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Abstract

Cooling towers (CTs) are a leading source of outbreaks of Legionnaires’ disease (LD), a

severe form of pneumonia caused by inhalation of aerosols containing Legionella bacteria.

Accordingly, proper maintenance of CTs is vital for the prevention of LD. The aim of this

study was to determine the distribution of Legionella in a subset of regionally diverse US

CTs and characterize the associated microbial communities. Between July and September

of 2016, we obtained aliquots from water samples collected for routine Legionella testing

from 196 CTs located in eight of the nine continental US climate regions. After screening for

Legionella by PCR, positive samples were cultured and the resulting Legionella isolates

were further characterized. Overall, 84% (164) were PCR-positive, including samples from

every region studied. Of the PCR-positive samples, Legionella spp were isolated from 47%

(78), L. pneumophila was isolated from 32% (53), and L. pneumophila serogroup 1 (Lp1)

was isolated from 24% (40). Overall, 144 unique Legionella isolates were identified; 53%

(76) of these were Legionella pneumophila. Of the 76 L. pneumophila isolates, 51% (39)

were Lp1. Legionella were isolated from CTs in seven of the eight US regions examined.

16S rRNA amplicon sequencing was used to compare the bacterial communities of CT

waters with and without detectable Legionella as well as the microbiomes of waters from dif-

ferent climate regions. Interestingly, the microbial communities were homogenous across

climate regions. When a subset of seven CTs sampled in April and July were compared,

there was no association with changes in corresponding CT microbiomes over time in the

samples that became culture-positive for Legionella. Legionella species and Lp1 were

detected frequently among the samples examined in this first large-scale study of Legionella

in US CTs. Our findings highlight that, under the right conditions, there is the potential for

CT-related LD outbreaks to occur throughout the US.
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Introduction

Legionellae are Gram-negative opportunistic bacterial pathogens common to soil and freshwa-

ter environments. These bacteria are the causative agents of Legionnaires’ disease (LD), a

severe form of pneumonia that primarily affects adults who are 50 years or older, have a history

of smoking or chronic lung disease, or are immunocompromised. Legionella infections are pri-

marily spread via inhalation of contaminated aerosols from man-made water systems and

devices such as showers, whirlpool spas, and cooling towers (CTs) [1]. Legionella is the leading

cause of deaths from waterborne outbreaks in the US [2] and the rate of reported cases of legio-

nellosis in the US increased nearly 4-fold from 2000 to 2014 [3, 4], highlighting the urgency of

this public health threat.

While approximately half of the ~60 identified Legionella species (Lspp) have been shown

to cause disease [5, 6], up to 92% of reported cases of legionellosis in the US are caused by

Legionella pneumophila serogroup 1 (Lp1) [1]. The high incidence of reported cases caused by

Lp1 may be influenced in part by the fact that Lp1 is the target for the urinary antigen test, the

most widely used LD diagnostic [1]. L. pneumophila serogroup 6, L. longbeachae, and L. micda-
dei are among the next most commonly detected agents of legionellosis [1].

CTs are a part of the air-conditioning systems often present in large buildings, such as

hotels or hospitals, which use water to efficiently cool air via heat transfer. Environmental

microbes can flourish in CT systems that are not properly maintained. The presence of sedi-

ment, nutrients, heterotrophic biofilm, and amoebae in warm water combined with insuffi-

cient biocide treatment can result in high numbers of legionellae [7, 8]. These microbes can

then become aerosolized in the spray or mist generated by the tower. In some outbreaks, cool-

ing tower plumes have been reported to disperse over several kilometers [9]. Susceptible indi-

viduals who inhale Legionella-containing aerosols are at risk for developing LD. CTs have been

linked to many reported LD outbreaks [10–12].

Technologies such as high-throughput 16S rRNA amplicon sequencing have facilitated

research into the microbiomes of the natural and built environments [13]. However, reports

on the microbiomes of water in these systems are limited and primarily related to potable

water [14, 15]. Initial studies have concentrated on the microbiomes of CTs from a specific site

or region [16–18]. A two-year study of the microbiome of a single cooling tower in Germany

revealed a diverse bacterial community with Legionella abundances ranging between 0.06%-

6.0% [18]. However, a large survey of CT microbiomes has not been reported to date.

Currently there are no published studies that identify the presence of Legionella in US CTs

with broad geographic range. Additionally, relationships between Legionella and other compo-

nents of bacterial communities present in CTs have not been extensively studied. To better

understand the distribution of Legionella and the bacterial community composition in US CTs

with no known association with disease, we assayed CT water samples taken for routine Legio-
nella testing from 196 sites across the US using multiplex PCR, Legionella culture, and 16S

rRNA amplicon sequencing.

Materials & methods

Water sample collection

A subset of water samples submitted to four commercial water testing companies for routine

testing were shared with CDC. The sample collection protocols of the testing laboratories

require addition of sodium thiosulfate to neutralize any residual disinfectant. Bulk water sam-

ples (25–50 ml) were collected from the CT basin. We examined a total of 196 samples col-

lected from separate towers located in each of the continental US climate regions as defined by
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the National Oceanic and Atmospheric Administration (NOAA) with the exception of the

West North Central region. Additionally, in April and July of 2016, samples from seven CTs

were collected by a local government utility water quality laboratory in Florida in parallel with

routine water sampling specifically for this study. Samples were typically batch shipped to the

CDC at ambient temperature in 1–2 week intervals from the initial testing laboratories.

DNA extraction

To prepare water samples for DNA extraction, 15mL were centrifuged at 4700 x g at ambient

temperature for 20 minutes. Supernatant was removed and the pellet resuspended in 500 μl

sterile nuclease-free water (Promega, Madison, WI) and 2 μl of Ready-Lyse Lysozyme Solution

(Epicentre, Madison, WI) were added. Next, samples were incubated at 37˚C for 30 minutes

with shaking. DNA extraction was then performed on 400 μl of prepared sample using the

Roche MagNApure Compact instrument (Roche Applied Science, Indianapolis, IN) and

Roche MagNApure Compact Nucleic Acid Isolation Kit I reagents (Roche). Legionella isolate

gDNA was also extracted using the Roche MagNApure Compact system.

Legionella multiplex real-time PCR

Detection of Legionella DNA was performed using a previously reported real-time PCR assay

[19, 20]. An updated PCR protocol and internal inhibition control were generously shared by

Dr. Kimberlee Musser (Wadsworth Center, New York State Department of Health). The assay

targets three distinct DNA regions and gives three independent results: 1) presence of a 23S

rRNA gene region which is common to all Legionella species (Lspp) and serogroups, 2) pres-

ence of a conserved portion of the mip gene common to all L. pneumophila (Lp) serogroups,

and 3) presence of the wzm gene specific for L. pneumophila serogroup 1 (Lp1). Briefly, 5 μL of

nucleic acid extract from a water sample or Legionella isolate were added to a PCR master mix

containing 0.2 μL of each primer (50 μM), 0.25 μL of each probe (25 μM), 12.5 μL Quanta Per-

feCTa Multiplex qPCR SuperMix (Quanta Biosciences, Gaithersburg, MD), 4.8 μL of nucle-

ase-free water (Promega), and 0.5 μL internal inhibition control (optimized to be detected at a

crossing threshold value of 30–35). The reactions were performed in 96-well optical reaction

plate in an Applied Biosystems 7500 Fast Real-Time PCR instrument (ThermoFisher, Wal-

tham, MA) under the following cycling conditions: 3 min at 95˚C and then 40 cycles of 15 sec-

onds at 95˚C followed by 45 seconds at 60˚C. Using this assay, a DNA extract containing Lp1

DNA would result in positive crossing threshold values for all three targets while a sample con-

taining only Legionella DNA from species other than L. pneumophila would result in positive

crossing threshold values for the 23S target only. An Lp1 gDNA positive control (optimized to

be detected at a crossing threshold value of 30–35) and nuclease-free water (Promega) negative

control were run on each 96-well plate. All samples and controls were run at least in duplicate.

Legionella culture

Water samples that tested positive for Legionella by PCR were processed and plated for culture

as previously described [21]. Briefly, direct culture was performed by plating 100 μl of CT

water directly onto BCYE agar plates with and without antibiotic selection [polymyxin B (1000

U/L), vancomycin (5mg/mL), cyclohexamide (80 mg/mL), glycine (2 g/L)]. Additionally, a 10

mL aliquot of each sample was centrifuged for 20 minutes at 4700 x g at ambient temperature,

the pellet resuspended in 500 μl sterile water, acid-treated (0.2M KCL, 0.2M HCL) for 15 min-

utes, and then 100 μl plated onto BCYE with antibiotic selection and incubated at 35˚C with

2% CO2. At 3 and 7 days post-inoculation, a dissecting microscope was used to select suspect

Legionella colonies and the colonies streaked onto BCYE agar with and without cysteine.

Legionella and bacterial communities in US cooling towers
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Cysteine auxotrophs were then streaked for isolation on BCYE agar. The accuracy of Legionella
enumeration can be variable among testing laboratories [22] and was not within the intended

scope of this study.

Legionella isolate characterization

DNA from Legionella isolates identified by cysteine auxotrophy was analyzed by multiplex

PCR as described above. Isolates identified by PCR as Lp1 were frozen for future reference.

Isolates identified by PCR as Lp but not serogroup 1 were further characterized by slide agglu-

tination and direct fluorescence antibody testing as previously described [23, 24]. Species

other than Lp were identified by mip sequencing using a published method [25]. Sanger

sequence reads of isolate mip sequences were assembled into final contigs which were used to

query the National Center for Biotechnology Information (NCBI) GenBank nucleotide data-

base using the Basic Local Alignment Search Tool (BLAST). Alignments of 96% or greater

identity over at least 98% of double stranded consensus were considered a species match. In

cases where mip sequencing could not resolve between highly related species, isolates were fur-

ther assayed by slide agglutination using species-specific antibodies. Isolates with low or poor

alignment to known Legionella species or that would not amplify mip with the traditional

primers were categorized as potential novel Legionella species.

16S rRNA amplicon sequencing

Amplicon libraries of the bacterial 16S rRNA gene from water samples and control mock com-

munities were prepared according to the Illumina MiSeq “16S Metagenomic Sequencing

Library Preparation” protocol (Illumina, San Diego, CA) and sequenced by an Illumina MiSeq

instrument using a MiSeq v3 Reagent Kit according to the “Illumina 16S Metagenomic

Sequencing” protocol (Illumina). Sequence data were deposited in the NCBI Sequence Read

Archive under BioProject ID: PRJNA391126. Raw sequence data from the forward read were

cleaned to remove reads with primer mismatches, missing or low (below 25) quality scores,

less than 150 base pairs or greater than 350 base pairs, and more than 6 ambiguous bases. Data

from samples with fewer than 100,000 remaining reads were discarded and the sample was

resequenced. Sequence reads were further analyzed using Quantitative Insights into Microbial

Ecology (QIIME) open source software [26] to determine the abundance of operational taxo-

nomic units (OTUs) present in each sample. OTUs were defined as a subset of reads sharing

�97% sequence identity and taxonomic identities were determined with the default classifier

used in QIIME (i.e. Ribosomal Database Project).

Data analysis

For PCR and culture results, a simple descriptive analysis was performed to examine relation-

ships. The non-parametric Spearman correlation coefficient (assuming non-Gaussian distri-

bution) r value was used to determine the significance of the abundance of Legionella DNA

versus the number of taxa in the samples. Significance of the relationships between PCR and

culture results and Legionella DNA abundance and total number of taxa present in a sample

was determined via unpaired t test. The Mann-Whitney test was used to compare the relative

abundance of Proteobacteria, Comamonadaceae, and Pseudomonadaceae in samples with dif-

ferent PCR and culture results.

Legionella and bacterial communities in US cooling towers
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Results

Legionella DNA is prevalent among US cooling tower water samples

A total of 196 CT water samples were received for testing during the summer of 2016. Initial

screening of the CT samples using multiplex PCR indicated the presence of Legionella DNA

(Lspp, Lp, or Lp1) in 164 (84%) samples (Fig 1A). Of the PCR-positive results, 39 (24%) were

positive for Lp1, 24 (15%) for Lp but not Lp1, 101 (62%) for Lspp alone, and 2 were identified

by the internal control to contain contaminants that resulted in PCR-inhibition (Fig 1B).

Diverse Legionella isolated from PCR-positive cooling tower water

samples

The 164 PCR-positive samples and the 2 PCR-inhibited samples were cultured and resulting

Legionella isolates were characterized. Seventy-nine (47%) of these 166 samples, including one

of the PCR-inhibited samples, were culture-positive, 41 (52%) of which were positive for more

than one type of Lspp or Lp serogroup isolate (Fig 1B). Lp was recovered from 53 (32%) cul-

tured samples. Lp1 was isolated from 40 samples, 19 (47%) of which were not specifically iden-

tified by PCR to contain the Lp1 DNA target (Fig 1B). In addition, at least one other Lp

serogroup or Lspp isolate was recovered from 29 (72%) of the Lp1 culture-positive samples.

(Fig 1B). Notably, the overall PCR crossing threshold values for detection of Legionella DNA

did not correlate with culturability of Legionella bacteria (S1 Fig).

Legionella detected in CT samples across US climate regions

The National Oceanic and Atmospheric Administration (NOAA) recognizes nine climate

regions within the US: Central (C), East North Central (ENC), Northeast (NE), Northwest

(NW), South [Central] (SC), Southeast (SE), Southwest (SW), West (W), and West North Cen-

tral [27]. While we were unable to include CTs from the West North Central region in this

study, Legionella DNA was detected in CTs from each of the eight regions contributing sam-

ples ranging from 50% (n = 6) in the NW region to 95% (n = 20) in the SE region (Fig 2A).

While 47% of all PCR-positive samples (n = 164) were culture-positive, the regional percent-

ages of culture-positive samples were more highly variable than PCR-positive results (Fig 2B).

Excluding regions with <10 samples (NW and SW), positive culture results among PCR-posi-

tive samples ranged from 17% (n = 12) in the ENC region to 77% (n = 39) in the C region. A

diverse range of Lspp were recovered across all regions (Fig 2C). Of all isolates recovered

(n = 144), the most common species were L. pneumophila (53%), L. anisa (22%), and L. rubri-
lucens (9%) (Fig 2C). Though many different serogroups of L. pneumophila were recovered

and identified by DFA, 51% (n = 76) of these were Lp1, which comprised the highest percent-

age of L. pneumophila isolates from nearly every region (Fig 2D). Importantly, though the

majority of the PCR-positive results in each region identified Lspp only (Fig 2A), Lp and Lp1

isolates were often recovered from these same samples (Figs 1A, 2C and 2D).

Legionellaceae relative abundance has a positive correlation with

microbiome diversity

16S rRNA amplification and sequencing were successfully performed on 155 CT water sam-

ples. We observed a statistically significant positive correlation (r = 0.63, p<0.0001) between

the abundance of Legionellaceae OTUs and the number of bacterial taxa present in a sample, a

trend observed in all PCR-positive samples, regardless of which targets were identified (Fig

3A). The trend of higher relative Legionellaceae abundance in samples with more diverse taxa

was maintained across all US regions represented in the study (S2A Fig). Comparison of

Legionella and bacterial communities in US cooling towers
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Fig 1. Cooling tower locations and PCR and culture results overview. The CT samples in this study were from geographic locations across

the US (A). The approximate longitude and latitude of the city for each CT location is plotted on the map which was generated with SimpleMappr

(www.simplemappr.net). CTs that were positive for Legionella DNA by PCR are represented by red triangles [PCR (+)] and those negative by PCR

are shown as blue circles [PCR (-)] (A). PCR (+) refers to a positive result for any of the three discrete probes in the PCR assay (Lspp, Lp, Lp1) (A).

Each sample was assayed by PCR (A, B) and PCR-positive samples underwent culture (B). Samples that yielded no isolates were culture-negative

[Culture (-)]. PCR-negative samples were not cultured (NC).

https://doi.org/10.1371/journal.pone.0189937.g001
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samples by overall PCR result revealed that PCR-negative samples exhibited both low Legionel-
laceae abundances and diversity of other microbial taxa (Fig 3B and 3C). Compared to other

taxa, we did not observe a significant difference in the average relative Legionellaceae abun-

dances in PCR-positive versus negative samples. However, there was a significant difference in

the number of taxa of PCR-positive versus negative samples (p<0.0001), indicating diversity

of taxa in a sample positively correlates specifically with the detection of Legionella DNA by

PCR. Of the subset of samples that were PCR positive, there was no difference in the levels of

Legionellaceae abundance or taxa diversity between culture-positive and culture-negative sam-

ples (Fig 3B and 3C). Additionally, we observed no variation in the Legionellaceae relative

abundance or diversity of taxa among Lp1, Lp, or Lspp PCR or culture results (data not

shown).

Bacterial phyla present in cooling tower samples are homogenous

across US

The top five most abundant bacterial phyla for each sample were identified based on 16S

rRNA amplicon sequencing results. The most abundant phyla on average from all samples

were: Proteobacteria (79.5%), Bacteroidetes (8.1%), Cyanobacteria (2.2%), Planctomycetes

Fig 2. Geographic distribution of results. Samples from eight US climate regions [Central (C), East North Central (ENC), Northeast (NE), Northwest

(NW), South [Central] (SC), Southeast (SE), Southwest (SW), and West (W)] were assayed by PCR (A) and culture (B). Specimens that were positive for

any of the targets by PCR underwent culture. Isolates were identified to the species (C) and L. pneumophila serogroup (D) level.

https://doi.org/10.1371/journal.pone.0189937.g002
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(1.8%), and Verrucomicrobia (0.6%). These abundances were largely consistent across all US

climate regions included in the study (S2B Fig). However, the PCR-negative samples had a

higher average abundance of Proteobacteria (98.7%) in comparison to the PCR-positive sam-

ples (78.0%) (p<0.0001; Fig 4A). Conversely, there were no marked differences between the

major phyla of samples that were culture positive versus culture negative (Fig 4B).

DNA from the Proteobacteria phylum represented the majority of DNA abundance in

every sample. Notably, this phylum contains Legionellaceae. However, analysis of the five most

abundant Proteobacteria families per sample revealed the families with highest average abun-

dance were: Comamonadaceae (22.2%), Pseudomonadaceae (19.0%), Erythrobacteraceae
(3.7%), Chromatiaceae (2.4%), and Sphingomonadaceae (2.4%). Comamonadacaeae and Pseu-
domonadaceae were among the highest abundance Proteobacteria families across all US cli-

mate regions, though there was variation in the other three most abundant families by region

(S2C Fig). However, samples in which Lspp were not detected by PCR had a much lower aver-

age relative abundance of Comamonadaceae (3%) and higher average relative abundance of

Pseudomonadaceae (64%) compared to the overall Legionella PCR-positive samples (24% and

Fig 3. Samples with higher diversity of taxa correlate with higher levels of Legionellaceae abundance. PCR positive samples were analyzed by 16S

rRNA amplicon sequencing and the relative Legionellaceae abundance of each was compared to the number of bacterial families (relative abundance >1%)

detected and organized by initial sample multiplex PCR result (A). The relative Legionellaceae abundance (B) and number of taxa (C) of samples that were

positive or negative for multiplex PCR and culture were analyzed. Bars represent the geometric (B) or arithmetic (C) mean and error bars indicate standard

deviation.

https://doi.org/10.1371/journal.pone.0189937.g003
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16% for Comamonadaceae and Pseudomonadaceae, respectively) (Fig 4C). Additionally, 2 of

most abundant Proteobacteria families within the PCR-negative samples were different from

the overall average profile: Oxalobacteraceae (8%), and Xanthomonadaceae (1.4%) (Fig 4C).

Culture-positive samples had a very similar Proteobacteria family profile to the overall PCR-

positive samples while culture-negative samples had a slightly lower abundance of Comamona-
daceae (19%) and somewhat higher abundance of Pseudomonadaceae (19%) than the culture

positive samples (29% and 12%, respectively), similar to the trend seen in PCR-negative sam-

ples (Fig 4D).

Microbiome changes over time in a subset of CTs does not correlate with

culturability of Legionella

We compared seven CTs from the same region (Pinellas County, Florida, SE) in order to track

changes in individual microbial communities over time (Fig 5 and S3 Fig). In April, all of the

CTs were PCR-positive for Lspp but no Legionella isolates were recovered (Fig 5A). Three

months later, two of the CTs became PCR-positive for Lp1, though an Lp1 isolate was only

recovered from one of these and Lspp isolates were recovered from two other towers (Fig 5B).

However, there was not a clear trend in changes to the composition of the five most abundant

bacterial phyla or Proteobacteria families from the CTs that became Lp1 PCR-positive or cul-

ture-positive (S3 Fig and Fig 5). Among all seven towers, the most notable change in the phyla

Fig 4. Phyla and Proteobacteria family profiles related to PCR and culture results. The composition of the five most abundant phyla (A, B) and five

most abundant Proteobacteria families (C, D) present in cooling tower water samples were compared by overall Legionella PCR result (A, C) and culture

result (B, D). Note that only samples that were positive by PCR underwent culture.

https://doi.org/10.1371/journal.pone.0189937.g004
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Fig 5. Comparison of Pinellas County CT bacterial family compositions between spring and summer 2016. Multiplex PCR results, culture

results, and five highest abundance Proteobacteria family compositions were compared between spring (A) and summer (B) 2016. These samples were

Legionella and bacterial communities in US cooling towers
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profiles between the seasons was an overall increase in the relative abundance of Cyanobacteria

and Verrucomicrobia (S3 Fig). Shifts in the highest abundance Proteobacteria families in each

tower between seasons were more apparent, with an overall relative abundance reduction of

Pseudomonadaceae and increase in Rhodocyclaceae and Methylophilaceae (Fig 5). Two of the

towers had a dramatic increase in the relative abundance of Legionellaceae, one of which

became culture-positive and the other did not (Fig 5). Legionellaceae were often not among the

five highest abundance Proteobacteria families in these samples and therefore this family is not

always included in a sample graph, though Legionella was detected by PCR.

Discussion

CTs are the most frequently reported non-potable water source of LD outbreaks [10] and can

involve large numbers of cases [12, 28]. However, the prevalence of Legionella in US CTs not

associated with disease has not been studied extensively. While our sample set relied on avail-

ability from external laboratories, the large number and diverse geographic origins of samples

suggest that Legionella DNA is common in CT water throughout the US. Assuming that PCR-

negative CT samples in this study would also be culture-negative, the overall percentage of cul-

ture-positive CT samples examined would be approximately 40% (79/196). A similar propor-

tion of Legionella culture-positive CTs has been reported from surveys conducted in Asia,

Australia, and Europe [7, 8, 29–31]. Additionally, Lp has also been found to be the most highly

recovered Legionella species in multiple studies outside of the US [7, 8, 30–32], underscoring

the ubiquity of this pathogen within CTs across the globe. Similarity, cooling towers sampled

as part of a recent large outbreak investigation in New York City also demonstrated similar

detection levels of Lp1 DNA (38%) and isolates (25%) [33].

Multiplex PCR identified over twice as many samples to be positive for Legionella DNA

than were culture-positive. However, nearly half of the samples that were culture-positive for

Lp1 were not identified as Lp1-positive by PCR. This could be due to multiple factors, includ-

ing possible higher sensitivity of the Lspp primers and probe set, quenching of Lp and Lp1

primers in samples with high abundance of non-pneumophila Legionella species, or simply an

artifact of the automated DNA extraction method used in this study. These findings are impor-

tant to consider, especially when using PCR to screen waters associated with an Lp1-related

LD outbreak response. Our results indicate that, even when screening for Lp1, all samples that

are PCR-positive for any Legionella marker should be cultured since samples that are only

PCR-positive for Lp or Lspp markers may still contain viable Lp1. Future studies may indicate

whether or not this difference in detection of Lp1 by PCR and culture is also common among

outbreak-related CT waters.

Our findings may have implications surrounding the use of PCR as a screen for routine

maintenance of CT water. While maintaining undetectable levels of Legionella by culture is

often the gold standard for water management, having undetectable levels of Legionella DNA

may not be a reasonable expectation in all settings. Results from this study show that Legionella
DNA is present in the majority of CTs sampled from across the US. Consequently, even with

an effective water maintenance program, one would expect Legionella DNA from killed or

inhibited bacteria to be present in CT water. Indeed, out of 196 CT samples, 84% were PCR-

positive for Legionella but only 47% of these PCR-positive samples were culture positive, sug-

gesting that a substantial portion of the culture-negative CTs contained DNA from Legionella

PCR-positive for Lspp marker only (Lspp) or all three Lspp, Lp, and Lp1 markers (Lp1). Samples were culture-positive for non-Lp species (Lspp), Lp1

isolates only (Lp1), or were culture-negative [(-)]. In samples where Legionella spp. were detected by PCR, Legionellaceae was not always among the

bacterial families with the highest abundance.

https://doi.org/10.1371/journal.pone.0189937.g005
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that had been rendered un-culturable by standard methods (Fig 2). Whether this indicates loss

of viability or a switch to a viable but nonculturable (VBNC) state that still has the potential to

cause disease warrants further study. Therefore, presence of Legionella DNA alone would not

be an accurate indicator of the effectiveness of a water maintenance program. It is tempting to

suggest a potential for threshold values for PCR that quantify an abundance of Legionella DNA

at which remediation would be required. However we did not observe a correlation between

the PCR crossing threshold values for detection of Legionella DNA and the ability to culture

Legionella bacteria. It should be noted that this study was limited by variation in sample collec-

tion methods and differences in time between collection and CDC processing, which could

affect DNA integrity and viability of Legionella. In addition, we did not perform amoebic co-

culture to increase recovery of VBNC bacteria. Future studies with rigorous collection and

testing timeframes and more aggressive recovery techniques may provide further insight into

these issues.

The results of this study were also limited by the possibility of selection bias in the sample

set we received from CTs undergoing routine water testing. One may suspect that CTs under-

going routine testing are likely to be covered by a water management program and therefore

might be better managed and have less detectable Legionella than CTs that are not routinely

screened. Conversely, whether or not some of the included CT samples were collected because

of previous concerns about Legionella is unknown. Additionally, PCR-negative samples were

not cultured in this study and it is possible that some of these samples may have also yielded

Legionella isolates.

In this study, Lp1 was overall the most commonly isolated serogroup of the most frequently

cultured Legionella species. Of note, 72% of samples where Lp1 was recovered also contained

at least one other Lp or Lspp, indicating a possible correlation between diversity of Lspp in

water and culturability of Lp1. This percentage may be an underestimate as it has been

reported that the growth conditions used in this study (BCYE agar, 2.5% CO2, 35˚C) are not

optimal for some non-pneumophila species [34]. Therefore, if a non-Lp Legionella spp is iso-

lated from a CT, the risk of concurrent or future growth of Lp1 should be considered high and

water management procedures reviewed. Further research is needed to assess the relationship

of non-Lp Legionella spp on Lp presence in environmental sources. Notably, van der Mee-

Marquet et al. [35] reported that the presence of L. anisa potentially hindered the ability to iso-

late Lp and therefore the detection of non-pneumophila species may indicate a risk for Lp co-

contamination. Additionally, all of the Lspp that have been identified in the literature are con-

sidered to be potentially pathogenic [5], especially for certain high-risk groups such as immu-

nocompromised persons. Careful maintenance of CTs with water management programs

designed to monitor water quality parameters and ensure adequate disinfection is recommend

to reduce risk (https://www.cdc.gov/legionella/maintenance/wmp-toolkit.html).

Microbiome analyses using 16S amplicon sequencing showed an overall positive correlation

between the relative abundance of Legionella in CT microbiomes and the diversity of the taxa

present. In addition, results indicated that diversity of taxa in a sample positively correlates

specifically with the detection of Legionella DNA by PCR. This correlation is not surprising

given that Legionella is a fastidious organism and the environment in which it thrives (warm

water with high concentration of nutrients or sediment, established biofilm, and amoebae for

replication [1]) would likely be permissive to many other bacterial taxa. Alternatively, low bio-

diversity samples could be dominated by a few microorganisms that outcompete or exclude

Legionella spp.

Additionally, some differences were observed in the bacterial community composition

present in PCR-positive versus PCR-negative samples. Overall, PCR-negative samples con-

tained a higher average abundance of Proteobacteria than the PCR-positive samples.
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Furthermore, within the Proteobacteria phylum, PCR-negative samples had a much higher

average abundance of Pseudomonadaceae and lower abundance of Comamonadaceae. It is pos-

sible that the presence of Pseudomonadaceae members, commonly found in biofilm, have an

antagonist effect on Legionella populations. Notably, these results are limited by the low num-

ber of PCR-negative samples (n = 32) available for analysis. Further studies that include a

higher number of PCR-negative samples will help refine these observations.

Unexpectedly, the composition of bacterial phyla and Proteobacteria families within the

microbiome of CTs proved to be remarkably homogenous across all US climate regions

included in the study. This finding indicates that climate and geography may have little influ-

ence on the communities present in CTs. Interestingly, a microbiome survey of industrial CTs

from Queensland, Australia also reported Proteobacteria and Bacteroidetes to be among the

most abundant phyla, though Firmicutes were the overall dominant taxa [17]. This suggests

that there may be broad similarities in CT microbial communities not only in the US but

across the globe. Additionally, we did not see an obvious trend in the microbiomes of three

individual CTs (sampled in different seasons) that shifted from culture-negative to culture-

positive over time, a finding supported by the results of Wéry et al. [16] that the microbial

community structure of a CT was unchanged during Lp proliferation. However, our findings

involved a small number of CTs examined over time and further studies are needed to provide

robust support for these initial results.

We have shown that Legionella bacteria DNA is common in a large sample of US CTs not

known to be associated with disease, and Lp1 could be cultured from nearly 1 in 4 of the CTs

with Legionella DNA detected. This suggests that, on its own, the presence of Legionella in a

CT is not sufficient to cause disease and other dynamics, such as cooling tower design and

proximity of a susceptible population, may contribute to a CT with Legionella becoming the

source of LD outbreak. Additionally, our findings suggest that the high reported LD incidence

in some parts of the country and low reported incidence in others [36] is likely not due to dif-

ferences in the distribution of Legionella in CT waters. The geographic disparity in reported

LD incidence is more likely due to several factors, including regional differences in use of cool-

ing towers, Legionella exposure from other aspects of the built environment, population den-

sity and susceptibility, frequency in LD diagnostic testing, and public health surveillance and

reporting. However, it is important to note that in some regions our ability to examine Legio-
nella detection in CTs was limited by a small number of samples.

Altogether, our findings underscore the high frequency of Legionella in CTs throughout the

US and the homogeneity of the microbiomes in these CTs. Therefore, the potential exists for

LD cases and outbreaks to occur across the continental US wherever a colonized CT and a sus-

ceptible population coincide. However, CT waters specifically associated with outbreaks may

have differences in Legionella abundances and types and may contain altered microbial com-

munities compared to our findings. More focused research on CTs with different designs and

in various locations over time will likely further contribute to our understanding of these

dynamic systems. Detailed examination of the microbiome and physical parameters such as

water quality metrics may help elucidate what factors cause Legionella in a CT to shift from

environmental bacteria to outbreak pathogens.

Supporting information

S1 Fig. Sample PCR crossing threshold values by culture result. Multiplex PCR crossing

threshold values for the 23S rRNA pan-Legionella marker were compared between culture-

positive [Culture (+)] and culture-negative [Culture (-)] samples. NS = not significant (Mann-
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Whitney test, p = 0.54).

(TIF)

S2 Fig. 16S rRNA amplicon sequencing results by US climate region. Samples were analyzed

by 16S rRNA amplicon sequencing and the relative Legionellaceae abundance of each was

compared to the number of bacterial families (relative abundance >1%) detected and orga-

nized by US climate region (A). The five highest abundance phyla (B) and five highest abun-

dance families from the Proteobacteria phylum (C) were identified for every sample in each

region.

(TIF)

S3 Fig. Comparison of Pinellas County CTs bacterial phyla compositions between spring

and summer 2016. Multiplex PCR, culture, and the five highest abundance phyla composi-

tions were compared between spring (A) and summer (B) 2015. TM7 is a candidate phylum.

(TIF)
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