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Because current molecular haplotyping methods are expensive and not amenable to automation, many researchers
rely on statistical methods to infer haplotype pairs from multilocus genotypes, and subsequently treat these inferred
haplotype pairs as observations. These procedures are prone to haplotype misclassification. We examine the effect of
these misclassification errors on the false-positive rate and power for two association tests. These tests include the
standard likelihood ratio test (LRTstd) and a likelihood ratio test that employs a double-sampling approach to allow for
the misclassification inherent in the haplotype inference procedure (LRTae). We aim to determine the cost–benefit
relationship of increasing the proportion of individuals with molecular haplotype measurements in addition to
genotypes to raise the power gain of the LRTae over the LRTstd. This analysis should provide a guideline for
determining the minimum number of molecular haplotypes required for desired power. Our simulations under the null
hypothesis of equal haplotype frequencies in cases and controls indicate that (1) for each statistic, permutation
methods maintain the correct type I error; (2) specific multilocus genotypes that are misclassified as the incorrect
haplotype pair are consistently misclassified throughout each entire dataset; and (3) our simulations under the
alternative hypothesis showed a significant power gain for the LRTae over the LRTstd for a subset of the parameter
settings. Permutation methods should be used exclusively to determine significance for each statistic. For fixed cost,
the power gain of the LRTae over the LRTstd varied depending on the relative costs of genotyping, molecular
haplotyping, and phenotyping. The LRTae showed the greatest benefit over the LRTstd when the cost of phenotyping
was very high relative to the cost of genotyping. This situation is likely to occur in a replication study as opposed to a
whole-genome association study.
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Introduction

With the advent of the HAPMAP project [1,2], the
popularity of haplotype-based case-control genetic associa-
tion studies has grown markedly. The alleles present at
multiple genetic markers across a given chromosome form a
haplotype [3]. It has been suggested that association studies
utilizing haplotypes formed from single nucleotide poly-
morphisms (SNPs) may be more powerful than single locus
association [4–11].

Methods for explicit determination of phased haplotypes
are available [12–18]. However, in practice, phased haplotypes
are rarely determined explicitly. Instead statistical methods
for gene mapping estimate haplotype frequencies from
multilocus genotype data [19–28]. For case-control associa-
tion studies, the sampling design involves unrelated individ-
uals, and therefore the procedure used to estimate haplotype
frequencies treats each individual as an independent obser-
vation. As with other procedures of statistical estimation, the
accuracy of haplotype frequency estimates depends on
several factors including ‘‘sample size, number of loci studied,
allele frequencies, and locus-specific allelic departures from
Hardy-Weinberg and linkage equilibrium’’ [29]. Furthermore,
these factors also affect the accuracy of phased-haplotype
inference or phased-haplotype calls [30]. Several researchers
have investigated the accuracy of haplotype inference

procedures by applying them to real and simulated datasets
[18,26,30–37].
Several statistical methods are available to perform tests of

haplotype-based case-control association. One method cal-
culates the likelihood of the data in terms of the estimated
haplotype frequencies. An alternative method relies on the
use of a contingency table containing the case-control counts
for each inferred haplotype. The counts in the contingency
table can be determined either by inferring phased hap-
lotypes for each individual or by multiplying each haplotype
frequency estimate by the total number of haplotypes in the
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study. Many researchers find the latter method appealing
since it applies the same format as the classic genotypic and
allelic case-control studies, and explicitly accounts for each
phased haplotype. As a result, many researchers employ this
method in practice [18,35,38–40]. In the event that all phased
haplotypes have been called correctly, this method can
provide additional power [41,42]. This situation is analogous
to tests of association using allele estimates from individual
genotypes as compared with allele frequency estimates from
DNA-pooling data [43].

However, misclassifications can lower a study’s power and/
or affect the false-positive rate. The act of calling haplotype
pairs from multilocus genotypes in the phase-ambiguous
situation is similar to the act of dichotomizing continuous
measures. Royston et al. document a loss in power when
dichotomizing continuous predictor variables in a regression
analysis [44]. In the context of our study, a misclassification
results when the haplotype pair called for an individual is not
the true underlying haplotype pair. Non-differential mis-
classification occurs when the misclassification rates are the
same in cases and controls. When non-differential misclassi-
fication exists, the test suffers a loss in power, but the false-
positive rate remains unchanged [45,46]. In contrast, differ-
ential misclassification inflates the test’s false-positive rate
and may diminish its power [47]. We conjecture that in the
absence of differential genotype misclassification, all haplo-
type misclassification is non-differential when haplotype
frequency distributions are the same in cases and controls,
i.e., under the null hypothesis.

Although there have been several studies aimed at
evaluating the accuracy of haplotype inference and haplotype
frequency estimation procedures [26,29,30,32,35,37], to our
knowledge, no systematic study of the effects of haplotype
misclassification has been documented. Thus, the purpose of
this work is to address the effects of haplotype misclassifica-
tion on the false-positive rate and power of commonly used
tests of haplotype-based association. Specifically, this re-
search aims to (1) classify the nature of the misclassification
present in calling phased haplotypes; (2) determine the
appropriateness of using the asymptotic v2 distribution and

permutation methods to evaluate the significance of the test
statistics we employ; and (3) compare the power of our test
statistic which accounts for haplotype misclassification with
the power of the standard likelihood ratio test statistic when
the costs are fixed.

Methods

Test Statistics
In order to detect an association between a haplotype pair

and disease status, we employed two statistical tests on 2 3 n
contingency tables where n is the number of haplotype pair
categories found by inference. These tests include the
standard likelihood ratio test (LRTstd) and a likelihood ratio
test that employs a double-sampling approach to allow for the
misclassification inherent in the haplotype inference proce-
dure (LRTae). The LRTstd is a likelihood ratio statistic that
treats the called haplotype pairs as observations, and as a
result, the likelihood is the multinomial distribution where
the called haplotype pairs are the categories [48]. The LRTae

statistic is a likelihood ratio statistic that employs a double-
sampling procedure to account for the misclassification
present in haplotype inference. On all the individuals in the
study, there is a fallible measure [49,50], the haplotype pairs
inferred from the multilocus genotypes, and on a subset of
these individuals, there is a second measure that is considered
to be infallible [49,50], molecular haplotypes. By comparing
the fallible data with infallible data, the LRTae procedure
estimates the misclassification rates present in the fallible
data and incorporates this information into the likelihood
calculation [51]. The details regarding the LRTstd and LRTae

statistics including notation and computation are provided in
Protocol S1.

Permuted and Asymptotic p-Values
We applied two methods for evaluating the p-value or

statistical significance of each statistic. The first method relies
on using the central v2 distribution to find the p-value since,
according to statistical theory under the null hypothesis of no
association, twice the natural logarithm of the likelihood
ratio follows the central v2 distribution asymptotically for
large sample sizes [3,48]. In addition, it has been shown that
when Cochran’s rule is followed (more than five observations
in each cell of the contingency table), the presence of non-
differential misclassification does not affect the distribution
of the likelihood ratio test statistics under the null hypothesis
of no association [46,51]. The second method employs
permutation testing to generate the distribution of the test
statistic under the null hypothesis and to determine its
statistical significance. In this article, p-values found with the
former and latter approaches are referred to as asymptotic p-
values and permutation p-values, respectively.

Description of Data Generation and Analysis
To investigate the behavior of these test statistics for a

variety of situations, we applied these statistical tests to many
simulated datasets. Figure 1 illustrates the procedure we used
to simulate the data and to evaluate the false-positive rate or
type I error and power at fixed significance levels for each
statistic. For the analysis of each replicate dataset simulated,
the multilocus genotype data from cases and controls were
pooled to infer haplotype pairs for each individual. These
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Synopsis

Localizing genes for complex genetic diseases presents a major
challenge. Recent technological advances such as genotyping arrays
containing hundreds of thousands of genomic ‘‘landmarks,’’ and
databases cataloging these ‘‘landmarks’’ and the levels of correla-
tion between them, have aided in these endeavors. To utilize these
resources most effectively, many researchers employ a gene-
mapping technique called haplotype-based association in order to
examine the variation present at multiple genomic sites jointly for a
role in and/or an association with the disease state. Although
methods that determine haplotype pairs directly by biological
assays are currently available, they rarely are used due to their
expense and incongruity to automation. Statistical methods provide
an inexpensive, relatively accurate means to determine haplotype
pairs. However, these statistical methods can provide erroneous
results. In this article, the authors compare a standard statistical
method for performing a haplotype-based association test with a
method that accounts for the misclassification of haplotype pairs as
part of the test. Under a number of feasible scenarios, the
performance of the new test exceeded that of the standard test.



inferred haplotypes are sufficient for the computation of
LRTstd; however, LRTae requires additional information in
the form of molecular haplotypes for a subset of the
individuals in the study. Two alternative procedures for
selecting individuals for the double sample (individuals with
molecular haplotypes in addition to genotypes) were em-
ployed. In one selection scheme, individuals were selected
randomly. In the other selection scheme, individuals possess-
ing the most ambiguity in their statistically inferred
haplotype pairs were prioritized in selecting the double
sample. Specifically, we double-sampled those individuals
with the smallest posterior probabilities associated with their
inferred haplotype pair up to a posterior probability thresh-
old, d, of 0.85 or until the number of individuals specified by
the maximum double-sample proportion was reached. There-
fore, under this second scheme, the number of individuals
double-sampled varied between replicate datasets. In this
article, the former and latter procedures for determined the
double sample are referred to as random and threshold
double-sample selection, respectively.

Two-SNP Scenario
Evaluation of false-positive rate for permutation and

asymptotic p-values. For the simplest non-trivial case, the
scenario in which the haplotype under evaluation includes
two SNPs, we applied a fractional factorial design [52] to
perform a comprehensive study of type I error. For the type I
error, haplotype pairs were inferred using both SNPHAP v
1.3.1 (see Electronic Database Information) and PHASE v
2.1.1 [27] (see also Electronic Database Information). Table 1
contains the fractional factorial design settings for the study
of type I error for the scenario involving two SNP markers.
We consider a 1/2(2k) fractional factorial design, where k¼ 6.
Because of redundancy, we were able to reduce the number of
experimental runs from 32 to 18. For instance, under the null
hypothesis of no association, a run with 1,000 cases and 250
controls is equivalent to a run with 250 cases and 1,000
controls (with all other factors having equal settings to those
for the first run). During each run, 10,000 replicate datasets

were simulated. We performed the 18 runs with both of the
two alternative procedures for selecting the double sample:
random and threshold double-sample selection. For the
threshold double-sample selection method, d was 0.85, and
the maximum double-sample proportion was set to the value
of a in the fractional factorial design.
To evaluate each test statistic’s ability to maintain the

correct type I error, we examined the distribution of the p-
values computed for data simulated under the null hypothesis
of no association. We performed two goodness-of-fit tests, the
Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD)
tests [53] to determine whether the p-values deviate signifi-
cantly from the standard uniform distribution, and examined
the false-positive rate for significant thresholds of 0.05, 0.01,
and 0.001.
Evaluation of power for fixed cost. We also evaluated the

behavior of these statistics under the hypothesis that an
unobserved disease locus exists in linkage disequilibrium (LD)
with the haplotype under study. Table 2 contains the factorial
design settings for the power study in the scenario involving
two SNP markers. The factorial design includes three factors:
disease model, genotype relative risk [54] for the homozygote
genotype (R2), and the disease allele frequency (DAF). Each
factor contains two levels. For the disease model factor, the
two levels are a dominant disease model and a multiplicative
disease model. The dominant disease model requires that R2

¼ R1 whereas the multiplicative disease model requires that
R2¼R1

2, where R1 and R2 are the genotype relative risks for
the heterozygote and homozygote genotypes, respectively.
Specifically, the genotype relative risks are defined as the
following. If the penetrances, fi, are defined by fi¼Pr(affectedji
copies of disease allele), where i ¼ 0, 1, or 2, the genotype
relative risks, R1 and R2, are defined by R1¼f1/f0and R2¼f2/f0,
respectively [54].
As with the study of type I error, we inferred the haplotypes

for the power simulations with both SNPHAP v 1.3.1 and
PHASE v 2.1.1. The proportion of individuals double-
sampled, a, for the LRTae method (random double-sample
selection) was set at 0.75. For the threshold double-sample

Figure 1. Schematic Flow Chart Illustrating the Procedure Employed for

Computing Type I Error and Power by Way of Data Simulation

(A) shows type I error, and (B) shows power by way of data simulation.
DOI: 10.1371/journal.pgen.0020127.g001

Table 1. Fractional Factorial Design Parameter Settings for the
Study of Type I Error Assuming the Haplotype under Inves-
tigation Contains Two SNP Markers

Description of Parameter Low High

Number of cases 250 1,000

Number of controls 250 1,000

Minor allele frequency at locus 1 0.1 0.5

Minor allele frequency at locus 2 0.1 0.5

LD between locus 1 and 2 (measured by D9) 0 0.9

Proportion of individuals double-sampled (a) 0.25 0.75

This table presents the settings for all parameters considered in the type I error
simulations assuming the haplotype under investigation contains two SNP markers. We
consider a 1/2(2k) fractional factorial design, where k ¼ 6. The number of experimental
runs was reduced from 32 to 18 due to redundancy. D9 is the standardized LD measure.
The simulations included 10,000 replicates, and haplotype pairs were inferred using both
SNPHAP v 1.3.1 and PHASE v 2.1.1. LRTae was computed with the random and threshold
double-sample selection methods for all 18 runs in the fractional factorial design. For the
threshold double-sample selection method, d was 0.85, and the maximum double-sample
proportion was set to the value of a in the fractional factorial design.
DOI: 10.1371/journal.pgen.0020127.t001
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selection, d was set to 0.85, and the maximum double-sample
proportion was 0.75. In the power simulations, the condi-
tional haplotype frequencies were found from the specified
disease model parameters by the method described previ-
ously [7,55] (also see the PAWE Web site at http://linkage.
rockefeller.edu/derek/pawe1.html). However, we selected a
specific haplotype to be in LD with the disease locus. During
each run, 1,000 replicate datasets consisting of 500 cases and
500 controls were simulated. For these simulations, the
disease prevalence was 0.025; the LD between the disease
locus and the linked haplotype was 0.9 (measured by D9 [56]);
and the population haplotype frequencies were 0.05, 0.15,
0.25, and 0.55. The selection of the specific haplotype in LD
with the disease locus depended on the DAF. The haplotype
occurring with a frequency most similar to that of the disease
allele was selected. Thus, the haplotypes with frequencies of
0.05 and 0.25 were selected as the variant in LD with the
disease when the DAF was set at 0.07 and 0.27, respectively. As
with the evaluation of the false-positive rate, we performed
all eight runs from the factorial design using both random
and threshold double-sample selection.

To compare the power of the two test statistics, we
evaluated the power of the statistics under fixed cost
conditions. Since the LRTae requires the additional cost
associated with obtaining molecular haplotypes on a subset of
the samples, we reduced the number of samples when the
LRTae statistic was applied so that the same total cost would
be incurred as for the runs with the LRTstd. The reduced
sample size for the LRTae sample was computed using
Equation 1,

NDS ¼
N Cp

Cg
þ 1

� �

1þ Cp

Cg
þ ra

; ð1Þ

where NDS is the sample size for the LRTae; N is the sample
size for the LRTstd; Cp is the cost of phenotyping, Cg is the cost
of genotyping; r is the cost ratio of molecular haplotyping to

genotyping (Cmh/Cg); and a is the proportion of individuals in
the LRTae sample that have molecular haplotypes determined
(double-sampling proportion). We consider the phenotyping
costs, Cp, to include costs associated with ascertainment and
diagnosis. We illustrate fixed-costs sample sizes for the
following example. With settings of Cp/Cg ¼ 25, r ¼ 5, a ¼
0.75, and N¼ 1,000 for the LRTstd method, the corresponding
total sample size for the LRTae method, NDS, is 874. The
reader should note that the reduced sample size results from
the additional cost incurred by double-sampling 75% of the
total sample for the LRTae method. If Cp/Cg¼ 1,000, note that
this term will dominate the expression in Equation 1, and the
fixed-cost sample size, NDS, will not differ greatly from the
sample size for the LRTstd, N. All power simulations were
performed under fixed-cost conditions. Since the double-
sample proportion, a, varies from replicate to replicate when
the threshold double-sample selection method is employed,
we first performed several test runs to determine the mean
double-sample proportion, �a. Using �a, we computed NDS*, the
total sample size for the LRTae determined from the expect-
ation of a. Here, the asterisk is added to indicate that total
sample size is computed using the expected value of a, as
compared with the random double-sample selection, in which
a is a fixed quantity. For a specific disease model, we
performed a comprehensive study of the power difference
between the LRTae and LRTstd for the situation of a
haplotype comprising two SNPs.

Multi-SNP Scenario
Evaluation of false-positive rate and power for fixed costs.

Through additional simulations, we investigated the behavior
of these statistics when applied to haplotypes comprising
larger numbers of SNPs. Because these simulations required
additional computational time, we only used SNPHAP v 1.3.1
(see Electronic Database Information) for inferring haplo-
types. Our simulations were based on haplotype frequencies
from two datasets: (1) a dataset of molecular haplotypes with
very high levels of pair-wise LD between markers [14] and (2)
a dataset of multilocus genotypes from the TAP2 gene within
the major histocompatibility complex, a region with low pair-
wise LD between markers [1,2] (see also Electronic Database
Information), hereafter referred to as the Horan and the
HapMap TAP2 datasets, respectively. Figure 2 displays the
inter-marker LD for each of these two datasets using GOLD
plots [57]. For the Horan dataset, we determined the
generating population haplotype frequencies for our simu-
lations directly using the counting method [3]. For the
HapMap TAP2 dataset, we found the generating population
haplotype frequencies for our simulations indirectly using
SNPHAP v 1.3.1 (see Electronic Database Information). In the
latter case, haplotype frequencies were estimated from the
parents of each trio in the Yoruba population group from the
International HapMap Project. For the type I error simu-
lation studies, 1,000 replicate datasets containing 250 cases
and 250 controls were simulated. For the type I error runs
based on the Horan data and the HapMap TAP2 data, we
simulated haplotypes comprising 15 SNPs and ten SNPs,
respectively, whereas for the power runs, we simulated
haplotypes comprising five SNPs [1,2,14]. Figure 2 specifies
the SNPs we used from each of the datasets in the type I error
and power runs. For the Horan dataset, we provide the SNP
markers’ positions (relative to the transcription start site of

Table 2. Factorial Design Parameter Settings for the Study of
Power Assuming the Haplotype under Investigation Contains
Two SNP Markers

Description of Parameter Low High

Disease model Dominant Multiplicative

Genotype relative risk of homozygote (R2) 2 3.5

Disease allele frequency (DAF) 0.07 0.27

This table presents the settings for all parameters considered in the power simulations
assuming the haplotype under investigation contains two SNP markers. We consider a 2k

factorial design, where k¼ 3. The dominant disease model requires that R2¼ R1 while the
multiplicative disease model requires R2¼ R1

2, where R1 and R2 are the genotype relative
risks for the heterozygote and homozygote genotypes, respectively. For the random
double-sample selection method, the proportion of individuals double-sampled (a) was
0.75 whereas a haplotype pair posterior probably threshold (d) of 0.85 and a maximum
double-sample proportion of 0.75 were used for the threshold double-sample selection
method. The cost ratio of molecular haplotyping to genotyping (r) was 5. For each
combination of settings, 1,000 replicate datasets comprising 500 cases and 500 controls
were simulated. The disease prevalence was 0.025; the LD between the disease locus and
the linked haplotype was 0.9 (measured by D9); and the population haplotype frequencies
were 0.05, 0.15, 0.25, and 0.5. The haplotype with frequency of 0.05 was linked to the
disease locus when DAF¼ 0.07, and the haplotype with frequency 0.25 was linked to the
disease locus when DAF¼ 0.27. Haplotype pairs were inferred using both SNPHAP v 1.3.1
and PHASE v 2.1.1.
DOI: 10.1371/journal.pgen.0020127.t002
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the GH1 gene) whereas for the HapMap TAP2 dataset, we
provide the name of the SNP marker. As a result, we
simulated haplotypes using 17 haplotype variants with
frequencies greater than 0.01 for both the Horan and
HapMap TAP2 type I error simulations. In addition, we
simulated haplotypes using five and ten haplotype variants
with frequencies greater than 1/(2s), where s is the total
number of individuals, for the Horan and HapMap TAP2

power simulations, respectively. For each scenario, we
normalized the frequencies so that they summed to unity.
As with the power studies for the two-SNP scenario, the
selection of the specific haplotype in LD with the disease
locus depended on the DAF. The rationale for the selection
procedure is provided in the Results section addressing
multi-SNP power. For multi-marker type I error and power
studies, we employed both the random and threshold double-

Figure 2. GOLD Plots Showing the Pair-Wise Intermarker LD in Terms of D9

(A) shows the LD for 15 SNP markers within the proximal promoter region of human pituitary expressed growth hormone (GH1), and (B) shows the LD
for ten SNP markers within the TAP2 gene. In (A), the SNP markers are listed as their position relative to the transcription start site of the GH1 gene
whereas in (B), the SNP markers are listed by their National Center for Biotechnology Information (NCBI) reference SNP (rs) numbers. Physical distances
are provided. All SNP markers displayed were included in the type I error study whereas only the SNP markers accompanied by an asterisk (*) were
included in the power study.
DOI: 10.1371/journal.pgen.0020127.g002
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sample selection methods in computing the LRTae statistic.
When the random double-sample selection method was used,
the double-sample proportion, a, was 0.75. When the thresh-
old double-sample method was used, the setting of d ¼ 0.85
was used, and the maximum proportion of individuals
included in the double-sample was 0.75.

Identifying the nature of haplotype pair misclassification.
For all the simulations performed, we recorded the details of
the misclassifications that occurred. Specifically, for every
replicate, we computed the misclassification rates,

hj9j ¼ Prðobserved haplotype pair classification is j j
true haplotype pair classification is j9Þ;

where j9 6¼j are integers ranging from 1 to the maximum
number of haplotype pairs [51]. Previous research studying
genotype misclassification rates in tests of genotypic associ-
ation provides the motivation for ascertaining these values
[58,59]. This notation is also used in Protocol S1.

Results

Two-SNP Scenario
Our results for type I error and power were almost

identical from the simulations utilizing SNPHAP v 1.3.1 and
PHASE v 2.1.1 for the haplotype inference. Although we
present graphs and tables that display the results provided by
SNPHAP v 1.3.1 for the haplotype inference, the reader
should note that similar results were found using PHASE v
2.1.1.

Evaluation of false-positive rates for permutation and
asymptotic p-values. The type I error simulations demon-
strated that the approach for determining statistical signifi-
cance is critical for maintaining the correct false-positive

rate. Although the KS and Anderson-Darling (AD) test results
indicated that the distribution of permutation p-values was
consistent with the standard uniform distribution, they also
indicated that the distributions of asymptotic p-values did not
resemble the standard uniform distribution. These results
were reinforced by the false-positive rates we found. For all
the simulation runs displayed in Table 1, Figure 3 shows the
false-positive rate for a significance threshold of 0.05 for
LRTstd and LRTae (using the random and threshold double-
sample selection methods) association tests in which stat-
istical significance was indicated by permutation and asymp-
totic p-values. The graph shows that asymptotic p-values for
LRTae are anti-conservative whereas those for LRTstd

fluctuate between conservative and anti-conservative values.
In contrast, the permutation p-values for both statistics
consistently maintain the nominal significance level of 0.05.
We found that the asymptotic and permuted p-values
demonstrated similar behavior for significance thresholds of
0.01 and 0.001 (unpublished data). SNPHAP v 1.3.1 was used
for the haplotype inference for the simulation results
displayed in the graph. These results are not surprising since
several simulation parameter settings have expected cell
counts of less than five counts, violating Cochran’s rule [60].
Evaluation of power for fixed cost. Based on the results for

the false-positive rates, we conclude that power can only be
evaluated using the permutation p-values. We compare the
power of LRTae (using the random and threshold double-
sample selection methods) to LRTstd. Table 3 presents
summary statistics for the power difference (LRTae power �
LRTstd power) at various significance levels for the two cost
ratios Cp/Cg¼ 25 and Cp/Cg¼ 1,000 using the eight parameter
settings from the factorial design (Table 2). Note that in all
runs, we set the cost ratio of molecular haplotyping to

Figure 3. Line Graph Illustrating Estimates of the False-Positive Rate at the 0.05 Significance Level for LRTstd and LRTae

The p-values were determined by both permutation and the asymptotic central v2 distribution. The 18 runs correspond to the combinations of
parameter settings described in Table 1. For all 18 runs, LRTae was computed with the random and threshold double-sample selection methods. When
the threshold double-sample method was used to compute LRTae, the setting of d ¼ 0.85 was used, and the maximum proportion of individuals
included in the double sample was the value for a specified by the fractional factorial design. SNPHAP v 1.3.1 was used for the haplotype inference for
the simulation results displayed in the graph.
DOI: 10.1371/journal.pgen.0020127.g003
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genotyping, r, to be 5, and the proportion of individuals to be
double-sampled, a, to be 0.75 (for the random double-sample
selection method). The values reported correspond to the
simulations utilizing SNPHAP v 1.3.1.

For the random double-sample selection method, the
minimum power difference observed occurred when Cp/Cg ¼
25 for a dominant disease model with R2¼ 2 and DAF¼ 0.27
at a significance level of 0.01. For these settings, the LRTae

power was 0.544 and LRTstd power was 0.606. The maximum
power difference observed occurred when Cp/Cg¼ 1,000 for a
dominant disease model with R2 ¼ 3.5 and DAF ¼ 0.07 at a
significance level of 0.001. For these settings, the LRTae power
was 0.910 and LRTstd power was 0.775.

For the threshold double-sample selection method, the
minimum power difference observed occurred when Cp/Cg ¼
25 for a dominant disease model with R2¼ 2 and DAF¼ 0.27
at a significance level of 0.05. For these settings, the LRTae

power was 0.821 and LRTstd power was 0.831. The maximum
power difference observed occurred when Cp/Cg¼ 1,000 for a
dominant disease model with R2 ¼ 2 and DAF ¼ 0.07 at a
significance level of 0.05. For these settings, the LRTae power
was 0.573 and LRTstd power was 0.411.

Power difference as a function of double-sample propor-
tion and cost ratio. In the spirit of response surface analysis
for factorial design [52], we performed a more thorough
analysis of the parameter settings that provided the max-
imum power difference with LRTae computed with the
random double-sample selection method. These parameter
settings are a dominant disease model with R2¼ 3.5 and DAF
¼0.07. These setting provided the additional benefit of power
results greater than 75% for both the LRTae and LRTstd

methods at the 0.05, 0.01, and 0.001 significance levels for
both cost ratios of Cp/Cg ¼ 25 and Cp/Cg ¼ 1,000. The analysis
involved computation of the LRTae with the random double-
sample selection method. Figure 4 displays the two-dimen-
sional contour plot of the power difference between the
LRTae and the LRTstd as a function of r, the cost ratio of
molecular haplotyping to genotyping, and a, the proportion
of individuals double-sampled. These power differences are
computed for the fixed parameter settings of Cp/Cg ¼ 25
(Figure 4A) and Cp/Cg¼ 1,000 (Figure 4B) at significance level
¼ 0.001 for the disease model described immediately above.

The values of r considered in the contour plots are 1, 5, 10, 25,
and 50 whereas the values of a considered are 0.25, 0.50, 0.75,
and 1.0. One should note that a ¼ 1.0 indicates that all
individuals in the study are double-sampled regardless of
phase ambiguity. Simulations were performed with 1,000
replicates and 10,000 permutations for each combination of
parameters, and SNPHAP v 1.3.1 was used for the haplotype
inference. The sample size for the LRTstd, N, was 1,000 (equal
numbers of cases and controls). Figure 4A shows that the
LRTae provides a power advantage over the LRTstd when r is
less than 10 and a is greater than 0.5. The maximum power
gain is 0.16 and occurs when r and a are 1.0. Conversely, when
the r is greater than 10, LRTae is less powerful than LRTstd for
these parameter settings. The maximum power loss is 0.58
and occurs when r is 50 and a is 1.0. Note that for these values,
the total sample available for the LRTae method, NDS

(Equation 1), is 342 whereas the total sample available for
the LRTstd method, N, is 1,000.
Figure 4B illustrates that LRTae is always at least as

powerful as the LRTstd when Cp/Cg ¼ 1,000. We observe the
minimum power gain of 0.02 when r is 50 and a is 0.25 and
the maximum power gain of 0.17 when r and a are 1.0.
Furthermore, Figure 4B indicates that for any cost ratio, r,
increasing the double-sampling proportion, a, always in-
creases the power gain with the maximum power gain
occurring when a ¼ 1.0.

Multi-SNP Scenario
Evaluation of false-positive rates for permutation and

asymptotic p-values. Table 4 displays our estimates of the
false-positive rates using a significance threshold of 0.05 and
the results of the KS test for the Horan and HapMap TAP2
dataset-based simulations. Again, only the permuted p-values
resemble the standard uniform distribution. In addition, the
permuted p-values maintained the nominal significance level
whereas the asymptotic p-values are anti-conservative. The
false-positive rate estimates for significance thresholds of 0.01
and 0.001 displayed similar characteristics (unpublished data).
Evaluation of power for fixed cost. In our power study for

haplotypes comprising five SNPs, we again used the disease
model parameter settings that provided the maximum power
difference (LRTae power � LRTstd power) for the two-SNP
factorial design (Table 2) with LRTae computed using random

Table 3. Summary Statistics for Power Difference (LRTae � LRTstd) at Various Significance Levels

DS Selection Method Summary Statistic Significance Level ¼ 0.05 Significance Level ¼ 0.01 Significance Level ¼ 0.001

Cp/Cg ¼ 25 Cp/Cg ¼ 1,000 Cp/Cg ¼ 25 Cp/Cg ¼ 1,000 Cp/Cg ¼ 25 Cp/Cg ¼ 1,000

Random Minimum �0.061 �0.004 �0.062 0.001 �0.056 0.000

Median 0.004 0.014 0.005 0.019 �0.007 0.021

Maximum 0.036 0.105 0.033 0.089 0.025 0.135

Threshold Minimum �0.010 �0.004 0.001 0.003 �0.001 0.000

Median 0.043 0.045 0.048 0.048 0.064 0.068

Maximum 0.126 0.162 0.117 0.123 0.151 0.152

This table presents summary statistics for the power difference between the LRTae and LRTstd methods (p-values evaluated using permutation) at the 0.05, 0.01, and 0.001 significance
levels. Results are shown for LRTae computed using both the random and threshold double-sample selection methods. The methods are compared for fixed costs where the power for
LRTae is computed under two conditions: (1) the cost ratio of phenotyping to genotyping (Cp/Cg) is 25 and (2) the cost ratio of phenotyping to genotyping (Cp/Cg) is 1,000. The sample size
for LRTstd, N, is 1,000 (500 cases and 500 controls). For the LRTae statistic, settings of a¼ 0.75 (random double-sample selection method) and r¼ 5 were used. When the threshold double-
sample selection method was used to compute LRTae, the setting of d¼ 0.85 was used, and the maximum proportion of individuals included in the double-sample was 0.75. Haplotype
pairs were inferred using SNPHAP v 1.3.1.
DOI: 10.1371/journal.pgen.0020127.t003
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double-sample selection. These parameter settings are a
dominant disease model with R2 ¼ 3.5 and DAF ¼ 0.07. We
based the population haplotype frequencies on the Horan
and HapMap TAP2 datasets as described in the Methods
section. For each dataset, we selected the haplotype with
frequency closest to 0.05 as the haplotype in LD with the
disease locus. By this choice of haplotype, we approximated

the frequency of the linked haplotype for the two-SNP
scenario (see Material and Methods section) when DAF¼ 0.07.
As with the two-SNP power study, the LD between the disease
locus and the linked haplotype was 0.9 (measured by D9) [56].
The cost ratio of molecular haplotyping to genotyping (r) was
5. When the random double-sample selection method was
used to compute LRTae, the double-sample proportion (a)
was 0.75. When the threshold double-sample method was used
to compute LRTae, the setting of d ¼ 0.85 was used, and the
maximum proportion of individuals included in the double-
sample was 0.75.
For the Horan dataset, the power estimates for the LRTstd

and the LRTae were almost identical at the 0.05, 0.01, and
0.001 significance levels for cost ratios (Cp/Cg) of both 1,000
and 25 (unpublished data). The high pair-wise intermarker
LD present in the Horan dataset causes the haplotype
inference to occur with almost complete fidelity. In the
absence of misclassification, the LRTae statistic reduces to the
LRTstd. Therefore, the high degree of similarity in power for
these statistics is not surprising.
For the HAPMAP TAP2 dataset, Table 5 displays the power

estimates and the corresponding 95% confidence intervals
(CIs) for the LRTstd and LRTae methods at the 0.05, 0.01, and
0.001 significance levels assuming fixed costs. When Cp/Cg ¼
1,000, the LRTae provides a substantial power benefit over the
LRTstd with the power difference ranging from 6% and 7% at
a significance level of 0.05, to 14% and 21% at a significance
level of 0.001 for random double-sample selection and
threshold double-sample selection, respectively. When Cp/Cg

¼ 25, the advantage of the LRTae over the LRTstd is still
substantial for threshold double-sample selection, but more
modest for random double-sample selection. For the three
significance levels under investigation, the power difference
ranged from 7% to 22%, and 1% to 3.5% for threshold and
random double-sample selection, respectively.
We found that the median power gain of the LRTae over

the LRTstd for the threshold double-sample selection method
was consistently greater than that for the random double-
sample selection method for the runs associated with the
factorial design settings displayed in Table 2 and the
HAPMAP TAP2 power simulations (see Tables 3 and 5).
Furthermore the power gain for the threshold double-sample
selection method occurred for either setting of Cp/Cg. For the
threshold double-sample selection method, �a was small (less
than 21%) in our simulations so that our computed NDS*
values had a minimum of 963 individuals.

Discussion

In practice, few researchers employ molecular haplotyping
techniques in genetic case-control studies. The absence of a
high-throughput procedure relative to current SNP genotyp-
ing technologies is arguably the main reason that this
methodology is not more widely used. Another related reason
is the cost in terms of both the time and money associated
with employing this methodology. Our research suggests that
the additional costs involved in molecular haplotyping may
be worth the effort, especially if the cost of phenotyping is
high relative to the cost of genotyping for a study. Ji et al.
found analogous results for the effects of genotype mis-
classification on genotypic test of association [61]. In practice,
this situation arises for replication studies. A genome-wide

Figure 4. Contour Plots of the Power Difference between the LRTae and

LRTstd Methods at Various Settings

Various settings for the cost ratio of molecular haplotyping to
genotyping (r) and the proportion of individuals double-sampled (a)
are shown. Power is compared at the 0.001 significance level. The cost
ratio of phenotyping to genotyping for (A) is 25 while the cost ratio of
phenotyping to genotyping for (B) is 1,000. The generation of haplotype
frequencies for the cases and controls was based on a dominant disease
model with R2 ¼ 3.5 and DAF ¼ 0.07, as well as population haplotype
frequencies of 0.05, 0.25, 0.15, and 0.55. The haplotype with frequency of
0.05 was placed in LD (D9 ¼ 0.9) with the disease locus. LRTae was
computed with the random double-sample selection method only.
Haplotype pairs were inferred using SNPHAP v 1.3.1.
DOI: 10.1371/journal.pgen.0020127.g004
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scan involving thousands of SNP markers along with
subsequent fine mapping in an initial set of case and control
individuals may identify a number of promising regions for
follow-up studies. These follow-up or replication studies
involve recruiting an independent sample of cases and
controls for which only SNPs in the promising regions will
be genotyped [62]. In replication studies for complex traits,
the cost ratio of phenotyping to genotyping may be on the
order of thousands. For these situations, the LRTae for testing
haplotype association should provide the most utility. It is
interesting to note, however, that applying the threshold
double-sample selection method provided comparable
powers for both high and low phenotyping to genotyping
cost ratios. This finding suggests that this selection strategy
may provide additional power for an initial genome-wide
association study, as well as for a replication study.

One potential limitation of these test statistics that we
selected is the increase in degrees of freedom associated with
using haplotype pairs rather than individual haplotypes. In
general, larger degrees of freedom may result in a loss of
power. That is, methods that fully account for uncertainty in
the phase-assignment process [11,63,64] may be more power-
ful than LRTae because the LRTae method examines
haplotype pairs rather than single haplotypes and therefore
has more degrees of freedom. We chose these statistics for the
following reasons: (1) The most general misclassification
model involves modeling errors in haplotype pairs rather
than in individual haplotypes [51,65,66]. (2) When haplotype
pair frequencies deviate from Hardy-Weinberg Equilibrium
in either case or control sample populations, test statistics
that use single haplotype frequencies may increase false-
positive rates and/or lose power [67,68]. (3) In contrast with

Table 4. False-Positive Rate Estimates for Simulations with Generating Population Haplotype Frequencies Based on the Horan and
HAPMAP TAP2 Datasets

p-Value Type Statistic DS Selection Method Horan Dataset HAPMAP TAP2 Dataset

False-Positive

Rate

95% CI KS p-Value False-Positive

Rate

95% CI KS p-Value

Asymptotic LRTstd N/A 0.396 (0.366, 0.427) ,0.001 0.424 (0.393, 0.455) ,0.001

LRTae Random 0.500 (0.469, 0.532) ,0.001 0.659 (0.629, 0.688) ,0.001

Threshold 0.490 (0.459, 0.522) ,0.001 0.632 (0.601, 0.662) ,0.001

Permuted LRTstd N/A 0.062 (0.048, 0.079) 0.931 0.041 (0.030, 0.055) 0.770

LRTae Random 0.053 (0.040, 0.069) 0.718 0.047 (0.035, 0.062) 0.665

Threshold 0.051 (0.038, 0.067) 0.143 0.048 (0.036, 0.063) 0.267

This table presents estimates of the false-positive rate and the corresponding 95% CIs for the LRTstd and LRTae statistics (asymptotic and permuted p-values) for a significance level of 0.05.
The generating population haplotype frequencies for the simulations were based on the Horan and HAPMAP TAP2 datasets (as described extensively in the Methods section). Simulations
for 1,000 replicate datasets containing 250 cases and 250 controls were performed. LRTae was computed with the random and threshold double-sample selection methods. When the
random double-sample selection method was used, a setting of a¼ 0.75 was used. When the threshold double-sample method was used to compute LRTae, the setting of d¼ 0.85 was
used, and the maximum proportion of individuals included in the double sample was 0.75. The table also displays p-values for the KS test which tests the null hypothesis that the p-values
computed for each statistic are drawn from a standard uniform distribution. Haplotype pairs were inferred using SNPHAP v 1.3.1.
DOI: 10.1371/journal.pgen.0020127.t004

Table 5. Power Estimates for Simulations with Generating Population Haplotype Frequencies Based on the HAPMAP TAP2 Datasets

Significance Level Statistic DS Selection Method Cp/Cg Power 95% CI

0.05 LRTstd N/A N/A 0.858 (0.835, 0.879)

LRTae Random 1,000 0.919 (0.900, 0.935)

25 0.868 (0.845, 0.888)

Threshold 1,000 0.924 (0.906, 0.940)

25 0.935 (0.918, 0.950)

0.01 LRTstd N/A N/A 0.666 (0.636, 0.695)

LRTae Random 1,000 0.801 (0.775, 0.825)

25 0.701 (0.672, 0.729)

Threshold 1,000 0.804 (0.778, 0.828)

25 0.817 (0.792, 0.841)

0.001 LRTstd N/A N/A 0.405 (0.374, 0.436)

LRTae Random 1,000 0.546 (0.515, 0.577)

25 0.421 (0.390, 0.452)

Threshold 1,000 0.613 (0.582, 0.644)

25 0.626 (0.595, 0.656)

This table presents power estimates and the corresponding 95% CIs for the LRTstd and LRTae statistics (permuted p-values) for various significance levels. The simulations were performed
under fixed costs such that the number of samples when LRTae is applied is reduced according to Equation 1. The generating population haplotype frequencies for the simulations were
based on the HAPMAP TAP2 dataset (as described extensively in the Methods section). The disease model is dominant with R2 ¼ 3.5, disease prevalence ¼ 0.025, DAF ¼ 0.07, and D9

between the disease locus and the associated haplotype¼ 0.9. Settings of a¼ 0.75 (random double-sample selection method) and r¼ 5 were used. When the threshold double-sample
method was used to compute LRTae, the setting of d¼ 0.85 was used, and the maximum proportion of individuals included in the double sample was 0.75. Haplotype pairs were inferred
using SNPHAP v 1.3.1.
DOI: 10.1371/journal.pgen.0020127.t005
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methods that use single haplotype frequencies, the Cochran-
Armitage Linear Test of Trend maintains the nominal false-
positive rate and does not lose power [68–70]. To our
knowledge, a version of this test that incorporates double-
sampling procedures to correct for haplotype miscalls does
not currently exist.

A point for further research involves identifying the
scenarios that produce differential and non-differential
haplotype pair misclassification, respectively, as well as
identifying the effects of each kind of misclassification on
type I error and power. Under the null hypothesis that
haplotype frequency distributions are equal in case and
control populations, theoretical and simulation studies
(including ours in this work) suggest that misclassification is
non-differential. Under the alternative hypothesis, it is
conceivable that haplotype pair misclassification rates may
be different in case and control populations. Although recent
research [47,71] indicates that differential misclassification
increases the type I error, the effects of differential
misclassification on the power of these statistics are unclear.

Although the current perception may be that molecular
haplotyping costs are not cost-effective, recent publications
suggest that for relatively small regions of the genome,
accurate molecular haplotyping is no more expensive than
performing fluorescent polymerase chain reactions [18]. In
addition, current techniques are able to provide molecular
haplotypes for an entire chromosome at a cost ratio (Cmh/Cg)
of approximately 5 (C. Ding, personal communication).
Finally, as technology improves, the costs associated with
molecular haplotyping will likely decrease, and the through-
put will likely increase.

Conclusion
In this work, our simulations showed that the misclassifi-

cation present in calling phased haplotypes from multilocus
genotypes using statistical methods is complete. That is, each
misclassified haplotype pair is consistently misclassified as the
same incorrect haplotype pair throughout the entire dataset.
In addition, our simulations under the null hypothesis of no
association demonstrate that applying the theoretical v2

distribution to evaluate the significance of test statistics
produces conservative and anticonservative p-values whereas
applying permutation methods consistently produces p-
values that maintain the nominal false-positive rate. Con-
sequently, permutation methods should be exclusively used to
determine statistical significance for the tests we perform. As
expected, the LRTae provides the greatest advantage in terms
of power over the LRTstd in situations in which more

haplotype misclassification errors are present. These situa-
tions arise when the haplotype under investigation comprises
many SNP markers with low pair-wise intermarker LD.
For fixed costs, the power gain of the LRTae over the LRTstd

varied depending on the relative costs of genotyping,
molecular haplotyping, and phenotyping. In general, the
LRTae showed the greatest benefit over the LRTstd when the
cost of phenotyping was very high relative to the cost of
genotyping. This situation is likely to occur in a candidate
gene replication study as opposed to a genome-wide associ-
ation study. For intermediate phenotyping to genotyping cost
ratios (e.g., Cp/Cg ¼ 25), the LRTae may still provide a power
advantage if the cost ratio of molecular haplotyping to
genotyping is low (Cmh/Cg , 10 for a � 0.5). Currently,
inexpensive long-range PCR methods for molecular haplotyp-
ing are under development. As technology improves leading
to less-expensive molecular haplotyping methods, the LRTae

will become applicable to a wider set of circumstances.
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The documentation for SNPHAP and PHASE can be found

at http://www-gene.cimr.cam.ac.uk/clayton/software and http://
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The documentation for PAWE can be found at http://
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Data for the estimation of haplotype frequencies from SNP

markers within the TAP2 gene were downloaded from http://
www.hapmap.org/downloads/index.html.en (HapMap public
release #16c.1).
LRTae software is available for free download from ftp://

linkage.rockefeller.edu/software/lrtae.
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