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Abstract: The fluorination of dendritic structures has attracted special attention in terms of
self-assembly processes and biological applications. The presence of fluorine increases the
hydrophobicity of the molecule, resulting in a better interaction with biological membranes and
viability. In addition, the development of 19F magnetic resonance imaging (19F-MRI) has greatly
increased interest in the design of new fluorinated structures with specific properties. Here, we present
the synthesis of new water-soluble fluorinated carbosilane dendrons containing fluorinated chains
in different positions on the skeleton, focal point or surface, and their preliminary supramolecular
aggregation studies. These new dendritic systems could be considered as potential systems to be
employed in drug delivery or gene therapy and monitored by 19F-MRI.
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1. Introduction

Since their discovery, the well-defined architecture of dendrimers has promoted their use thanks to
their highly multifunctional skeleton, which not only allows for the concentration of a high number of
units of interest in the same structure but also permits fragments of a different nature to be introduced,
combining both properties. Therefore, the introduction of different types of fragment enables change in
the physicochemical properties of the dendritic structure, yielding molecules with relevance in diverse
fields such as catalysis [1], material science [2] or biomedicine [3].

Taking advantage of these structural features of dendrimers, fluorination has attracted the attention
of researchers to explore catalytic [4] or electronic properties [5], although special interest has been
shown in supramolecular chemistry [6] or biology [7] in recent years. Moreover, the presence of fluorine
increases lipophilicity, changing the amphiphilic character. Fluorinated dendritic systems of different
topologies have been shown to form micelles with encapsulation ability [8,9] or dendrimersomes
with thicknesses similar to biological membranes [10,11]. In addition, the presence of fluorine
stimulates the interaction between biomembranes, imparting a favorable impact on biocompatibility.
In this sense, fluorinated naked dendrimers or supramolecular dendritic aggregates with improved
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drug or gene delivery activity and viability have been designed, producing better results than their
perhydrogenated counterparts [12,13]. Extensive research on fluorine-containing PAMAM dendritic
systems in biomedical applications has been described elsewhere. However, carbosilane dendrimers
remain scarcely explored in this field, with few examples of high generation fluorine-doped carbosilane
dendrimers [14–16] or dendrons [17] reported for other applications.

Fluorine is largely absent in biological systems (with just small traces found in bones or teeth);
however, with its 100% natural abundance, high receptivity (83% with respect to 1H), equivalent
magnetic resonance to 1H (94%) and a broad-spectrum range, these nuclei are promising for use
in singular magnetic resonance imaging (MRI) techniques [18]. Fluorinated dendrimers could be
monitored by 19F-MRI to create personalized therapy, although aqueous solubility with a high stability
would be required for this purpose. Consequently, the design of dendritic systems for this application
remains a difficult task and the synthesis of adequate fluorine-containing dendrimers with specific
MRI properties remains a challenge.

Herein, we present the synthesis of new water-soluble dendrons functionalized with fluorinated
chains at the periphery or focal point, employing a simple synthetic route that makes use of
perfluorocarbon compounds. Ammonium or sulfonate groups are used to provide aqueous solubility.
In addition, differences in the presence of an ester or amide bond as a linker are discussed and
self-assembly properties are evaluated.

2. Results and Discussion

Dendron topology was selected to control the homogeneity of the structure and particularly
taking into account the possible dendronization processes over other platforms, such as nanoparticles,
polymers or drugs. In addition, perfluorinated derivatives were chosen based on their well-known
chain length–bioaccumulation relationship—the limit was established in six perfluorinated carbons to
be considered as non-bioaccumulative compounds [19–21]. All employed fluorinated precursors for
the dendron functionalization used in this work and are shown in Figure 1.
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Figure 1. Fluorinated reagents employed in the fluorine-containing dendrons synthesis.

2.1. Dendrons with Perfluorinated Fatty Acids at the Focal Point

The first synthetic strategy was directed toward the functionalization of the dendron focal point.
Considering the fluorinated precursors, the ester and the amide functional groups were selected to
act as linkers between the dendritic system and the perfluorinated chain. Furthermore, ammonium
groups were used in the periphery based on their previously reported capacity to bind nucleic material
of analogous perhydrogenated dendrons [22].

The initial approach to synthetize dendrons containing an ester bond as the anchor point involved
an esterification reaction between perfluorhexanoic acid and dendrons with a bromine atom at the focal
point and vinyl peripheral groups (BrG1V2) [23] in general basic pH conditions (K2CO3) (Scheme 1a).
Monitoring by 1H-NMR confirmed the formation of the expected product, although some hydrolysis
side products (ester bond disruption) were always observed; increasing the reaction time gave the
perfluorinated carboxylate compound and a dendron containing a hydroxylic group at the focal point
(Scheme 1b). The signals in 1H-NMR of different methylene groups identified in the spectrum are
detected at 3.44 ppm for the initial BrCH2– unit, 4.51 ppm for the ester group RFCOOCH2– and
3.52 ppm for the alcohol derivative HOCH2– (Figure S1). 19F-NMR experiments also confirmed the
presence of three fluorinated species showing resonances for the –CF2CO2– fragment at −119.9 ppm of
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the starting precursor perfluorohexanoic acid, −118.2 ppm for carboxylate derivative, and −116.3 ppm
for the compound containing the ester bond (Figure S2). The quick saponification process is attributed
to the presence of fluorine atoms in the substituents of the carbonyl group, which exert a strong electron
withdrawing effect. Consequently, the carboxylate derivative formed is quite stable and stimulates the
complete hydrolysis of the ester bond.
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Scheme 1. (a) Perfluorinated chain introduction at the focal point of the dendron; (b) basic hydrolysis
reaction of the ester bond (see Table 1).

Aiming to reduce the rate of the basic hydrolysis reaction or to fully prevent it, several modifications
of the synthetic protocol were studied, including the nature of basic agent, the number of equivalents of
the base employed and the temperature. The conditions tested are shown in Table 1. Unfortunately, it
was not possible to obtain the pure esterification product, but some conclusions can be drawn: (i) high
temperature and basic conditions are necessary for both esterification and hydrolysis reactions and
(ii) the nature of the base and stoichiometry affect the process.

Table 1. Evaluated reaction conditions in the esterification process.

Base Equivalents Temperature Esterification (%) Hydrolysis (%)

K2CO3 1 90 50 50
K2CO3 1 r.t. 0 0
K2CO3 0.5 90 65 35
K2CO3 0.5 r.t. 0 0

NaHCO3 1 90 70 30
NaHCO3 1 r.t. 0 0
NaHCO3 0.5 90 301 251

NaHCO3 0.5 r.t. 0 0
NEt3 1 90 15 85
NEt3 1 r.t. 0 0

1 Precursors were also observed.

Keeping in mind that the basic conditions are responsible for the disruption of the ester bond,
a new strategy was designed to obtain the desired dendrons with an ester group as the anchor point.
Here, new dendrons with a hydroxyl unit at the focal point, HOGnVm, which can react with acyl
halides, were necessary for the synthesis. These dendritic wedges were synthetized in two steps from
BrGnVm (n = 1, m = 2 (i); n = 2, m = 4 (ii); n = 3, m = 8 (iii)) dendrons, as illustrated in Scheme 2.

The first step entailed coupling the sodium acetate to the dendrons i–iii to give the dendritic
systems CH3CO2GnVm (n = 1, m = 2 (1); n = 2, m = 4 (2); n = 3, m = 8 (3)). The reaction was
monitored by 1H-NMR experiments until complete, when the resonance at 4.00 ppm was attributed to
the methylene unit attached to oxygen atom –CO2CH2–. In the 13C-NMR spectrum, the signal assigned
to the same fragment –CO2CH2– was detected at 64.1 ppm while the carbonyl group resonance was
distinguished at 171.0 ppm. The next step was the saponification reaction of the ester bond in basic
media (NaOH) to obtain the hydroxyl dendritic derivatives HOGnVm (n = 1, m = 2 (4); n = 2, m = 4
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(5); n = 3, m = 8 (6)). Again, the reaction was monitored by NMR experiments, with resonances for the
HOCH2- fragment at 3.59 ppm in 1H-NMR and 62.5 ppm in 13C-NMR.Molecules 2020, 25, x FOR PEER REVIEW 4 of 15 
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Scheme 2. Synthetic route employed to prepare dendrons containing a hydroxyl group at the focal
point illustrated for the first generation.

The preparation of cationic fluorinated dendrons with an ester bond through this synthetic route
was initially studied for the first generation dendron 4 and perfluorobutyryl chloride (Scheme 3).
After 2 hours, the reaction was monitored by 1H-NMR, confirming the formation of the desired
product C3F7CO2G1V2 (7). Characteristic signals of this compound were observed at 4.37 ppm for
–CO2CH2– in the 1H-NMR spectrum (Figure S3), 68.2 ppm and 158.2 ppm for the methylene unit and
the carbonyl group in the same fragment in the 13C{1H}-NMR spectrum (Figure S4), and −127.2 ppm
(CF3CF2CF2CO2–), −119.5 ppm (CF3CF2CF2CO2–) and −81.0 ppm (CF3CF2CF2CO2–) in 19F-NMR
experiments (Figure S5). Chemical shift assignments for the carbon atoms in the fluorinated chain
were determined by 13C{19F}-NMR (Figure S6), with the coupling constants; 1J(13C-19F) around 280 Hz
and 3J(13C-19F) around 30 Hz were also obtained. In this case, no side products from hydrolysis were
observed and 1H-NMR stability experiments revealed that dendritic wedge 7 was stable for months
under an inert atmosphere. A thiol-ene reaction was then employed to introduce cationic groups
at the periphery using 2-(dimethyl)ethanethiol hydrochloride. Unfortunately, side products from
the hydrolysis reaction were observed again, probably due to a combination of several factors such
as an amino group-containing reagent acting as base and ultraviolet radiation, which results in the
overheating of the solution.
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Scheme 3. Alternative route to the preparation of fluorinated dendrons with an ester bond.

Considering the low stability of the ester bond in the presence of fluorine atoms with respect
to the analogous hydrocarbon compounds, efforts to obtain fluorinated amphiphilic dendritic
wedges were centred on the amide linker strategy. In this case, the selected precursors were
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ammonium-functionalized dendrons with an amine group at the focal point NH2G2(SNMe3I)4 (iv) [24]
because it was not possible to prepare the amine derivative analogous to compound 4 in good yields
through the Gabriel synthesis for primary amines. The formation of the amide bond was carried out by
employing perfluorobutyryl chloride and dry DMF as the solvent at 0 ◦C (Scheme 4). The colorimetric
Kaiser test confirmed the absence of free amine groups in the reaction medium. Allylamine was then
added to the solution to consume all of the perfluorinated compound. The presence of a new amide
derivative was also confirmed in situ by 1H-NMR experiments showing a resonance at 3.30 ppm for
–CONHCH2– (Figure 2).
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Scheme 4. Synthetic route for cationic amide bond-containing dendrons with a perfluorinated chain at
the focal point.

A mixture of counter anions (Cl− and I−) was obtained during the amide bond formation
due to HCl release in this process. In order to obtain the chloride derivative as the only
product, a counter-ion exchange was carried out. Firstly, iodide (I−) and chloride (Cl−) ions
were replaced by a hexafluorophosphate (PF6

−) anion by adding an aqueous solution of sodium
hexafluorophosphate (NaPF6) to produce C3F7CONHG2(SNMe3PF6)4 (8). This process modified
the dendron solubility in water, a necessity to accomplish a second derivatization. Hence,
tetrabutylammonium chloride was added to a solution of compound 8 in acetone to give the amphiphilic
dendron C3F7CONHG2(SNMe3Cl)4 (9). NMR experiments (1H, 13C, 19F) show similar patterns for
compounds 8 and 9 (Figure 2). The only difference was observed in the 19F-NMR spectrum where the
PF6

− counter-anion affords a resonance at −73.5 ppm along with the resonances for the perfluorinated
unit, a singlet at −128.3 ppm (CF3CF2CF2CO2–), a quadruplet at −121.8 ppm (CF3CF2CF2CO2–) and
a triplet at −82.2 ppm (CF3CF2CF2CO2–). In our hands, and due to the low solubility of 9 and the
low relaxing times of carbon atoms, neither the carbons in the fluorinated chain nor in the carbonyl
group were observed in the proton or fluorine decoupling 13C-NMR experiments. For a representative
structure of compound 9 see below (vide infra).

Self-Assembly Assay of Dendron C3F7CONHG2(SNMe3Cl)4 (9)

Looking for micelle formation, the amphiphilic behaviour of fluorinated compound 9 was studied
by surface tension measurements using the Du Noüy ring method. The experiment was carried out
in an aqueous solution with an ionic strength because the presence of salts in the medium has been
shown to reduce the critical micellar concentration (CMC) of compounds [25,26]. To determine the
optimum salt concentration, a solution of dendron 9 (1 mM) in deionized water was incubated with
increasing concentrations of salts. The measurement at 30 ◦C showed stable surface tension values
starting from 10 mM of NaCl (Figure 3a). For that reason, the selected salt concentration to perform
the measurements with dendrons was 12 mM.
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(9) at increasing concentration of NaCl; (b) Surface tension measurements of dendritic wedge
C3F7CONHG2(SNMe3Cl)4 (9) at the ionic strength of 12 mM of NaCl.

A CMC determination from an aqueous solution of dendritic wedge 9 was studied by increasing
the concentration of dendrons from 10−7 to 10−3 M (Figure 3b). Regrettably, it was not possible to reach
stable values of surface tension in the range studied, which indicated that the CMC value was above
1 mM. Considering the equivalency rule 1 CF2 ≈ 1.5 CH2 [27], the lipophilicity of the perfluorinated
chain in compound 9 (4–5 carbon atoms) should be near to a hydrocarbon fragment with six carbon
atoms. In that sense, the result found is in agreement with that described in the literature for analogous
dendrons with a hexanoate unit at the focal point—this does not generate micelles at concentrations
lower than 1 mM [22]. However, it is possible to conclude that the surface activity of 9 is higher
than that of the analogous hydrocarbon fatty acid-containing dendrons, as evidenced by the greater
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reduction in the surface tension of water at 1 mM of compound 9 to 34.6 mN/m with respect to the
analogous hydrocarbon dendron with a sixteen carbon atom chain (PalG2(SNMe3I)4) of 45.0 mN/m [22].

2.2. Dendrons with Perfluorinated Chains at the Periphery

The second synthetic strategy was the functionalization of the dendron periphery. The introduction
of fluorine-containing branches on the dendritic surface was performed through thiol-ene click
reactions for second- and third-generation carbosilane dendrons. Each generation contains different
proportions of the perfluorocarbon chain because water solubility could be affected by an incorrect
hydrophilic–lipophilic balance in the structure. For that reason, second-generation dendrons were
designed to contain just one perfluorinated chain while third-generation compounds include two.
In these cases, fluorinated fragments were introduced at the periphery to keep the orthogonal and
reactive group at the focal point available for dendronization processes. Sulfonate groups were selected
as ionic groups for these systems rather than ammonium groups, given that anionic units contribute to
higher water solubility and lower toxicity values.

As shown in Scheme 5, this synthetic route involves the initial incorporation of 1H, 1H,
2H,2H-perfluorooctanethiol over superficial allyl groups of the dendritic precursor with the phtalimide
unit at the focal point PhGnAm (n = 2, m = 4 (v); n = 3, m = 8 (vi)) [28] in a ratio 1:y, yielding
statistical decoration in the dendrimers due to the equal reactivity of the allyl groups [21], and the
subsequent functionalization of the rest of allyl groups with sodium 3-mercapto-1-propanesulfonate.
The thiol-ene functionalization of the surface was carried out in 4 h by a photocatalytic process using
2,2-dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator. Final deprotection of the focal point
with hydrazine hydrochloride at 90 ◦C affords the desired derivatives 10 and 11.

Molecules 2020, 25, x FOR PEER REVIEW 7 of 15 

 

respect to the analogous hydrocarbon dendron with a sixteen carbon atom chain (PalG2(SNMe3I)4) of 

45.0 mN/m [22]. 

2.2. Dendrons with Perfluorinated Chains at the Periphery 

The second synthetic strategy was the functionalization of the dendron periphery. The 

introduction of fluorine-containing branches on the dendritic surface was performed through thiol-

ene click reactions for second- and third-generation carbosilane dendrons. Each generation contains 

different proportions of the perfluorocarbon chain because water solubility could be affected by an 

incorrect hydrophilic–lipophilic balance in the structure. For that reason, second-generation 

dendrons were designed to contain just one perfluorinated chain while third-generation compounds 

include two. In these cases, fluorinated fragments were introduced at the periphery to keep the 

orthogonal and reactive group at the focal point available for dendronization processes. Sulfonate 

groups were selected as ionic groups for these systems rather than ammonium groups, given that 

anionic units contribute to higher water solubility and lower toxicity values.  

As shown in Scheme 5, this synthetic route involves the initial incorporation of 1H, 1H, 2H,2H-

perfluorooctanethiol over superficial allyl groups of the dendritic precursor with the phtalimide unit 

at the focal point PhGnAm (n = 2, m = 4 (v); n = 3, m = 8 (vi)) [28] in a ratio 1:y, yielding statistical 

decoration in the dendrimers due to the equal reactivity of the allyl groups [21], and the subsequent 

functionalization of the rest of allyl groups with sodium 3-mercapto-1-propanesulfonate. The thiol-

ene functionalization of the surface was carried out in 4 h by a photocatalytic process using 2,2-

dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator. Final deprotection of the focal point 

with hydrazine hydrochloride at 90 °C affords the desired derivatives 10 and 11.  

 

Scheme 5. Synthetic route for the preparation of anionic dendrons with a perfluorinated chain on the 

surface and an amino group at the focal point. 

The complete derivatization of the allyl unit was confirmed by the disappearance of resonances 

in the range 4.50–6.00 ppm in the 1H-NMR spectrum. New characteristic signals are located at 2.04 

and 2.72 ppm, corresponding to SCH2CH2(C6F13) and SCH2CH2(C6F13), respectively (Figure 4). 

Resonances of –SCH2CH2CH2SO3Na appear at 1.89 ppm for the internal methylene group, 2.52 ppm 

for –CH2– unit attached to the thioeter group and 2.85 ppm for the –CH2SO3Na methylene fragment, 

as described elsewhere [29]. In addition, the 19F-NMR spectrum shows resonances at −85.8 ppm for 

the –CF3 unit and −115.5, −123.0, −124.2 and −127.7 ppm for –CF2− fragments. Representative 

structures of compounds 10 and 11 aredrawn in Figure 5. 

Scheme 5. Synthetic route for the preparation of anionic dendrons with a perfluorinated chain on the
surface and an amino group at the focal point.

The complete derivatization of the allyl unit was confirmed by the disappearance of resonances
in the range 4.50–6.00 ppm in the 1H-NMR spectrum. New characteristic signals are located at
2.04 and 2.72 ppm, corresponding to SCH2CH2(C6F13) and SCH2CH2(C6F13), respectively (Figure 4).
Resonances of –SCH2CH2CH2SO3Na appear at 1.89 ppm for the internal methylene group, 2.52 ppm
for –CH2– unit attached to the thioeter group and 2.85 ppm for the –CH2SO3Na methylene fragment,
as described elsewhere [29]. In addition, the 19F-NMR spectrum shows resonances at −85.8 ppm for the
–CF3 unit and −115.5, −123.0, −124.2 and −127.7 ppm for –CF2− fragments. Representative structures
of compounds 10 and 11 aredrawn in Figure 5.
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Figure 5. Representative structures of fluorinated carbosilane dendrons.

3. Conclusions

A simple and rapid procedure has been designed to prepare ionic carbosilane dendrons
containing fluorinated units at two different positions in the skeleton. The first strategy incorporates
fluorine-containing chains at the focal point of cationic dendrons producing amphiphilic dendrons.
Although the amphiphilic compound 9 does not show supramolecular assembly formation in the
range 10−3–10−7 M, the synthetic route opens the door to extrapolate this procedure to dendritic
systems with appropriate hydrophilic–lipophilic balances that give rise to micelles. This property
can be obtained by increasing both the length of the perfluorinated unit at the focal point and the
generation of the dendron. The second approach affords anionic dendritic wedges with fluorinated
fragments at the periphery through thiol-ene click reactions. This family of compounds contains a
reactive amine group at the focal point available to be conjugated to nanostructured materials such as
nanoparticles or biomolecules through so-called dendronization processes. Both strategies produce
systems with fluorine units in the dendritic structure which may create delivery systems with the
potential to provide imaging agents for innovative 19F-MRI.
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4. Materials and Methods

4.1. Materials

Solvents and reagents were obtained from commercial sources. Et2O and DMF were appropriately
dried before use, while other reagents were employed without further purification. Dendritic
precursors BrGnVm (i–iii) [23], NH2G2(SNMe3I)4 (iv) [24], PhtGnAm (v–vi) were prepared as described
elsewhere [28]. Click reactions (thiol-ene addition) were carried out employing a HPK 125 W mercury
lamp (Heraeus Nobleligth; λmax = 365 nm). NMR spectra were recorded on a Varian Unity VXR-300,
Varian Mercury 300 or Varian 500 Plus instruments (Agilent Technologies, Palo Alto, CA, USA). Mass
spectra were recorded on an Agilent 6210 TOF LC/MS instrument (LECO Instrumentos S.L, Madrid,
Spain) for ESI–TOF. Surface tension was measured on a Lauda tensiometer TE 2/3 (LAUDA Measuring
Instruments, Königshofen, Germany) with Pt/Ir ring.

4.2. Surface Tension Measurements

The samples were prepared using Milli-Q water as the solvent to give solutions in a concentration
range of 0.1–1000 µM. In the case of salt solutions, NaCl was dissolved in Milli-Q water until reaching
a final concentration which was previously determined for each compound (12 or 20 mM). This
solution was used in the preparation of samples following the same procedure as that described
above. The surface tension of dendron solutions was determined at 30.0 ± 0.1 ◦C as a function of
the concentration using the ring method with a standard deviation lower than 0.1 mN/m. Using the
least-squares method, straight lines were fitted in the graphic surface tension versus the logarithm of
concentration curves, where the CMC values correspond to the sharp break point from both lines.

4.3. Experimental Data

CH3CO2G1V2 (1)

A solution of dendron BrG1V2 (i) [23] (1.000 g; 4.29 mmol) and sodium acetate (0.530 g; 6.46
mmol) in acetone (50 mL) was heated at 90 ◦C for 24 h in an ampoule with a high vacuum valve in the
presence of K2CO3 (1.200 g; 8.68 mmol) and 18-crown-6 (0.088 g; 0.33 mmol). Then, volatiles were
removed under vacuum and the crude product was extracted into Et2O (3 × 20 mL) and dried over
MgSO4. During the drying period, traces of silica gel were added to eliminate 18-crown-6 and the
desired dendron was obtained as an orange oil in excellent yield (92%).

1H-NMR (CDCl3): δ (ppm) 0.08 (s, 3H, –Si(CH3)), 0.61 (m, 2H, –OCH2CH2CH2CH2Si–), 1.34 (m,
2H, –OCH2CH2CH2CH2Si–), 1.60 (m, 2H, –OCH2CH2CH2CH2Si–), 1.98 (s, CH3COOR), 4.00 (t, 2H,
–OCH2CH2CH2CH2Si–), 5.66 (m, 2H, –SiCH=CH2), 6.02 (m, 4H, –SiCH=CH2).

13C-NMR: (CDCl3): δ (ppm) −5.49 (–Si(CH3)), 13.5 (–OCH2CH2CH2CH2Si–),
20.0 (–OCH2CH2CH2CH2Si–), 20.9 (CH3COOR), 32.1 (–OCH2CH2CH2CH2Si–), 64.1
(–OCH2CH2CH2CH2Si–), 132.9 (–SiCH=CH2), 136.6 (–SiCH=CH2), 171.0 (CH3COOR).

MS: [M + H]+ = 213.1341 Da (calcd. = 213.1305 Da).
Elemental analysis: C11H20O2Si (212.36 g/mol): calcd. = C, 62.21; H, 9.49; O, 15.07; Si, 13.22.

Found. = C, 62.46; H, 9.33.

CH3CO2G2V4 (2)

Compound 2 was prepared using the protocol described for 1, starting from BrG2V4 (ii) [23] (1.0 g;
2.18 mmol), sodium acetate (0.259 g; 3.16 mmol), K2CO3 (0.614 g; 4.44 mmol) and 18-crown-6 (0.063 g;
0.24 mmol). Yield: 98%.

1H-NMR: (CDCl3): δ (ppm) −0.07 (s, 3H, –Si(CH3)), 0.09 (s, 6H, –Si(CH3)), 0.56 (m, 6H,
–OCH2CH2CH2CH2Si–, –SiCH2CH2CH2SiVinyl), 0.67 (m, 4H, –SiCH2CH2CH2SiVinyl), 1.35 (m,
6H, –OCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.63 (m, 2H, –OCH2CH2CH2CH2Si–), 2.00 (s, 3H,
CH3COOR), 3.99 (t, 2H, –OCH2CH2CH2CH2Si–), 5.66 (m, 4H, –SiCH=CH2), 6.05 (m, 8H, –SiCH=CH2).
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13C-NMR (CDCl3): δ (ppm) −5.53 (–Si(CH3)), −5.41 (–Si(CH3), 13.6 (–OCH2CH2CH2CH2Si–),
18.2-18.5 (–SiCH2CH2CH2Si–), 20.2 (–OCH2CH2CH2CH2Si–), 21.0 (CH3COOR), 32.1
(–OCH2CH2CH2CH2Si–), 64.2 (–OCH2CH2CH2CH2Si–), 132.7 (–SiCH=CH2), 136.8 (–SiCH=CH2),
170.9 (CH3COOR).

MS: [M + H]+ = 437.2718 Da (calcd. = 437.2722 Da).
Elemental analysis: C23H44O2Si3 (436.86 g/mol): calcd. = C, 63.24; H, 10.15; O, 7.32; Si, 19.29.

Found. = C, 63.11; H, 9.97.

CH3CO2G3V8 (3)

Compound 3 was prepared using the protocol described for 1, starting from BrG3V8 (iii) [23]
(1.0 g; 1.10 mmol), sodium acetate (0.141 g; 1.72 mmol), K2CO3 (0.310 g; 2.24 mmol) and 18-crown-6
(0.027 g; 0.10 mmol). Yield: 98%.

1H-NMR: (CDCl3): δ (ppm) −0.09 (s, 9H, –Si(CH3)), 0.13 (s, 12H, –Si(CH3)), 0.55
(m, 18H, –OCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–, –SiCH2CH2CH2SiVinyl), 0.71 (m, 8H,
–SiCH2CH2CH2SiVinyl), 1.33 (m, 14H, –OCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.65 (m, 2H,
–OCH2CH2CH2CH2Si–), 2.04 (s, 3H, CH3COOR), 4.05 (t, 2H, –OCH2CH2CH2CH2Si–), 5.68 (m, 8H,
–SiCH=CH2), 6,07 (m, 16H, –SiCH=CH2).

13C-NMR: (CDCl3): δ (ppm) -5.53 (–Si(CH3)), −5.41 (–Si(CH3)), 13.5 (–OCH2CH2CH2CH2Si–),
18.3-18.7 (–SiCH2CH2CH2Si–), 20.2 (–OCH2CH2CH2CH2Si–), 20.9 (CH3COOR), 32.3
(–OCH2CH2CH2CH2Si–), 64.5 (–OCH2CH2CH2CH2Si–), 132.4 (–SiCH=CH2), 136.7 (–SiCH=CH2),
171.0 (CH3COOR).

MS: [M + H]+ = 885.5593 Da (calcd. = 885.5555 Da).
Elemental analysis: C47H92O2Si7 (885.85 g/mol): calcd. = C, 63.73; H, 10.47; O, 3.61; Si, 22.19.

Found. = C, 63.49; H, 10.14.

HOG1V2 (4)

A methanolic solution of compound 1 (0.80 g; 3.77 mmol) and NaOH (0.30 g; 7.50 mmol) was
stirred at room temperature for 30 min. Afterwards, the solvent was removed under reduced pressure
and the crude product was extracted into Et2O and dried over MgSO4, and the desired product was
obtained as an orange oil in excellent yield (86%).

1H-NMR (CDCl3): δ (ppm) 0.13 (s, 3H, –Si(CH3)), 0.65 (m, 2H, –OCH2CH2CH2CH2Si–), 1.38
(m, 2H, –OCH2CH2CH2CH2Si–), 1.57 (m, 2H, –OCH2CH2CH2CH2Si–), 1,99 (s, 1H, –OH), 3.59 (t, 2H,
–OCH2CH2CH2CH2Si–), 5.68 (m, 2H, –SiCH=CH2), 6.05 (m, 4H, –SiCH=CH2).

13C-NMR (CDCl3): δ (ppm) −5.29 (–Si(CH3)), 13.9 (–OCH2CH2CH2CH2Si–), 20.0
(–OCH2CH2CH2CH2Si–), 36.5 (–OCH2CH2CH2CH2Si–), 62.5 (–OCH2CH2CH2CH2Si–), 132.7
(–SiCH=CH2), 136.7 (–SiCH=CH2).

MS: [M + H]+ = 171.1214 Da (calcd. = 171.1200 Da).
Elemental analysis: C9H18OSi (170.33 g/mol): calcd. = C, 63.47; H, 10.65; O, 9.39; Si, 16.49.

Exp. = C, 63.34; H, 10.55.

HOG2V4 (5)

Compound 5 was prepared using the protocol described for 4, starting from CH3CO2G2(V)4 (2)
(0.800 g; 1.83 mmol) and NaOH (0.153 mg; 3.83 mmol). Yield: 89%.

1H-NMR (CDCl3): δ (ppm) −0.08 (s, 3H, –Si(CH3)), 0.13 (s, 6H, –Si(CH3)), 0.49 (m, 2H,
–OCH2CH2CH2CH2Si–), 0.56 (m, 4H, –SiCH2CH2CH2SiVinyl), 0.70 (m, 4H, –SiCH2CH2CH2SiVinyl),
1.35 (m, 6H, –OCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.58 (m, 2H, –OCH2CH2CH2CH2Si–), 1,99
(s, 1H, –OH), 3.62 (t, 2H, –OCH2CH2CH2CH2Si–), 5.68 (m, 4H, –SiCH=CH2), 6.07 (m, 8H, –SiCH=CH2).

13C-NMR (CDCl3): δ (ppm) −5.42 (–Si(CH3)), −5.28 (–Si(CH3)), 13.9 (–OCH2CH2CH2CH2Si–),
18.2–18.4 (–SiCH2CH2CH2Si–), 20.2 (–OCH2CH2CH2CH2Si–), 36.2 (–OCH2CH2CH2CH2Si–), 62.6
(–OCH2CH2CH2CH2Si–), 132.8 (–SiCH=CH2), 136.7 (–SiCH=CH2).

MS: [M + H] + = 395.2586 uma (calcd. = 395.2616 uma).
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Elemental analysis: C21H42OSi3 (394.82 g/mol): calcd. = C, 63.88; H, 10.72; O, 4.05; Si, 21.34.
Exp. = C, 63.67; H, 10.58.

HOG3V8 (6)

Compound 6 was prepared using the protocol described for 4, starting from CH3CO2G3(V)8 (3)
(0.800 mg; 0.90 mmol), NaOH (0.790 mg; 1.98 mmol). Yield: 88%.

1H-NMR: (CDCl3): δ (ppm) −0.07 (s, 6H, –Si(CH3)), −0.05 (s, 3H, –Si(CH3)), 0.15 (s, 12H,
–Si(CH3)–), 0.57 (m, 18H, –OCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–, –SiCH2CH2CH2SiVinyl), 0.72
(m, 8H, –SiCH2CH2CH2SiVinyl), 1.37 (m, 14H, –OCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.60 (m,
2H, - OCH2CH2CH2CH2Si–), 1,99 (s, 1H, -OH), 3,65 (t, 2H, –OCH2CH2CH2CH2Si–), 5.70 (m, 8H,
–SiCH=CH2), 6.08 (m, 16H, –SiCH=CH2).

13C-NMR: (CDCl3): δ (ppm) −5.46 (–Si(CH3)), −5.29 (–Si(CH3)), 13.6 (–OCH2CH2CH2CH2Si–),
18.1–18.5 (–SiCH2CH2CH2Si–), 20.5 (–OCH2CH2CH2CH2Si–), 36.3 (–OCH2CH2CH2CH2Si–), 62.5
(–OCH2CH2CH2CH2Si–), 132.5 (–SiCH=CH2), 136.6 (–SiCH=CH2).

MS: [M + H]+ = 843.5416 Da (calcd. = 843.5449 Da).
Elemental analysis: C45H90OSi7 (843.81 g/mol): calcd. = C, 64.05; H, 10.75; O, 1.90; Si, 23.30.

Exp. = C, 63.81; H, 10.93.

C3F7CO2G1V2 (7)

Under an inert atmosphere, perfluorobutyryl chloride (0.088 mL; 0.59 mmol) was slowly added
to a solution of HOG1V2 (4) (0.100 mg; 0.59 mmol) in dry Et2O (50 mL) at 0 ◦C and was subjected
to maintained stirring for 2 h. During this period, the HCl generated in situ as a side product was
eliminated from the reaction medium by vacuum cycles every 30 min. After the completion time,
the volatiles were removed, obtaining the fluorinated dendron as a colourless oil with an excellent
yield (87%).

1H-NMR: (CDCl3): δ (ppm) 0.15 (s, 3H, –Si(CH3)), 0.67 (m, 2H, –OCH2CH2CH2CH2Si–), 1.43 (m,
2H, –OCH2CH2CH2CH2Si–), 1.77 (m, 2H, –OCH2CH2CH2CH2Si–), 4.37 (t, 2H, –OCH2CH2CH2CH2Si–),
5.70 (m, 2H, –SiCH=CH2), 6.06 (m, 4H, –SiCH=CH2).

19F-NMR (CDCl3): δ (ppm) −127.2 (s, 2F, CF3CF2CF2CO2R), −119.5 (c, 2F, CF3CF2CF2CO2R),
−81.0 (t, 3F, CF3CF2CF2CO2R).

13C{1H}-NMR: (CDCl3): δ (ppm) −5.39 (–Si(CH3)), 13.6 (–OCH2CH2CH2CH2Si–), 19.9
(–OCH2CH2CH2CH2Si–), 31.6 (–OCH2CH2CH2CH2Si–), 68.2 (–OCH2CH2CH2CH2Si–), 107,6 (tt,
CF3CF2CF2CO2R), 108.0 (tm, CF3CF2CF2CO2R), 117.4 (ct, CF3CF2CF2CO2R), 133.0 (–SiCH=CH2),
136.3 (–SiCH=CH2), 158.2 (t, –CF2CO2R).

13C{19F}-NMR: (CDCl3): δ (ppm) −5.57 (c, –Si(CH3)), 13.4 (t, –OCH2CH2CH2CH2Si–), 19.7
(t, –OCH2CH2CH2CH2Si–), 31.5 (t, –OCH2CH2CH2CH2Si–), 68.2 (t, –OCH2CH2CH2CH2Si–), 107.6
(CF3CF2CF2CO2R), 108.0 (CF3CF2CF2CO2R), 117.4 (CF3CF2CF2CO2R), 133.2 (t, –SiCH=CH2), 136.4
(d, –SiCH=CH2), 158.2 (–CF2CO2R).

MS: [Perfluorobutyric acid]+ = 213.9942 Da (calcd. = 213.9865 Da); [M + H-Perfluorobutanoyl]+ =

171.1187 Da (calcd. = 171.1200 Da).
Elemental analysis: C13H17F7O2Si (366.35 g/mol): calcd. = C, 42.62; H, 4.68; F, 36.30; O, 8.73; Si,

7.67. Exp. = C, 42.58; H, 4.69.

C3F7CONHG2(SNMe3PF6)4 (8)

Under an inert atmosphere, perfluorobutyryl chloride (0.022 mL; 0.15 mmol) was slowly added to
a solution of NH2G2(SNMe3I)4 (iv) (0.200 g; 0.14 mmol) in dry DMF (20 mL) at 0 ◦C with stirring being
maintained for 2 h. During this time, HCl generated in situ as a side product was eliminated from
the medium by vacuum cycles every 30 min. The completion of the reaction was determined by a
colorimetric Kaiser test. Allylamine (0.015 mL; 0.20 mmol) was then added at 0 ◦C and the reaction
continued for 2 h. After this, the volatiles were removed, and the crude compound was redissolved in
the minimum volume of hot acetonitrile and precipitated with Et2O and washed twice with the same
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solvent (2 × 10 mL). The product was then dissolved in water and an aqueous solution of NaPF6 was
added (0.200 g; 1.19 mmol). The reaction was kept stirring for 2 h., filtered, washed twice with water
and precipitated again with acetonitrile/Et2O. The amide-bond fluorinated dendron was obtained as a
yellowish solid with a good yield (65%).

1H-NMR: (CD3OD): δ (ppm) 0.00 (s, 3H, –Si(CH3)), 0.12 (s, 6H, –Si(CH3)), 0.51–0.83
(m, 10H, –NCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.00 (m, 8H, –SiCH2CH2S-) 1.28-1.55 (m,
6H, –NCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.62 (m, 2H, –NCH2CH2CH2CH2Si–), 2.75
(m, 8H, –SiCH2CH2S–), 3.00 (m, 8H, –SCH2CH2N–), 3.20 (s, 36H, –N(CH3)3), 3.26 (t, 2H,
–NCH2CH2CH2CH2Si–), 3.59 (m, 8H, –SCH2CH2N–).

19F-NMR: (CD3OD): δ (ppm) −128.4 (s, 2F, CF3CF2CF2CO2R), −121.8 (c, 2F, CF3CF2CF2CO2R),
−82.5 (t, 3F, CF3CF2CF2CO2R), −73.5 (d, 24F, PF6

−).
13C{1H}-NMR: (CD3OD): δ (ppm) -5.12 (–Si(CH3)),−4.91 (–Si(CH3)), 14.3 (–NCH2CH2CH2CH2Si–),

15.4 (–SiCH2CH2S–), 19.2-19.4 (–SiCH2CH2CH2Si–), 22.2 (–NCH2CH2CH2CH2Si–), 25.6
(–SiCH2CH2S–), 29.1 (–SCH2CH2N–), 33.7 (-NCH2CH2CH2CH2Si–), 40.6 (–NCH2CH2CH2CH2Si–),
53.4 (–N(CH3)3), 66.7 (–SCH2CH2N–).

MS: [M + H]+ = 1650.4057 Da (calcd. = 1650.4490 Da).
Elemental analysis: C45H98F31N5OP4S4Si3 (1650.65 g/mol): calcd. = C, 32.74; H, 5.98; F, 35.68; N,

4.24; O, 0.97; P, 7.51; S, 7.77; Si, 5.10. Exp. = C, 33.58; H, 6.03; N, 4.75; S, 7.38.

C3F7CONHG2(SNMe3Cl)4 (9)

A solution of tetrabutylammonium chloride (0.214 g; 0.15 mmol) in acetone was added to a
solution of compound 8 (0.155 g; 93.9 µmol) in the same solvent (5 mL). The reaction was stirred for
2 h at room temperature. The solvent was then eliminated by filtration and the product washed twice
with acetone to give compound 9 as a yellowish solid with an excellent yield (85%).

1H-NMR: (CD3OD): δ (ppm) 0.00 (s, 3H, –Si(CH3)), 0.13 (s, 6H, –Si(CH3)), 0.51–0.70
(m, 6H, –NCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 0.75 (m, 4H, –CH2SiCH2CH2S–), 1.00 (m,
8H, –SiCH2CH2S-) 1.27–1.53 (m, 6H, –NCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.62 (m, 2H,
–NCH2CH2CH2CH2Si–), 2.77 (m, 8H, –SiCH2CH2S–), 3.02 (m, 8H, –SCH2CH2N–), 3.23 (s, 36H,
–N(CH3)3), 3.30 (t, 2H, -NCH2CH2CH2CH2Si–), 3.65 (m, 8H, –SCH2CH2N–).

19F-NMR: (CD3OD): δ (ppm) −128.3 (s, 2F, CF3CF2CF2CO2R), −121.8 (c, 2F, CF3CF2CF2CO2R),
−82.2 (t, 3F, CF3CF2CF2CO2R).

13C{1H}-NMR: (CD3OD): δ (ppm) −4.99 (–Si(CH3)), −4.89 (–Si(CH3)), 14.5
(–NCH2CH2CH2CH2Si–), 15.5 (–SiCH2CH2S–), 19.3–19.6 (–SiCH2CH2CH2Si–), 22.3
(–NCH2CH2CH2CH2Si–), 25.4 (–SiCH2CH2S-), 28.8 (–SCH2CH2N–), 33.8 (-NCH2CH2CH2CH2Si–),
40.7 (–NCH2CH2CH2CH2Si–), 53.6 (–N(CH3)3), 67.0 (–SCH2CH2N–).

MS: [M − Cl]+ = 1174.4908 Da (calcd. = 1174.4916 Da).
Elemental analysis: C45H98Cl4F7N5OS4Si3 (1212.60 g/mol): calcd. = C, 44.57; H, 8.15; Cl, 11.69; F,

10.97; N, 5.78; O, 1.32; S, 10.58; Si, 6.95. Exp. = C, 43.67; H, 8.06; N, 5.45; S, 9.37.

NH2G2(SC8H4F13)1(SO3Na)3 (10)

A solution of PhtG2A4 (v) (0.169 g; 0.292 mmol), 1H, 1H, 2H, 2H-perfluorooctanethiol (0.099 g; 0.263
mmol), DMPA (0.006 g; 0.026 mmol) in THF/MeOH (2:1) was deoxygenated and irradiated at 365 nm
for 1h. DMPA (0.026 g; 0.11 mmol) and an aqueous solution of sodium 3-mercapto-1-propanesulfonate
(0.187 g; 1.051 mmol) were then added sequentially, with 2 h of irradiation after each addition. After
monitoring by 1H-NMR, the volatiles were removed under vacuum, and the residue was redissolved
in MeOH/H2O (6:1) and transfered to an ampoule. Hydrazine hydrochloride (0.145 mL; 4.670 mmol)
was added to the solution and heated to 90 ◦C for 16 h. Finally, the solvents were eliminated and the
aqueous solution of the crude product was purified by dialysis (MWCO 100-500 Da). Yield: 82%

1H-NMR: (D2O): δ (ppm) −0.12 (s, 9H, –Si(CH3)), 0.52 (s, 18H, NCH2CH2CH2CH2Si–,
–SiCH2CH2CH2Si–, –SiCH2CH2CH2S-), 1.28 (m, 6H, –NCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–), 1.48
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(m, 6H, –SiCH2CH2CH2S–), 1.59 (m, 2H, –NCH2CH2CH2CH2Si–), 1.89 (m, 6H, SCH2CH2CH2SO3Na),
2.04 (m, 2H, SCH2CH2C6F13), 2.47 (m, 8 H, NCH2CH2CH2CH2Si, –SiCH2CH2CH2S–) 2.52 (m, 6H,
SCH2CH2CH2SO3Na), 2.72 (m, 2H, SCH2CH2C6F13), 2.85 (m, 6H, SCH2CH2CH2SO3Na).

19F-NMR: (CDCl3): δ (ppm): −85.8 (m, 3F, CF3), −115.5 (m, 2F, –CF2ε), −123.0 (m, 2F, –CF2δ),
−124.2 (m, 4F, –CF2β and –CF2γ), −127.7 (m, 2F, –CF2α).

Elemental analysis: C42H77F13NNa3O9S7Si3 (1364.70 g/mol): calcd. = C, 36.97; H, 5.69; N, 1.03; S,
16.44. Exp. = C, 37.09; H, 5.65; N, 1.01; S, 16.47.

NH2G3(SC8H4F13)2(SO3Na)6 (11)

Compound 11 was prepared using the protocol described for 10, starting from PhtG3A8 (vi) (0.110
g; 0.098 mmol), 1H, 1H, 2H, 2H-perfluorooctanethiol (0.067 g; 0.176 mmol), DMPA (0.005 g; 0.018
mmol), sodium 3-mercapto-1-propanesulfonate (0.125 g; 0.703 mmol), DMPA (0.018 g; 0.070 mmol),
hydrazine hydrochloride (0.048 mL; 1.568 mmol). Yield: 87 %

1H-NMR: (D2O): δ (ppm) −0.12 (s, 21H, –Si(CH3)), 0.52 (s, 34H, NCH2CH2CH2CH2Si–,
–SiCH2CH2CH2Si–, –SiCH2CH2CH2S-), 1.28 (m, 14H, –NCH2CH2CH2CH2Si–, –SiCH2CH2CH2Si–),
1.48 (m, 16H, –SiCH2CH2CH2S-), 1.59 (m, 2H, –NCH2CH2CH2CH2Si–), 1.89 (m, 14H,
SCH2CH2CH2SO3Na), 2.04 (m, 2H, SCH2CH2C6F13), 2.47 (m, 16 H, NCH2CH2CH2CH2Si,
–SiCH2CH2CH2S–) 2.52 (m, 14H SCH2CH2CH2SO3Na), 2.72 (m, 2H, SCH2CH2C6F13), 2.85 (m, 14H,
SCH2CH2CH2SO3Na).

19F-NMR: (CDCl3): δ (ppm): −85.8 (m, 3F, CF3); −115.4 (m, 2F, –CF2ε), −123.0 (m, 2F, –CF2δ),
−124.2 (m, 4F, –CF2β and –CF2γ), −127.6 (m, 2F, –CF2α)

Elemental analysis: C87H159F26NNa6O18S14Si7 (2784.55 g/mol): calcd. = C, 37.53; H, 5.76; N, 0.50;
S, 16.12. Exp. = C, 37.61; H, 5.74; N, 0.55; S, 16.09.

Supplementary Materials: The following are available online, Figure S1. 1H-NMR spectrum of the incomplete
esterification reaction between perfluorhexanoic acid and dendrons with a bromide atom at the focal point. Figure
S2. 19F-NMR spectrum of the saponification reaction. Figure S3. 1H-NMR spectrum of dendron 7. Figure S4.
13C{1H}-NMR spectrum of dendron 7. Figure S5. 19F-NMR spectrum of dendron 7. Figure S6. 13C{19F}-NMR
spectrum of dendron 7. Figure S7. ESI–TOF of compound 9.
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