
Early-onset high myopia (eoHM), defined as a spherical 
refraction of less than or equal to −6.0 diopters (D) in each 
meridian [1] or an axial length of at least 26 mm in both eyes 
[2], occurs before 7 years of age [3-5]. Compared to other 
types of myopia, eoHM is more likely to be determined by 
genetic factors due to minimal effects of the environment 
[4,6,7], such as extensive near work, that plays an important 
role in common or late-onset high myopia [8,9]. Thus far, 
the genetic defects known to cause HM have been identified 
in only a small number of families, based on our previous 
studies [5,10-12]. However, mutations in the genes known 
to be responsible for retinal diseases were found in about 

one-fourth of probands with eoHM in a comprehensive 
analysis of whole-exome sequencing data from 298 families 
[4]. These findings were further confirmed with an analysis 
of whole-exome sequencing data from another eoHM cohort 
of 325 families [7]. For those families with eoHM and muta-
tions in RetNet genes, approximately one-fifth (34 probands) 
had mutations in the genes responsible for Stickler syndrome 
(STL), including COL2A1 (Gene ID 1280, OMIM 120140) 
or COL11A1 (Gene ID 1301, OMIM 120280). It is of interest 
to investigate the phenotypic characteristics of patients with 
eoHM with mutations in genes associated with STL.

STL is a group of genetic disorders involving the collagen 
of connective tissue, notable mainly in the face, joints, ears, 
and eyes; STL affects an estimated 1 in 7,500 to 9,000 
newborns [11,13]. Marshall syndrome, caused by mutations in 
COL11A1, is considered a variant of STL [14-16]. STL can be 
transmitted as an autosomal dominant or autosomal recessive 
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Purpose: Our previous study reported that 5.5% of probands with early-onset high myopia (eoHM) had mutations in 
COL2A1 or COL11A1. Why were the probands initially considered to have eoHM but not Stickler syndrome (STL)?
Methods: Probands and family members with eoHM and mutations in COL2A1 or COL11A1 were followed up and reex-
amined based on the criteria for STL. Further comprehensive examinations were conducted for patients with eoHM and 
mutations in COL2A1 or COL11A1 and controls with eoHM without mutations in COL2A1 or COL11A1. We performed 
comparisons between probands, affected family members with mutations in COL2A1 or COL11A1, and controls with 
eoHM without mutations in COL2A1 or COL11A1.
Results: Twelve probands (8.91±4.03 years) and 14 affected family members (37.00±11.18 years) with eoHM and muta-
tions in COL2A1 or COL11A1, as well as 30 controls with eoHM but without mutations in COL2A1 or COL11A1, were 
recruited. Among them, 25.0% of probands and 50.0% of affected family members met the diagnostic criteria for STL 
after reexamination. Posterior vitreous detachment/foveal hypoplasia (PVD/FH), hypermobility of the elbow joint (HJ), 
and vitreous opacity were more frequent in patients with eoHM with mutations in COL2A1 or COL11A1 than in the 
controls (p = 1.40 × 10−5, 3.72 × 10-4, 2.30× 10-3, respectively). HJ was more common in the probands than in the af-
fected family members (11/12 versus 3/14; p = 3.42 × 10-4), suggesting age-dependent manifestation. EoHM presented 
in all the probands and in 11/14 affected family members, suggesting that it is a more common indicator of STL than 
the previously described vitreoretinal abnormalities, especially in children. The rate of STL diagnosis could increase 
from 25.0% to 66.7% for probands and from 50.0% to 92.9% for affected family members if eoHM, PVD/FH, and HJ 
are added to the diagnostic criteria.
Conclusions: In summary, it is not easy to differentiate STL from eoHM with routine ocular examination in outpatient 
clinics. Awareness of atypical phenotypes and newly recognized signs may be of help in identifying atypical STL, 
especially in children at eye clinics.

Correspondence to: Qingjiong Zhang, Pediatric and Genetic Eye 
Clinic, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 
54 Xianlie Road, Guangzhou 510060, China; Phone: (+86)-20-
66677083; FAX: (+86)-20-87333271; email: zhangqji@mail.sysu.
edu.cn.

https://www.ncbi.nlm.nih.gov/omim/?term=120140
https://www.ncbi.nlm.nih.gov/omim/?term=120280
http://www.molvis.org/molvis/v24/560


Molecular Vision 2018; 24:560-573 <http://www.molvis.org/molvis/v24/560> © 2018 Molecular Vision 

561

trait. The autosomal dominant form of STL is caused by 
mutations in COL2A1 [17], COL11A1 [18], or COL11A2 (Gene 
ID 1302, OMIM 120290) [19], while the autosomal recessive 
form of STL is caused by mutations in COL9A1 (Gene ID 
12839, OMIM 120210) [20], COL9A2 (Gene ID 1298, OMIM 
120260) [21], COL9A3 (Gene ID 1299, OMIM 120270) [22], 
or LOXL3 (Gene ID 84695, OMIM 607163) [23,24]. STL type 
1 (STL1), the most common subtype of STL, accounting for 
80–90% of all STL cases, is caused by mutations in COL2A1. 
STL type 2 (STL2) is caused by mutations in COL11A1; it 
accounts for 10–20% of all STL cases [13]. Truncation muta-
tions or missense mutations affecting glycine are the main 
class of the pathogenic mutations of COL2A1 or COL11A1 
[4,25]. The manifestation of STL is multisystemic, and 
includes ocular findings of characteristic vitreous opacity, 
myopia, cataract, and retinal detachment, hearing loss, 
midfacial dysplasia and cleft palate (either alone or as part 
of the Robin sequence), mild spondyloepiphyseal dysplasia, 
and precocious arthritis [26,27]. The presence and severity 
of each sign may vary greatly from patient to patient and 
change over time [28,29]. Additionally, STL type 3, caused by 
mutations in COL11A2, may have no eye involvement [30,31]. 
Mutations in exon 2 of COL2A1 have been suggested to affect 
mainly ocular phenotypes with minimal or the absence of 
systemic involvement [32-34]. The diagnosis of STL may not 
be easy even with the diagnostic criteria that were created for 
this syndrome in 2005 [27]. Previously, genotype–phenotype 
studies were based mainly on analyses of patients with STL. 
Extended genotype–phenotype analysis based on patients 
with individual major signs, such as eoHM [27], may detect 
patients with atypical phenotypes, but such studies have been 
rare.

In this study, follow-up reexaminations were performed 
on probands and their affected family members with eoHM 
and mutations in COL2A1 or COL11A1 to reveal why these 
probands were initially considered to have eoHM but not 
STL. In addition, we wanted to know whether any specific 
ocular or systemic signs could warrant further examination 
of atypical STL in childhood with major presenting signs of 
eoHM.

METHODS

Participants: This study is part of our ongoing project on 
the genetics of eoHM. Based on whole-exome sequencing, 
potential pathogenic mutations were previously identified in 
34 of the 623 probands with eoHM [4,7] in two of the six 
genes known to cause STL (i.e., COL2A1 and COL11A1). Of 
the 34 families with mutations, 12 probands (Table 1) and 
14 affected family members were available for follow-up 

reexamination in the present study. Meanwhile, 30 recently 
identified probands with eoHM without mutations in the 
six genes but with comparable clinical data were analyzed 
as controls. Written informed consent conforming to the 
tenets of the Declaration of Helsinki and adhering to the 
ARVO statement on human subjects was obtained from the 
participants or their guardians before the collection of blood 
samples and clinical data. This study was approved by the 
institutional review board of Zhongshan Ophthalmic Center, 
Sun Yat-Sen University, Guangzhou, China.

Clinical evaluation: The participants described above 
received ocular and systemic evaluations based on the diag-
nostic criteria for STL [27]. Refractive error was measured 
with an autorefractometer (Topcon KR-8000, Paramus, NJ) 
after mydriasis using compound tropicamide (Mydrin-P, 
Santen Pharmaceutical, Osaka, Japan). Axial length was 
measured using an optical biometer (IOL master V5.0, Carl 
Zeiss Meditec AG, Oberkohen, Germany). Photographs of the 
anterior vitreous opacity were taken with a photo slit-lamp 
microscope (LS-6, Chongqing, China). Fundus photographs 
were obtained using a digital retinal camera (CR-2 PLUS 
AF, Canon, Tokyo, Japan). The posterior vitreoretinal and 
macular regions were examined using optical coherence 
tomography (OCT; Topcon Corp, Oakland, NJ).

Examinations of the orofacial, auditory, and musculo-
skeletal systems were also performed. Pure-tone audiom-
etry (GSI 61, GSI, Eden Prairie, MN), the air conduction 
threshold (0.25–8 kHz), and the angles of elbow and knee 
hypermobility were evaluated for all 12 probands and their 
14 affected family members. X-ray examinations (Luminors 
Select, SIEMENS, Munich, Germany) were conducted on 
select individuals with complaints of discomfort in their 
joints or on individuals recommended for such examinations 
by professional physicians.

Overview of the genotype–phenotype: To understand the 
extent of phenotypic variation in eoHM associated with 
mutations in COL2A1 and COL11A1, the reported pheno-
types of STL caused by mutations in these two genes were 
reviewed and summarized based on the published literature 
[15,17,18,25,27-29,32,35-90], which were retrieved from 
PubMed, Web of Science, and Google Scholar (Appendix 1). 
The phenotypes of the present cases were discussed based on 
comparison with the reported overview phenotypes of STL.

Statistical analysis: Clinical data for patients with eoHM with 
or without mutations in COL2A1 or COL11A1 were compared 
first. For patients with eoHM with mutations in COL2A1 or 
COL11A1, the clinical data for the probands were compared 
to the data for affected family members. A t test and Fisher’s 
exact test were performed in SPSS 22.0 (SPSS, Inc., Chicago, 
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IL). A p value of less than 0.05 was considered statistically 
significant (the hypothesis tests were two-sided).

RESULTS

Of the 34 eoHM families with mutations in COL2A1 or 
COL11A1, 26 patients from 12 families received follow-up 
examinations, including 12 probands and 14 affected family 

members (Figure 1). Of the 26 patients, 23 were from ten 
families with mutations in COL2A1, and three were from two 
families with mutations in COL11A1 (Table 1 and Appendix 
2). No patients in this cohort had mutations in exon 2 of 
COL2A1 (Table 1).

The medical records from the initial visits of the 12 
probands with mutations in COL2A1 or COL11A1 did not 

Figure 1. Pedigrees of 12 families with mutations and cosegregation results for those mutations. The family members and their corresponding 
mutations are shown just above the pedigrees (M, mutated allele; +, wild-type allele). Squares indicate male individuals, and circles indicate 
female individuals. The patients with arrows were the probands in these families.

http://www.molvis.org/molvis/v24/560
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mention specific signs that could lead to a diagnosis of STL 
rather than eoHM. However, comprehensive follow-up reex-
aminations, based on STL diagnostic criteria [27], identified 
additional ocular and systemic signs in some of the probands 
and their affected family members (Appendix 2). Based on 
clinical data obtained in the reexaminations, a diagnosis of 
STL could be made in 25.0% (3/12) of the probands and 50% 
(7/14) of the affected family members, following the reported 
diagnostic criteria [27] (Figure 2 and Figure 3; Appendix 2).

Comparing the 26 patients with eoHM harboring muta-
tions in COL2A1 or COL11A1 with the 30 patients with eoHM 
without mutations in COL2A1 or COL11A1 (Table 2 and 

Appendix 2), there were statistically significant differences 
in posterior vitreous detachment and/or foveal hypoplasia 
(PVD/FH; 22/26 versus 8/30; p = 1.40 × 10−5; Figure 2), 
hypermobility of the elbow joints (HJ; 16/26 versus 3/30; p = 
3.72 × 10-4), and vitreous opacity (9/26 vs. 1/30, p = 2.30×10-3). 
For all patients less than 14 years old, hypermobility of the 
elbow joints (Figure 3) was present in all 12 patients with 
eoHM with mutations in COL2A1 or COL11A1 but in only 
three of the 18 patients with eoHM without mutations in 
COL2A1 or COL11A1 (p = 8.00 × 10−6). Between the two 
cohorts, there were no significant differences in the pres-
ence of HM, the degree of refractive error, the axial length, 

Figure 2. Ocular manifestations of patients with mutations in COL2A1 or COL11A1. A: Photographs of the anterior segments of HM849IV2, 
HM849III3, HM849III4, and HM878II3. Membrane and beaded vitreous opacity and cataracts can be seen in HM849IV2, and membrane 
vitreous opacity can be seen in HM849III3. Cataracts can be seen in HM849IV2 and HM849III4, while HM878II3 is normal. B: Multi-
directional wide-field color photographs of HM849III3 and HM813I2, and B-scans of the left eyes of HM862II3 and HM470II1. Retinal 
degeneration can be seen in HM849III3, but not in HM813I2. On the B-scans of HM862II3 and HM470II1, retinal detachment and vitreous 
opacity, respectively, can be seen. C: OCT scans of HM849III3, HM862III1, and HM878II3. Posterior vitreous detachment and foveal 
hypoplasia (the remaining layers in the central fovea of the macula, including the inner limiting membrane, the nerve fiber layer, the ganglion 
plexiform layer, the inner plexiform layer, and the inner nuclear layer) can be detected in HM849III3 and HM862III1. The macular structure 
of HM878II3 was normal.

http://www.molvis.org/molvis/v24/560
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retinal abnormalities (i.e., lattice degeneration, retinal holes, 
or retinal detachment), and cleft palate (Table 2).

To test whether there were age-dependent differences 
for clinical signs associated with mutations in COL2A1 or 
COL11A1, comparisons of clinical data were also performed 
between the probands and their affected family members. 
There were statistically significant differences in age (p = 
1.80 × 10−8), HJ (11/12 versus 3/14; p = 3.42 × 10-4) and retinal 
abnormalities (p = 0.02). In addition, older patients had a 

higher frequency of vitreous opacity, retinal abnormalities 
(lattice degeneration, retinal holes, and retinal detachment), 
and musculoskeletal abnormalities, as seen in the family 
members (Table 3). However, these diagnostic signs were 
either absent or not obvious in early childhood, as in most 
probands.

PVD/FH and HJ are frequent specific signs in children 
with eoHM and mutations in COL2A1 or COL11A1; therefore, 
these two signs may be considered early suggestive signs for 

Figure 3. Systemic manifestations of patients with mutations in COL2A1 or COL11A1. A: Frontal and profile facial images of HM849II6. A 
flat midface with a depressed nasal bridge, a short nose, and micrognathia can be seen in HM849II6. B: Oral photographs of HM820I2 and 
HM842I1. A cleft palate can be seen in HM820I2, while HM842I1 is normal. C: Hypermobility of the elbow. Hyperextension of the elbow 
joint can be seen in HM849IV2, while HM849III3 is normal. D: Valgus of the elbow. Valgus of the elbow can be detected in HM842II1 with 
a normal control beside it. E: Valgus of the knee can be seen in HM951II1 with a normal control beside it. F: Hip-joint X-rays of HM849II6 
and HM820II1. The X-ray of HM849II6 shows femoral head necrosis, while the hip joint of HM820II1 is normal.

http://www.molvis.org/molvis/v24/560
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STL. In addition, as eoHM is easily recognizable and more 
frequent than vitreous opacity and retinal abnormalities in 
young patients, eoHM might be an earlier suggestive sign 
for STL. The proportion of patients carrying eoHM and HJ 
to patients carrying all signs (eoHM, HJ, and PVD/FH) was 
statistically significantly higher in younger probands than 

in family members with mutations in COL2A1 or COL11A1 
(11/12 versus 3/14, p = 3.42 × 10−4; 9/12 versus 3/14, p =6.32 × 
10−3) and controls with eoHM without mutations in COL2A1 
or COL11A1 (11/12 versus 3/30, p = 3.94 × 10−7; 9/12 versus 
0/30, p = 8.73 × 10−7; Table 4). This further supports the idea 
that eoHM, HJ, and PVD/FH are important clues for STL, 

Table 2. comParisons of clinical daTa eohm PaTienTs wiTh muTaTions comPared To eohm conTrols wiThouT muTaTions.

 NO. (%)†  
Parameter Patients with mutations Controls without mutations Comparison
 n=26 n=30  
Age (Y) 24.04±16.46 17.53±13.18 0.10
eoHM 23 (88.5) 30 (100.0) 0.06
Refractive error -10.92±6.94 -9.08±4.32 0.23
Axial length 27.06±2.25 27.12±2.64 0.93
PVD/FH 22 (84.6) 8 (26.7) 1.40E-05
Vitreous opacity 9 (34.62) 1 (3.3) 2.30E-03
Retinal abnormility 5 (19.2) 2 (6.7) 0.16
Cleft palate 3 (11.5) 0 (0) 0.06
HJ 14 (53.8) 3 (10.0) 3.72E-04
HJ (<16Y) 12/12 (100.0) 3/18 (16.7) 8.00E-06

NO., number; Y, years; PVD, posterior vitreous detachment; FH, foveal hypoplasia; HJ, hypermobility of the elbow joint;† Percentages 
are based on the total number of the individuals.

Table 3. comParisons of clinical daTa beTween Probands and affecTed family members wiTh muTaTions.

 NO. (%)†  
Parameter Probands Family members Comparison
 n=12 n=14  
Age (Y) 8.91±4.03 37.00±11.18 1.80E-08
eoHM‡ 12 (100.0) 11 (78.6) 0.09
Refractive error -9.53±7.14 -13.60±6.17 0.13
Axial length 27.72±1.88 26.35±2.40 0.12
PVD/FH‡ 9 (75.0) 13 (92.9) 0.21
Vitreous opacity 2 (16.7) 7 (50.0) 0.08
Retinal abnormility 0 (0.0) 5 (35.7) 0.02
HJ‡ 11 (91.7) 3 (21.4) 3.42E-04
HJ (<16Y) 11/11 (100.0) 1/1 (100.0) 1.00
Other signs of STL diagnostic criteria    
Orofacial abnormality 10 (83.3) 10 (71.4) 0.47
Musculoskeletal abnormality 3 (25.0) 8 (57.1) 0.10
Hearing loss 5 (41.7)§ 7 (50.0) 0.67
Diagnosis of STL after follow-up exam 3 (25.0) 7 (50.0) 0.19
Diagnosis of STL if new signs added‡ 8 (66.7) 13 (92.9) 0.09

NO., number; Y, years; PVD, posterior vitreous detachment; FH, foveal hypoplasia; HJ, hypermobility of the elbow joint; † Percentages 
are based on the total number of the individuals. ‡ eoHM, PVD/FH and HJ were added as one point each in the suggested criteria. § One 
proband was too young to undergo an auditory examination, and the data were not available.
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and eoHM together with HJ might be especially indicative of 
STL in childhood. In our case series, the rate of diagnosis for 
STL could be further increased if eoHM, HJ, and PVD/FH 
could be added as new suggestive signs (from 3/12 to 8/12 for 
probands and from 7/14 to 13/14 for affected family members; 
Table 3 and Appendix 2).

As for the phenotypic overview, clinical data from 595 
patients were retrieved from the literature, including 380 
patients with STL1 caused by mutations in COL2A1 (except 
the mutations in exon 2 in COL2A1), 52 patients with ocular-
only STL1 with mutations in exon 2 of COL2A1, 111 patients 
with STL2 caused by mutations in COL11A1, and 52 patients 
with Marshall syndrome caused by mutations in COL11A1 
[15,17,18,25,27-29,32,35-90]. The phenotypic overview of the 
595 patients with COL2A1 or COL11A1 mutations is summa-
rized in Appendix 1. The overview showed that myopia and 
orofacial abnormality are the most common signs, affecting 
71.4% (425/595) and 60.0% (357/595) of patients, respectively. 
Vitreous opacity, hearing loss, and musculoskeletal abnor-
mality were reported in 38.3% (228/595), 36.1% (215/595), 
and 30.9% (184/595) of patients, respectively. For those 
four subtypes of STL (STL1, ocular-only STL1, STL2, and 
Marshall syndrome), systemic signs are less frequent in 
ocular-only STL1 compared to the other three subtypes. The 
incidence of hearing loss in STL2 is higher than in STL1, as 
mentioned in a previous review [91]. Membranous and beaded 
vitreous abnormality might be a clue for distinguishing STL1 
from STL2 [13], but few reports have clarified the type of 
vitreous abnormality. The prevalence of hearing loss, orofa-
cial abnormality, hypertelorism, and short stature is higher 
in Marshall syndrome than in STL1 and STL2. However, 
hypertelorism and short stature might be rarely recognized 
as specific signs for certain populations. The pattern of 
major signs seen in the 14 adults in the present study was 
comparable to that of STL1 in an overview, while vitreous 
abnormality, hearing loss, and skeletal abnormality were 

more common in adults than in children with eoHM and STL 
mutations in the present study (Appendix 1). The overview of 
the phenotype might assist clinicians in identifying patients 
whose condition may be caused by mutations in COL2A1 or 
COL11A1.

DISCUSSION

In this study, follow-up examinations were performed on 12 
probands and 14 affected family members with eoHM and 
mutations in COL2A1 or COL11A1. The resulting clinical 
data were compared with 30 patients with eoHM without 
mutations in COL2A1 or COL11A1. None of the 12 probands 
met the diagnostic criteria for STL [27] based on a review 
of their medical records from their initial visits. Even after 
comprehensive follow-up reexaminations based on the diag-
nostic criteria for STL, the clinical data for most of the 26 
patients (16/26 for all, 9/12 for probands, 7/14 for affected 
family members) still did not meet the diagnostic criteria for 
STL. These results suggest that a diagnosis of STL based 
on previous criteria is still challenging in routine clinical 
practice. This is especially true for children presenting with 
HM in an eye clinic, even after follow-up examinations with 
reference to the diagnostic criteria of STL and after the iden-
tification of the causative mutations in COL2A1 or COL11A1.

Some of the previously described signs, such as flat or 
broad and round facial features, are commonly seen in 
the general population living in Southeast Asia [47,92,93]. 
Therefore, certain characteristic facial features, such as malar 
hypoplasia, a broad or flat nasal bridge, and micrognathia or 
retrognathia, might be not considered diagnostic signs of STL 
in such a population [47]. Other additional easily recognizable 
clues may help ophthalmologists identify STL without typical 
phenotypes.

Comparing the 26 patients harboring COL2A1 or 
COL11A1 mutations to 30 patients with eoHM without 

Table 4. comParison of suggesTed signs among Probands, family members, and eohm conTrols.

Parameter Probands Family members Controls eoHM
 n=12 n=14 n=30
eoHM 12 11 30
HJ 11 3 3
PVD/FH 9 13 8
First two signs (p) 11 3 (3.42E-4)¶ 3 (3.94E-7)∑

All three signs (p) 9 3 (6.32E-3)¶ 0 (8.73E-7)∑

HJ, hypermobility of the elbow joint; PVD, posterior vitreous detachment; FH, foveal hypoplasia;¶ indicates the p value in the bracket 
was obtained by using Chi-square test based on comparison of the two signs (eoHM and HJ) or three signs (eoHM, HJ, and PVD/FH) 
between probands and affected family members; Σ indicates the p value in the bracket was obtained by using Chi-square test based on 
comparison of the two signs (eoHM and HJ) or three signs (eoHM, HJ, and PVD/FH) between probands and eoHM controls.
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mutations revealed suggestive signs that could be helpful in 
warning a patient about a potential diagnosis of STL. EoHM 
seemed to be present in all the probands with mutations 
in COL2A1 or COL11A1, but this study demonstrated that 
mutations in STL-related genes are the most common cause 
of eoHM. This finding is identical to the overview of the 
phenotype of patients with mutations in COL2A1 or COL11A1 
(Appendix 1). EoHM is the earliest presenting and most easily 
recognizable sign for children with potential STL. Specific 
ocular signs of STL, including characteristic vitreous changes 
or retinal abnormalities (lattice degeneration, retinal hole, 
retinal detachment, or retinal tear), were rarely present in 
children with eoHM and mutation in COL2A1 or COL11A1 
in this cohort (Table 3 and Appendix 2). Therefore, keeping 
eoHM in mind as a common presenting sign of STL could 
facilitate the identification of children with potential STL at 
eye clinics.

Two additional new signs were frequently observed in 
probands with eoHM with mutations in COL2A1 or COL11A1, 
that is, PVD/FH and HJ. A child with eoHM plus HJ is highly 
likely to have STL when compared to controls without STL 
with eoHM (Table 4). HJ can be easily observed in a routine 
clinic without any instruments or additional fees. HJ is an 
age-dependent sign that usually presents in affected children 
but rarely in affected adults. In addition, PVD/FH based on an 
OCT scan may provide additional evidence for STL (Table 4), 
which supports recently reported findings [94]. Thus, adding 
these three signs as new diagnostic clues may facilitate the 
clinical diagnosis of STL (Table 3).

The present study is limited by the lack of auditory and 
comprehensive musculoskeletal data from controls with 
eoHM without mutations in COL2A1 or COL11A1. As an eye 
hospital without facilities for auditory examination, we are 
unable to refer patients for auditory tests at other hospitals 
if the patients do not present related signs or symptoms. 
Additionally, we are unable to refer patients for X-rays if the 
patients do not present related signs or symptoms.

In summary, some patients with STL may present as 
having eoHM at the clinic, and a considerable proportion of 
patients are actually patients with STL with atypical pheno-
types. This further supports the great phenotypic variation of 
STL [18,26,28,29]. Mutations in exon 2 of COL2A1 have been 
suggested to cause nonsyndromic ocular STL, even when 
systemic features are mild or even absent [34]. Mutations in 
other regions of COL2A1 may also cause atypical STL with 
mainly ocular phenotypes [72], especially in the early stage. 
Nevertheless, HJ and PVD/FH, in addition to eoHM, may 
provide additional evidence suggestive of atypical STL in an 
eye clinic. Gene tests on suspected cases may provide a firm 

diagnosis of STL. Tests of suspected cases with other atypical 
signs may expand our knowledge of the phenotypic varia-
tion of STL, as well as the prevalence of STL in the general 
population, which might be greatly underestimated.

APPENDIX 1. SUPPLEMENTAL FIGURE 1.

A: Comparisons of the phenotypes between patients in our 
study and previous studies (STL1, ocular-only STL, STL2, 
and Marshall Syndrome). B: Comparisons of the phenotypes 
between children and adults with eoHM harboring STL muta-
tions. VO, vitreous opacity; RD, retinal detachment; HL, 
hearing loss; Skel, skeletal abnormality; HJ, joint hypermo-
bility. To access the data, click or select the words “Appendix 
1.”

APPENDIX 2. SUPPLEMENTAL TABLE 1.

Clinical data of the 12 probands and 14 affected family 
members from follow-up examination after identification 
of mutations. To access the data, click or select the words 
“Appendix 2.”
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