neural system, lung, fibroblasts). To do this, we

looked at the associations between genetically predicted gene

expression and BP traits found by the S-PrediXcan method86,87

from a recent trans-ethnic BP study.2 PrediXcan is an associa-

tion approach that identifies trait-associated genes by corre-

lating the genetically regulated expression of each gene with

the trait of interest. We found associations for ULK4 across

many tissues, while MAP4, CFDP1, and NT5C2 were each iden-

tified in two tissues (Figure 6C). These results suggest that genes

near highly ranked regulatory variants in CMs and VSMCs may

also play a role in BP regulation in other BP-relevant tissues.

Our systematic scoring of functional regulatory variants repre-

sents a valuable resource for multiple fields investigating BP

and cardiac and vascular responses to hypertension and will

help shorten the list of putatively causal variants for mechanistic

follow-up studies.

CRISPR prime editing (PE) determines gene-regulatory
effects of causal variants
Further experimental approaches testing the MPRA-identified

and epigenomically characterized regulatory variants in the

endogenous chromatin context are required to finally link causal-

ity to target genes. To accomplish this aim, we selected three

regulatory variants (rs4631439, rs3824754, and rs3753326) at

different GWAS loci that were ranked among the most likely

causal variants by our scoring system and substituted them by

PE88 (Tables S19 and S20). We hypothesized that either the

reference or the alternative alleles of regulatory variants, or a ra-

tio of both, had expression effects on nearby genes. We chose

HEK293 cells for PE, because their aneuploid genomes allow

modeling of different allelic ratios and their TF expression profile

and DHS landscapes are similar to those of CMs and VSMCs

(88.56% of TFs [604/682] expressed >1 TPM in CMs and

VSMCs; Figures S6F–S6G). PE substituted the HEK293 geno-

type at a regulatory variant’s position to different allelic ratios

(low [�30%], medium [�60%], high [80%–100% = alternative
(M) Significant associations between GPGE of SFXN2 with SBP and PP traits in

(N) Arch plots (25%opacity) show genomic interactions as Z scores of locus harbo

also Figures S5 and S6; Tables S17, S18, S19, S20, S21, and S22.
sequence]) (Figure 6D). We reasoned that if a regulatory variant

affected TF binding and influenced target gene expression, we

should observe a correlation between allelic ratio and gene

expression. Thus, to identify gene expression changes in the

isogenic cell lines, we performed RNA sequencing (STAR

Methods).

Regulatory variant rs4631439 is in an intron of TRAPPC910

in an ENCODE3 enhancer (Figure 6E) and is the only regulato-

ry variant in its LD block in both CMs and VSMCs. Upon

rs4631439 editing (Figure 6F), TRAPPC9 expression did

not change. Instead, expression of KCNK9 (TASK3), located

345.4 kb upstream, positively correlated with the proportion

of variant editing (permutation test, FDR < 0.05; Figure 6G;

STAR Methods). KCNK9 is a potassium channel, and its dele-

tion recapitulates essential hypertension in vivo.89 This result

is consistent with the observation that the rs4631439 refer-

ence allele is the one associated with higher hypertension

risk5,10 and KCNK9 downregulation. In addition, in a cross-

sectional and a longitudinal study, several common genetic

variants at the KCNK9 locus were associated with BP varia-

tion.90 Hi-C/Omni-C data in CMs and VSMCs corroborated

PE results by revealing genomic contacts between genes

(KCNK9) and bins harboring the edited variant (Figure 6H;

90% confidence interval, p < 0.1 is significant, KCNK9 p =

0.08). TFBS analysis predicts that the rs4631439 alternative

allele disrupts three TFBSs of zinc-finger TFs, of which two

have a repressor function.91 This is consistent with the finding

that TFBS disruption increases expression (Figure 6I;

Table S21). rs4631439 was not tested as an eQTL in GTEx.

Regulatory variant rs3824754 is located at an ultra-

conserved element boundary in the promoter region of

BORCS792,93 and the promoter of long non-coding RNA

(lncRNA) RP11-753C18 (lnc_CYP17A1) at 10q24.32 (Fig-

ure 6J). The variant is the only variant in this LD block with

regulatory activity in both CMs and VSMCs. Editing

rs3824754 (Figure 6K) did not affect the expression of nearby

genes but rather led to significant downregulation of two

genes farther away: SFXN2 (111.1 kb upstream) and PCGF6

(448.2 kb downstream, FDR <0.05; Figure 6L). SFXN2 is a

serine transporter and is associated with BP94 and CAD,95

and we found significant association in other BP-relevant

tissues using predicted gene expression levels (Figure 6M),

while PCGF6 regulates mesodermal lineage differentiation.96

In GTEx,44 rs3824754 is an eQTL for SFXN2 in multiple tis-

sues, and consistent with our PE results, the alternative allele

is associated with SFXN2 downregulation (Figure S6H). We

predicted that the ZNF619 TFBS would be disrupted by one

of the regulatory variant alleles (Figure 6K; Table S22), and

ChIP-seq analysis from ENCODE confirmed that ZNF619

binds at this region.97 Genomic contacts in CMs and

VSMCs showed significant interactions between rs3824754,

PCFG6, and SFXN2 (p = 0.05, 90% confidence interval; Fig-

ure 6N). Editing of rs3753326 in an intron of CELA2A in an

ENCODE3 enhancer did not lead to changes in nearby genes
BP-relevant tissues.

ring rs3824754 (in 50 kb bin) with SFXN2 and PCGF6 in Hi-C/Omni-C data. See

Cell Genomics 3, 100330, July 12, 2023 11



Resource
ll

OPEN ACCESS
(±500 kb; Figure S6I). Our findings show that PE can defini-

tively determine variant target genes that are promising candi-

dates for BP regulation and hypertension risk. Moreover, the

heuristic ranking approach provides a confident list of regula-

tory variants to study BP gene regulation.

DISCUSSION

GWASs link genetic loci and common human traits and dis-

eases98; however, dissecting the underlying mechanisms

driving these associations is challenging, because of variants

in high LD and an incomplete knowledge of the non-coding

genome.15,16 Thus far, a few studies have successfully identi-

fied causal variants and their association with target genes

and biological consequences.99 We used high-throughput ge-

nomics to functionally test 4,608 genetic variants associated

with BP and hypertension in two cardiovascular-related cell

types. We are able to identify at least one regulatory variant

in LD with 91% and 63% of the GWAS hits in CMs and

VSMCs, respectively. By combining MPRAs with public epige-

nome data, TFBSs, eQTLs, and chromosome conformation in-

formation, we describe credible variants enriched at CREs and

nearby BP genes as strong candidates to drive GWAS associ-

ations and to be functionally involved in BP gene regulation.

Finally, using PE perturbations, we identified target genes for

two of these variants and their mechanistic function. For

example, we found that KCNK9, which has been previously

associated with hypertension,89 is affected by regulatory

variant rs4631439. Collectively, we provide a resource of sys-

tematically characterized regulatory variants that are likely to

be involved in BP gene regulation.

Current concepts constitute that GWAS hits are driven by a

single causal variant. However, recent studies suggest that

multiple variants can act together to drive eQTL and GWAS

association.28,29 Furthermore, disease-associated loci can

harbor multiple regulatory variants at different enhancer ele-

ments that could simultaneously contribute to complex

traits.42 We find that several BP-associated loci have high

densities of regulatory variants in CREs that can add up their

function to transcribe a reporter and to cooperatively interact

in 3D with cardiovascular genes. This is also in line with

another recent MPRA study uncovering that transcriptional

activation functions linearly and that more TFBSs at en-

hancers lead to additive effects.61

It is possible that loci with high densities of regulatory variants

cooperatively drive transcriptional programs. Each variant alone

contributes small effects, as is known for BP regulation,3 but

acting in concert they influence BP signaling and hypertension

risk. We suggest that, especially, the microtubule-associated

proteins MAP4 and ULK4, as well as CFDP1, CPEB4, PDE5A,

FBN1, ESR1, and genes at chr.10q24.32 (see Tables S9 and

S10), are of particular interest for functional follow-up studies

because aggregated regulatory variants at their loci may

contribute more to the polygenic BP traits than single causal

variants.

Understanding 3D genomeorganization is fundamental to iden-

tifying gene-regulatory networks driving disease risk. Indeed, we

find that loci with regulatory variants coalesce with intricate
12 Cell Genomics 3, 100330, July 12, 2023
cardiovascular signaling networks and that they can modify the

expression of genes that are distant in linear space but in close

spatial proximity via chromatin loops. Target genes of long-range

interactions are enriched in BP-related signaling, suggesting that

BP-regulatory variants may exert their BP-associated effects

through interactions that extend their LD block, similar to recent

findings.100,101 Editing two regulatory variants showed that three

identified target genes are not the closest in linear genomic space.

This is concordantwith recent fine-mapping approachesaddress-

ing genomic distances between variants and causal genes, pre-

dicting that sentinel variants have at least one causal gene within

<500 kb distance102 and that in �23% of variant-transcriptional

start site (TSS) connections, the involved gene was not the

closest.103

We present evidence that BP-regulatory variant loci are less

conserved and substantially map to repetitive sequences

(SINE/Alu). Recent studies correlate repeats with transcriptional

regulation through cis and trans effects104 and show that genetic

variation in repetitive sequences may affect gene expression by

altered TF recruitment in a cell-type-specific and species-spe-

cific manner.104 BP-regulatory variants within repetitive regions

show stronger effect sizes than variants in unique sequences,

and variants within TFBSs show more TF diversity and motifs

(>2-fold). The differential activities of regulatory variants allowed

us to relate altered TFBSs to a set of TFs that control cardiovas-

cular function. It remains to be determined if sequence-specific

recognition of TFBSs around regulatory variants in repetitive

sequences influence BP gene regulation and hypertension risk

and if putative cotranscriptional activation of nearby transpos-

able elements complements target gene regulation in spatial

proximity.104

In conclusion, we augment the understanding of the functional

genomic architecture required for BP gene regulation by deter-

mining regulatory variants in two cardiovascular-related cell

types, highlighting candidate genes and physiologically relevant

pathways, and by providing a confident list of regulatory variants

for follow-up studies. Distinguishing regulatory from non-regula-

tory variants accelerates current efforts in molecular precision

medicine15 to use indicatory ‘‘risk variants’’ clinically as genomic

markers.

Limitations of the study
Prior studies have confirmed the effectiveness ofMPRAs in iden-

tifying regulatory variants.21,31,33 However, our study has several

limitations. First, some variants may be regulatory only under

certain disease-related conditions, such as inflammation, or in

their native genomic context.105 Second, we have studied BP-

relevant genetic variants in two cell types related to hyperten-

sion; however, the MPRA-identified variants and loci may exert

their pathogenic mechanisms in other tissues or cell types that

we have not tested in this study, such as adrenal gland or kidney.

Third, MPRAs using exogenous DNA constructs in in vitro

models are limited in fully recapitulating complex in vivo sce-

narios. Thus, further work and additional functional assays are

needed to address whether our regulatory variants in CMs and

VSMCs are regulatory in their genomic context, in other BP-

related cell types, and under hypertensive and CVD-related

conditions.
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Lindschau, C., Vaegler, M., Qadri, F., Toka, H.R., et al. (2015). PDE3A

mutations cause autosomal dominant hypertension with brachydactyly.

Nat. Genet. 47, 647–653. https://doi.org/10.1038/ng.3302.

125. Gong,Z., andNiklason, L.E. (2008). Small-diameter humanvesselwall en-

gineered from bone marrow-derived mesenchymal stem cells (hMSCs).

Faseb. J. 22, 1635–1648. https://doi.org/10.1096/fj.07-087924.

126. Shukla, C.J.,McCorkindale, A.L., Gerhardinger, C., Korthauer, K.D., Cab-

ili, M.N., Shechner, D.M., Irizarry, R.A., Maass, P.G., andRinn, J.L. (2018).

High-throughput identification of RNA nuclear enrichment sequences.

EMBO J. 37, e98452. https://doi.org/10.15252/embj.201798452.

127. Patwardhan, R.P., Hiatt, J.B., Witten, D.M., Kim, M.J., Smith, R.P., May,

D., Lee, C., Andrie, J.M., Lee, S.I., Cooper, G.M., et al. (2012). Massively

parallel functional dissection of mammalian enhancers in vivo. Nat. Bio-

technol. 30, 265–270. https://doi.org/10.1038/nbt.2136.

128. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ra-

goczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O.,

et al. (2009). Comprehensive mapping of long-range interactions reveals

folding principles of the human genome. Science 326, 289–293. https://

doi.org/10.1126/science.1181369.

129. Clarke, L., Fairley, S., Zheng-Bradley, X., Streeter, I., Perry, E., Lowy, E.,
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Geneticin Life Technologies Cat#G418
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GeneXPlus Transfection Reagent ATCC Cat#ACS-4004
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1M Tris pH8.0 Invitrogen Cat#AM9856

Tween-20 Sigma-Aldrich Cat#P9416

BsaI HF-v2 NEB Cat#R3733S
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Thermo Scientific Cat#F565L
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OneTaq Hot Start Quick-Load 2X Master
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PowerUpTM SYBRTM Green Master Mix ABI A25742

Critical commercial assays

Micellula DNA Emulsion & Purification Kit Chimerx Cat#3600-02
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RNeasy Mini Kit Qiagen Cat#74104
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SuperScript III 1st Strand Synthesis Invitrogen Cat#18080051

Gibson Assembly Master Mix - 10 rxns NEB Cat#E2611S

Quick Ligation Kit NEB Cat#M2200L

Dual-Luciferase Reporter Assay System Promega Cat#E1910

DNeasy Blood and Tissue kit Qiagen Cat#69506

Monarch PCR & DNA Cleanup Kit NEB Cat#T1030L

TruSeq Stranded Total RNA Ribo-Zero Gold Illumina Cat#RS-122-2301

Deposited data

MPRA and RNAseq data upon CRISPR prime editing This paper GSE213558

Omni-C data This paper GSE217358

Experimental models: Cell lines

Human: HEK-293 ATCC Cat#CRL-1573

Human: hTERT-immortalized adipose derived

primary human mesenchymal stem cells

ATCC Cat#SCRC4000

Human: PGPC-17 human iPS cells Hildebrandt et al., 2019106 N/A

Oligonucleotides

ePCR forward primer: GCTAAGGGCCTAAC
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Mattioli et al.21 N/A
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Mattioli et al.21 N/A
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Mattioli et al.21 N/A

cloning step 1, universal 5’ primer: caagcagaa
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cloning steps 2 & 3 and cDNA libraries, universal 5’

primer: caagcagaagacggcatacgagatCGTGATgtgac

tggagttcagacgtgtgctcttccgatctCGCCGCGTGGAG

GAGGA

Mattioli et al.21 N/A

Oligonucleotide pool, see Table S1 This paper N/A

pegRNA/gRNAs, see Table S19 This paper N/A

qPCR primers, see Table S24 This paper N/A

Recombinant DNA

pGL4.29 Promega Cat#E8471

pRL-TK Promega Cat#E2241

MPRA_backbone_empty_pGL4-2.3_cloning_

site_polyA

Mattioli et al.21 N/A

pCMV-PE2 Anzalone et al.88 Addgene Cat#132775

pU6-gg acceptor Anzalone et al.88 Addgene Cat#132777

BPK1520_puroR Erwood et al.107 Addgene Cat#173901

Software and algorithms

rAggr N/A https://web.archive.org/web/20160

416223424/http://raggr.usc.edu/

HaploView N/A http://www.broad.mit.edu/mpg/haploview

MPRAnalyze Ashuach et al.108 https://bioconductor.org/packages/

release/bioc/html/MPRAnalyze.html
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BEDTools Quinlan and Hall109 https://code.google.com/archive/p/

bedtools/

R version v4.0.2 https://www.r-project.org/

Ensembl Variant Effect Predictor Tool McLaren et al.110 https://github.com/Ensembl/ensembl-

tools/archive/release/83.zip

PhyloP Pollard et al.111 http://compgen.cshl.edu/phast/

PastCons Siepel et al.55 http://compgen.cshl.edu/phast/downloads.php

ColocQuial Chen et al.45 https://github.com/bvoightlab/ColocQuiaL

COLOC package Giambartolomei et al.27 https://github.com/bvoightlab/ColocQuiaL

FIMO Bailey et al.112 https://meme-suite.org/meme/doc/fimo.html

Python Statsmodels package Seabold et al.113 https://www.statsmodels.org/stable/index.html

Hisat2 Kim et al.114 http://daehwankimlab.github.io/hisat2/

FeatureCounts Liao et al.115 https://subread.sourceforge.net/

DESeq2 Love et al.116 http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

Metascape Zhou et al.117 https://metascape.org/gp/index.html#/

main/step1

WebGestalt Liao et al.118 http://www.webgestalt.org/

Hi-C Processing Protocol 4D Nucleome Project https://data.4dnucleome.org/resources/

data-analysis/hi_c-processing-pipeline#

overview

Samtools version 1.5 Li et al.119 https://samtools.sourceforge.net/

Pairx version 0.3.7 N/A https://github.com/4dn-dcic/pairix

Pairtools version 0.3.0 N/A https://github.com/open2c/pairtools

Cooler version 0.8.11 Abdennur and Mirny120 https://github.com/mirnylab/cooler

RepeatMasker Open-4.0 Smit, AFA, Hubley, R & Green, P http://www.repeatmasker.org

Sushi package v1.32.0 R v4.0.2 https://bioconductor.org/packages/3.14/

bioc/html/Sushi.html

DeepPE Kim et al.121 http://deepcrispr.info/DeepPE/

EditR Kluesner et al.122 http://baseeditr.com/

GraphPad Prism v 9.3.0 9.3.0 https://www.graphpad.com/

scientific-software/prism/

R v4.1.2 4.1.2 https://www.r-project.org/

Python v3.8.10 3.8.10 https://www.python.org/downloads/

Cutadapt Martin123 https://cutadapt.readthedocs.io/en/stable/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Philipp G.

Maass (Philipp.maass@sickkids.ca).

Materials availability
Aliquots of the MPRA plasmid pool generated in this study can be obtained upon suitable request from the Maass Lab (SickKids

Research Institute).

Data and code availability
d Sequencing data are deposited in the European Genome-Phenome Archive (EGA). Accession numbers are listed in the key

resources table.

d Computational MPRA analysis is available at https://github.com/Mele-Lab.

d Further custom code to reanalyze the data reported in this project is available from the corresponding authors on reasonable

request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All studies were performed under the regulation of the SickKids Research Ethics Board and Canadian Institutes of Health

Research StemCell Oversight Committee. Human iPS cells derived from peripheral blood lymphocytes of a healthy adult male donor

(PGPC-17),106 were differentiated into cardiomyocytes (CMs) using the STEMdiff CM Differentiation Kit (STEMCELL Technologies).

hTERT-immortalized female adipose-derived primary human mesenchymal stem cells (MSCs, SCRC4000, ATCC) were maintained

in basal MSC media (PCS-500-030, ATCC), supplemented with 2 % FBS (ThermoFisher), 5 ng/ml recombinant human FGF basic

(R&D Systems 233-FB-010), 5 ng/ml recombinant human FGF acidic (R&D Systems 232-FA-025), 5 ng/ml recombinant human

EGF (R&D Systems 236-EG-200), 2.4 mM L-Alanyl-L-Glutamine (ThermoFisher), and 0.2 mg/ml Geneticin (G418, ThermoFisher).

MSCs were differentiated into VSMCs over the course of 19 days by supplementing the above described basal MSC media with

1 ng/ml TGF-b1 (R&D Systems 240-B-002) as previously described.124,125 HEK-293 cells (ATCC) were cultured in EMEM (Gibco),

supplemented with 10 % FBS (Canadian origin, ThermoFisher) and 1% Penicillin/Streptomycin (ThermoFisher). All cells were main-

tained at sub-confluent conditions, maintained at 37 C with 5 % CO2 and were passaged every 3-4 days.

METHOD DETAILS

Variant selection and MPRA design
We compiled a collection of 135 GWAS variants based on the results of Warren and colleagues.5 We used GWAS variants in

European ancestry as input for rAggr (https://web.archive.org/web/20160416223424/http://raggr.usc.edu/) which uses an

expectation–maximization algorithm from Haploview (http://www.broad.mit.edu/mpg/haploview),36 to identify variants in high LD

in European populations (±500 kilobases [kb] of GWAS variant, r2 R 0.8, MAF R 0.05). The full list of variants can be accessed in

Table S1. Each variant was centered in an element of 135 base pairs (bp) which was included in each oligonucleotide to accurately

sample the variant in its surrounding genomic environment and its regulatory capacity.21 All oligos contained universal primers, two

restriction sites, an 11 bp barcode, and the genomic locus of interest as follows: 5’ - universal primer 1 (ACTGGCCGCTTCACTG) –

variant region (135 bp) - XbaI (6 bp) - KpnI (6 bp) - barcode (11 bp) - universal primer 2 (AGATCGGAAGAGCGTCG) - 3’. By using 25

unique barcodes for each allele of the BP-associated variants, we achieved redundancy and statistical power, and we reduced both

sampling bias and technical variation during the experimental steps, such as the loss of oligonucleotides during cloning procedures.

We used six known regulatory variants as positive controls for regulatory activity. Four of them were identified in a previous MPRA

study to have differential activity in both HepG2 and K562 cell lines.21 The remaining two known variants had been identified in a hy-

pertension GWAS study, and tested for regulatory activity in a luciferase assay5 (Figure S2E). Each known variant was coupled to 100

unique barcodes per allele. 335 random sequences eachwith five barcodes served as negative controls for the detection of transcrip-

tionally active sequences, resulting in a total pool of 232,975 oligonucleotides.

Emulsion-PCR (ePCR) amplification of oligonucleotides
The oligo pool was ePCR-amplified in 18 parallel reactions according to the manufacturer’s instructions (ePCR, Micellula DNA Emul-

sion & Purification Kit, Chimerx). Primers were designed to include SfiI restriction sites for subsequent cloning steps (5’ primer:

GCTAAGGGCCTAACTGGCCGCTTCACTG; 3’ primer: GTTTAAGGCCTCCGAGGCCGACGCTCTTC). After ePCR amplification,

1 ng of oligo pool was used as input for library preparation. Oligo representation was evaluated by sequencing on a HiSeq 2500 (Il-

lumina), where each unique barcode was quantified (Figure S1).

MPRA cloning
For high-throughput cloning, the synthesized oligos as pool (Twist Bioscience) were coupled to a cytomegalovirus (CMV) minimal

promoter, a reporter gene, and a unique barcode.21,43,126,127 Integrity, representation, and unimodality of oligos and barcodes

were validated at each cloning step by sequencing on a HiSeq 2500 (Illumina, Figure S1). Specifically, 50 ng of the ePCR-amplified

oligo pool and 6 mg of the MPRA empty vector were digested using 50 U of SfiI (NEB) in a 20 mL reaction at 50�C for 90 minutes. The

empty vector was treated with calf intestinal phosphatase (CIP; NEB) at 37�C for 30 minutes. Fragments were ligated in a 4:1 insert:

vector ratio using T4 DNA ligase (NEB) in a total of two 20 ml ligation reactions. Ligations were evenly split and used for transforma-

tions of 32x 50 mL DH5a chemically competent cells (NEB). Cells were spread across 80 LB ampicillin plates and incubated at 37�C

overnight. All transformed bacterial colonies were pooled together by scraping plates into liquid LB and plasmid DNA was purified

using twelve endotoxin-free Plasmid Plus Maxis (Qiagen).

In the second cloning step the oligo pool was sequentially digestedwithKpnI followed by XbaI (NEB). The insert consisting of a GFP

ORF downstream of a cytomegalovirus (CMV) minimal promoter (5’-AGAGGGTATATAATGGAAGCTCGACTTCCAG-3’) was cut from

a previously used MPRA vector,21 using KpnI and XbaI and ligated into the linearized oligo pool. Ligations were prepared and trans-

formed as described above. Barcode representation was evaluated (Figure S1). To remove plasmids that did not contain integrated

promoter-GFP, the oligo pool was digested with KpnI. Complete clones were size selected by separation on an agarose gel, re-

ligated, cloned, and sequenced as described above.
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MPRA library preparation
50 ng of cloned oligo pools (DNA input) were amplified using Q5 DNA polymerase (NEB), 5 % Formamide, and 5 mL of 2 mM index

primer (cloning step 1, universal 3’ primer: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT;

Index 1 5’ primer: caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatctACTGGCCGCTTCACTG; cloning

steps 2 & 3 and cDNA libraries, universal 3’ primer: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA

CGCTCTTCCGATCT; Index 1 5’ primer: caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatctCGCCGCGTG

GAGGAGGA, underlined nucleotides = index; hot start PCR setting: 98�C 30 sec, 98�C 7 sec, 55�C 10 sec, 72�C 10 sec [x 22-28

cycles], 72�C 2 min, 4�C hold). Library integrity, specific amplification, and concentration were first checked after 22 cycles using

a Qubit Fluorometer with a dsDNA High Sensitivity Assay Kit (ThermoFisher) and BioAnalyzer (Agilent). Insufficient amplifications

were run for 2-6 additional cycles. Amplified libraries were then size selected three times using AMPure beads (Beckman) at 0.6X,

1.6X, and 1X ratios as per the manufacturer’s instructions.

Cell culture & transfections
Immunofluorescent staining of troponin (Abcam ab10214), and video documentation of beating cardiomyocytes validated successful

CM differentiation (Video S1). Transfections of 21 days differentiated CMs were performed with 2x106 cells and 10 mg of the MPRA

plasmid pool (split in two wells of a 6-well plate) and Lipofectamine Stem Transfection Reagent (STEM00015, ThermoFisher) for 48 h.

Transfections with GFP served to evaluate transfection efficiencies on an EVOSM5000 epifluorescence microscope (ThermoFisher,

Figure S1).

Successful VSMC differentiation of hTERT-immortalized adipose derived primary human mesenchymal stem cells (MSCs,

SCRC4000, ATCC) was validated by quantification of smooth muscle markers (transgelin [TAGLN], calponin-1 [CNN1], and smooth

muscle actin [ACTA2]) using qRT-PCR with PowerUp (ABI) (Figure S1, Table S24).124 CTs were normalized to GAPDH as a house-

keeper. 19-20 days differentiated VSMCs (1.1x106 cells / 10 cm dish) were transfected with 12 mg MPRA oligo pool and 12 ml

GeneXPlus (1:1 ratio, ACS-4004, ATCC) for 48 h. Transfection efficiency was evaluated as described for CMs (Figure S1). Lower

transfection efficiencies and thus lower barcode recovery rates were observed in VSMCs, consequently impacting our statistical po-

wer to detect regulatory variants in this cell type.

RNA extraction, DNase I treatment, and cDNA preparation
Total RNA was extracted from MPRA-transfected cells using the phenol-chloroform extraction method according to standard

protocols. Residual genomic or plasmid DNA was removed using a two-step DNase I digestion. First, an off-column digestion

was performed using a RNase-free DNase set (Qiagen), followed by a column purification using the RNeasyMini Kit (Qiagen) accord-

ing to themanufacturer’s instructions. Subsequently, the samplewas digested again using aDNase I fromWorthington for 30minutes

at 37�C. cDNA was synthesized using SuperScript III First Strand Synthesis System (Invitrogen). Reactions including and excluding

reverse transcriptase (RT) were run in parallel. DNA contamination was calculated using qRT-PCRwith PowerUp (ABI) where percent

contamination was calculated as the difference in Ct between reactions without RT and those with RT, with values normalized to

GAPDH. Samples with DNA contamination above 0.25 % were re-prepared or rejected (Figure S1).

Luciferase assays
Oligos with variants (each 135 bp) that showed significant differential activity in the MPRAs were aligned according to their 5’ / 3’

genomic orientation. This haplotype was modeled by a G-block (IDT) and inserted into pGL4.29 (Promega) via PCR-mediated addi-

tion of KpnI and SacI restriction sites, respectively. Oligos harboring highly repetitive sequences (i.e. SMARCC1 and MAP4,

Tables S13 and S14), were stitched together as single oligos by Gibson Assembly (NEB). Specifically, 90 bp long single-stranded

oligo pairs (IDT) contained a four or five bp sequence complementary to the following (top) or previous (bottom) segment. Top

and bottom oligo pairs were annealed and phosphorylated with T4 PNK (NEB). All segments were then mixed in equal parts and sub-

ject to the same annealing protocol. Gaps were sealed using Quick Ligase (NEB). These assemblies were then PCR-amplified and

processed as described above. HEK-293 cells were transfected using Lipofectamine 3000 (ThermoFisher). 1x105 cells were seeded

in a 24-well plate and transfected with 75 fmol of pGL4.29+haplotype and 12.5 ng of pRL-TK plasmid (Promega) after 24 hours. Cells

were harvested and lysed 48 hours post transfection, and luminescence was measured using the Dual Luciferase Reporter Assay

System (Promega) on a Synergy Neo2 plate reader (BioTek) equipped with a dual reagent injector system.

Hi-C and Omni-C
The molecular chromosome conformation capture technique Hi-C,128 and Omni-C (randomly digested chromatin, Dovetail Geno-

mics, CA, USA) analyze genomic interactions. We utilized published Hi-C datasets of CMs,76 and generated Omni-C data of

MSC-derived VSMCs (day 21). VSCMs were FA-crosslinked for 10 min and pelleted for 5 min with 2000 g. Pellets were washed in

800 ml wash buffer (100 mM NaCl, Tris pH8.0, 0.05% Tween-20) until fully resuspended. Supernatants were removed after 5 min

centrifugation at 2000 g. The latter two steps were repeated, and cell pellets were frozen at -80C for library preparation. Of two in-

dependent VSMC differentiations, three technical replicates and library preparations were performed by Dovetail Genomics, CA,

USA. The processing of the raw sequencing data was done using the Hi-C Processing Protocol from the 4D Nucleome project

(https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline#overview) (see below).
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CRISPR prime editing
Prime editing and nicking guides were designed for 32 regulatory variants using DeepPE121 (Table S19). pCMV-PE2 and pU6-gg

acceptor plasmids were a gift from David Liu’s lab (Addgene #132775 and #132777, respectively). Prime editing guides were cloned

into pU6-gg acceptor usingGoldenGate Assembly with Bsa1HF-v2 (NEB).88 Nicking guides were cloned into BPK1520_puroR, a gift

from Ronald Cohn’s lab (Addgene #173901), using BsmBI. HEK-293 cells (ATCC) were transfected at 80 % confluency in 12-well

plates with 300 ng pCMV-PE2, 250 ng BPK1520_PuroR+nicking guide (Addgene #173901)107, and 700 ng of pU6-gg acceptor+

pegRNA via the Lipofectamine 3000 protocol (ThermoFisher). Transfected cells were selected 36 hours post-transfection with

3 mg/mL puromycin. Cells were subcultured as needed and ultimately harvested 7 days post-transfection for genotypization. Trans-

fected cell populations were subject to gDNA extraction using DNeasy Blood & Tissue kit (Qiagen). 400-800 bp regions around prime

edited regions were PCR-amplified using Phusion High-Fidelity PCR Master Mix (ThermoFisher). Amplicons were purified using the

Monarch PCR & DNA Cleanup Kit (NEB) and sent for Sanger sequencing, using the forward primer from the earlier PCR. Level of

editing within the population was assessed using EditR.122. Despite DeepPE scores that theoretically allow successful PE of 32 var-

iants, we accomplished various editing levels of three of the 32 variants (Table S20).

If the cell population harbored the desired edit, single cells from the population were distributed across three 96-well plates using a

limited dilution. These isogenic cell lines grown in 96-well plates were harvested 10-14 days after seeding, keeping 50 % in culture.

gDNAwas extracted usingDirectPCR lysis buffer (Viagen). Genotyping PCRswere carried out usingOneTaqQuick-Load 2XMMwith

Standard Buffer (NEB). Amplicons were purified using the Monarch PCR & DNA Cleanup Kit (NEB), sent for Sanger sequencing, and

level of editing was assessed using EditR.122 Up to three independent clones displaying similar of the desired editing levels were

expanded for two separate passages and RNA for RNAseq was harvested and prepared using phenol-chloroform extractions. PE

of rs3824754 displayed intermediate level of editing, therefore a second round of transfection, limited dilution, and genotyping

was performed to obtain clones with editing efficiencies > 50 % (further information see below).

RNAseq HEK-293, VSMCs, CMs
We aligned reads to hg19 usingHisat2.114We used FeatureCounts to count reads aligning to genes in GENCODE v25 (human).115We

quantified gene expression in tpm units in each sample using DESeq2.116

QUANTIFICATION AND STATISTICAL ANALYSIS

MPRA sequencing and data analysis
The plasmid pool as DNA input and each TagSeq replicate (CMs = 5 replicates, VSMCs = 4 replicates) was sequenced on the HiSeq

2500 platform (Illumina), single end with 50 bp. MPRA-transfected cells were harvested 48 hours post transfection and barcodes

were sequenced.21,32,43

MPRA data pre-processing

First, we trimmed and quality-filtered DNA andRNA reads using cutadapt (Martin 2011). Then, wemapped reads to the barcodes and

10 upstream nucleotides of GFP requiring an exact match. We filtered for sequences that had less than 50 % of their barcodes with

counts R 10 in the input DNA library (n= 4587 tested variants).

MPRA activity

To quantify MPRA activities for each sequence in our pool in each cell line, we used the ‘‘quantification’’ mode fromMPRAnalyze108,

which takes barcode specific effects (or tag-sequence specific effects) into account. MPRAnalyze first quantifies each sequence’s

rate of transcription or activity by comparing RNA counts for each barcode to input DNA counts (plasmid pool). Then, to identify active

sequences able to drive transcription, each sequence’s activity is compared to a background distribution that is estimated using the

random sequences present in the oligopool. We determined sequences to have significantly higher activity than background at

MPRAnalyze q-value < 0.05.

Differential MPRA activity

We used the MPRAnalyze ‘‘comparison’’ mode to perform differential activity analyses. When assessing differential effects between

alleles, the null hypothesis is the lack of differential transcription between the two alleles rather than lack of transcription. Therefore,

we generated a null distribution of non-differential alleles by selecting a subset of sequences that had 100 barcodes each and split

them between reference and alternative alleles randomly (Figure S2A). Specifically, we had 41 sequences, each with 100 barcodes

(known regulatory alleles, see variant selection andMPRA design). For each of them, we randomly selected pairs of 25 barcodes and

assigned them as reference or alternative.We performed this step three times. Overall, we had a background distribution of 126 com-

parisons. We separately tested for differential activity between reference and alternative alleles in CMs and VSMCs. We considered

variants to have regulatory activity if their MPRAnalyze q value was < 0.05, and refer to them as ‘‘regulatory variants’’.

Annotation of variants
eQTLs

We integrated our regulatory variants with eQTL mapping data from the latest available version of the GTEx project (signif_variant_

gene_pairs files downloaded from GTEx portal).44 We overlapped our confident set of regulatory variants identified in CMs and

VSMCs with eQTL data from the most closely related tissues, i.e. Heart Atrial Appendage, Heart Left Ventricle, and Artery Coronary,
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Artery Tibial, and Artery Aorta, respectively. We additionally overlapped our confident set of regulatory variants identified in CMs and

VSMCs with eQTL data from other BP-related systems, i.e. vascular, renal, neural, and endocrine systems.

RepeatMasker

We overlapped genomic coordinates of repetitive sequences from RepeatMasker (Smit, AFA, Hubley, R & Green, P., RepeatMasker

Open-4.0. 2013-2015 <http://www.repeatmasker.org>) with our set of tested variants using bedtools.109 Enrichment of specific

repeated families were calculated using a Pearson’s Chi-squared test in R. p values were adjusted by the Benjamini-Hochberg

method.

Genomic location

We queried our tested variants in the Ensembl Variant Effect Predictor tool,110 to get their effect and genomic location. To evaluate

the enrichment of genomic locations we compared the annotation of our variants with the genomic location of a randomly selected

set of 5000 variants from the 1000G project.129 The enrichment test was done using a Pearson’s Chi-squared test in R.We adjusted p

values by the Benjamini-Hochberg method.

Variant density calculations

We grouped variants by GWAS variants and we calculated the density of variants per LD-block as follows. We retrieved the genomic

coordinates from the first and last variants per LD-block and calculated the length of the block in MegaBases. Finally, we calculated

the density of variants as the number of LD variants per Megabase (number of variants in LD / length of the block in megabases).

Ratios of active/regulatory variants were calculated as the ratio between the number of regulatory variants in a locus and the density

of variants in the region (number of regulatory variants in LD / density of variants in the region).

Conservation scores

We overlapped the genomic coordinates of our set of sequences (using a window of ±10 bp surrounding the variant and specifically

excluding the variant position for this analysis) with pre-computed conservation scores fromPhyloP,111 and PhastCons130 using bed-

tools.109 Phastcons scores higher > 0.8 were used to define ultraconserved regions of the genome. To get the per-base conservation

score of the window we used pre-computed PhyloP scores. We calculated differences in distributions of scores using a two-sided

Mann-Whitney test in R.

Colocalization analysis

To perform a colocalization analysis between the tested GWAS loci and eQTLs, we used GTEx v7 data from cardiovascular-related

tissues (arteries and heart, n=5 tissues).44 In v7 data all tested variant-gene pairs are needed and freely available. We used amodified

version of the ColocQuial pipeline45 to parallelize the colocalization analyses on a SLURM supercomputer. Briefly, for each GWAS

locus - eGene -tissue pairs, we executed the COLOC package27 to perform the colocalization analysis between both association

signals. We considered colocalizations for which PP4 conditioned (calculated as PP4/(PP3+PP4) where PP indicates a posterior

probability within the coloc framework) was higher than 0.8.

Transcription factor motif analysis
Mapping TF motifs

We downloaded a curated list of human TF detailed by Lambert et al.131 Then, we used the CisBP PWM designated by the same

authors to be the ‘‘best’’ motifs for each one of these annotated TFs. A total of 1104 different TFs with 1360 motifs were finally

used. We used the FIMO software from the MEME suite with default parameters to map TF motifs to our reference and alternative

sequences.112

Associating MPRA activity variance to motifs

To find motifs predictive of MPRA activity we followed the rationale from our previous study.43 Briefly, for each motif we fit a linear

model to normalizedMPRA activity (Box-Cox transformed) across all tested sequences including CGandCpG content as covariates.

meanðMPRAactivityÞ � GCcontent +CpGcontent +presenceofmotif

We then calculated whether the model including the presence of the motif explained significantly more variance than the reduced

model only contemplating GC and CpG content using a likelihood ratio test. We considered a motif to be significantly explaining

MPRA activity variance if the adjusted p-value was < 0.05 (BH adjusted, Benjamini-Hochberg). We used the Python statsmodels

package to run these analyses.

Finding disrupted/enriched motifs

We selected a set of 87 TF motifs that showed significant association with MPRA activity variance in our study. We calculated the

number of shared and disrupted motifs and TFs between reference and alternative alleles from each variant and we compared be-

tween active, regulatory, and repetitive variants using a two-sided Mann-Whitney test. We calculated the enrichment of individual

motifs by comparing the number of active/regulatory/repetitive sequences containing the motif versus the rest of the pool by an hy-

pergeometric test. We considered individual motifs as enriched if the BH adjusted p value was < 0.05. We used the Python statsmo-

dels package to run these analyses.

EpiMap analysis
We used the epigenomic maps of H9 ESC-derived smooth muscle cells (BSS01612), brain VSMCs (BSS01606), coronary artery1

(BSS00242), coronary artery2 (BSS00243), RUES-derived cardiac muscle cells (BSS00171), and cardiac myocytes (BSS00170)
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from EpiMap.42 We intersected genomic coordinates of our list of variants with DNase hypersensitive sites (DHS) and chromatin

annotations from the mentioned closely-related tissues using bedtools.109 We calculated the enrichment of specific chromatin

annotations using a Pearson’s Chi-squared test in R. We adjusted p values by the Benjamini-Hochberg method. We performed

comparisons between distributions of activities/fold-changes between groups using a two-sided Mann-Whitney test in R. These

comparisons are considered to be independent because they come from different tissues.132 Therefore, multiple-testing correction

was not applied.

Enrichment analysis
Functional enrichment of genes was accomplished with Metascape using default settings.117 To correct for a possible bias in the

enrichment analyses of TFs, we additionally performed the enrichment tests using WebGestalt, an online tool that allows to use a

user-defined background.118 We used as background for the enrichment analyses of TFs the set of TFs tested on the linear model

(n=1104 TFs).

ChIPseq analysis
We predicted TFs bound to our tested genomic loci using the ChIP-seq Atlas Database.54 We downloaded TF ChIP assays of car-

diovascular cell types from the ChIP-seq Atlas Peak Browser and intersected them with the genomic location of our tested variants

using bedtools.109 We also downloaded TF ChIP assays of the kidney and the neuronal system from the ChIP-seq Atlas Peak

Browser and intersected them with the genomic location of our tested variants.

Hi-C and Omni-C data analysis
Hi-C and OmniC reads were mapped to the GRCh38 version 32 human reference genome using bwa (version 0.7.17, -5SP).133

Mapping statistics were determined using samtools (version 1.5, view -bh -o).119 Filtering for valid Hi-C and Omni-C alignments

was performed using pairtools (version 0.3.0, parse, sort, dedup mark-dups, select ‘(pair_type == "UU") or (pair_type == "UR") or

(pair_type == "RU")’) (https://github.com/open2c/pairtools), and indexing of the resulting pairs was done with pairx (version 0.3.7)

(https://github.com/4dn-dcic/pairix). Omni-C biological replicates showed high reproducibility in a Pearson’s correlation (normalized

cooler output), done in R. For downstream analyses, sequences obtained from replicates of MSC and VSMC samples were pooled

separately (pairtools merge (GitHub)) and balanced (cooler balance120) to serve as a combined dataset per cell type. The Hi-C matrix

aggregation at 50 kb bins for all data sets and out-of-core matrix balancing were accomplished using cooler (version 0.8.11, cload

pairix, balance).120 We modeled the overall Hi-C intra-chromosomal interactions using a modified LOESS method with a span

(alpha) that is inversely proportional to the number of interactions per chromosome (alpha = 200/number of interactions per

chromosome).134 LOESS calculates the weighted-average and weighted-standard deviation for every genomic distance separating

interacting regions per chromosome, and therefore normalizes for genomic distance signal bias. The Hi-C/Omni-C signals were then

transformed into a z-score by calculating the (obs-exp/stdev) as described here.134 Z-scores indicate more frequent contacts than

expected for loci separated by corresponding genomic distance when positive, or less interactions when negative.134 The interaction

frequency of Hi-C data follows a normal distribution. Thus, z-scores follow standard normal distribution and we extracted p-values

from the cumulative normal distribution function for each z-score. We performed gene set enrichments for target genes that map

within the 50 kb interacting bin. Cutoffs with p-values for enrichments are denoted in the text and in the figure legends.

Regulatory variant interaction analysis
All intra-chromosomal interactions that contained at least one regulatory variant (see deposited data at EGA) were selected for the

remainder of the analysis. The following cell types were used to determine cis-chromosomal interactions containing the regulatory

variants of CMs: H9hESC, mesoderm cell, cardiac mesoderm, cardiac progenitor, primitive cardiomyocyte, and ventricular cardio-

myocyte,76 and in MSCs and VSMCs by Omni-C (Dovetail Genomics). Lists with these interactions and the reciprocal interactions

have been deposited at EGA.

Arch plot interactions
Intra-chromosomal interactions were filtered for those interacting with bins containing regulatory variants. To determine genomic

contacts between a locus with a CRISPR-prime-edited variant and target genes, we considered 90 % confidence interval and

p-values <0.1 as significant. The Sushi package (version 1.32.0) in R (version 4.0.2) was used to visualize interactions.

Regulatory:non-regulatory variants ratio analysis
Due to the resolution of Hi-C/Omni-C analysis, the selected 50 kb bins often contained both regulatory and non-regulatory variants.

To determine differences in intra-chromosomal interaction properties between 50 kb bins with higher proportions of regulatory var-

iants than non-regulatory variants, we calculated ratios of the number of regulatory variants to the number of non-regulatory variants

for each bin in CMs and VSMCs. The total number of interactions was summed for each 50 kb bin in the genome per cell type by

counting the total number of intra-chromosomal interactions involving that genomic bin. The mean positive and negative z-score

was calculated for each 50 kb bin in the genome per cell type by averaging the positive and negative z-score values for all intra-chro-

mosomal interactions involving that genomic bin. A Pearson correlation was performed in R (version 4.0.2) to examine the correlation
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between the number of regulatory variants:number of non-regulatory variants ratio and the number of intra-chromosomal

interactions.

Permutation analysis
Intra-chromosomal interactions (p-value% 0.05) were chosen from across the genome (per cell type) with the same number of bins

as the chromosomal interactions containing bins with either regulatory or non-regulatory variants. A total of 1000 random chromo-

somal interaction sets were chosen. The mean number of interactions was summed for each 50 kb bin (intra-chromosomal) in the

genome per cell type by counting the total number of chromosomal interactions involving that genomic bin and then averaging

the values for all bins for each permuted set of chromosomal interactions. A p-value was calculated to compare interactions of

bins with either regulatory or non-regulatory variants to the 1000 sets of random chromosomal interactions based on the following:

[p-value = (# of permutations with valueR test interaction set value)/1001], where the test interaction set is chromosomal interactions

involving regulatory and non-regulatory variants and the value is the mean total number of cis-chromosomal interactions per bin.

Since regulatory variants are often in CREs and CpG islands, we did not control for these elements during randomization to avoid

confounding the analysis.

Heuristic scoring
We developed a heuristic scoring system to rank regulatory variants in each cell-type using publicly available genomic data com-

bined with our MPRA results. The scoring ranged from 1 to 10 based on the supporting evidence for each regulatory variant. One

point was added to the score for each of the following assumptions: being located in open-chromatin (DHS, promoter or enhancer);

being the sentinel (lead) variant in the GWAS study; being best regulatory variant in the LD - block (lowest FDR); being defined as an

eQTL in a cardiovascular-related tissue (GTEx); predicted to disrupt a TFBS; being active in one (1 Point) or both cell types (2 Points,

see MPRAmethods); being regulatory in one (1 Point) or both cell types (2 Points, see MPRAmethods); being located in an ultracon-

served element (defined by Phastcons).

CRISPR prime editing gene expression analysis
After read trimming using trim galore, we aligned rRNA sequencing reads to hg38 using Hisat2,114 and we used FeatureCounts to

count reads aligning to genes in GENCODE v26 (human).115 Genes with fewer than 0.5 CPMs (�10-15 raw counts) were filtered

out. We normalized gene expression values using the median of ratios normalization method in DESeq2.116 Briefly, DESeq2 normal-

ization re-scales samples relative to sequencing depth and RNA composition. In order to find genes affected in a dose-dependent

manner by each variant, we performed a correlation analysis for each variant separately. First, we computed the Pearson correlation

rho between expression of genes +/-500kb from the edited variant and the variant allelic ratios. To assess whether observed corre-

lations are significant, we computed a null distribution using rho correlation values for all expressed genes in the experiment

(excluding those tested). Empirical p-values were calculated as follows:

p-value = (nº genes with rho > tested gene’s rho)/(total nº expressed genes)

Finally, we adjusted p values by the Benjamini-Hochberg method. We considered individual genes as correlated if the BH adjusted

p value was < 0.05.

Statistical analysis
All statistical tests were two-sided, unless stated otherwise. If multiple tests were carried out on the same data, p-values were cor-

rected formultiple testing by Bonferroni correction or as stated in the Results. For statistical analysis, we used R version 4.1.2, Python

version 3.8.10, and GraphPad Prism version 9.3.0.
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