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A B S T R A C T

Frontotemporal dementia (FTD) is difficult to diagnose, due to its heterogeneous nature and overlap in symp-
toms with primary psychiatric disorders. Brain MRI for atrophy is a key biomarker but lacks sensitivity in the
early stage. Morphometric MRI-based measures and machine learning techniques are a promising tool to im-
prove diagnostic accuracy. Our aim was to review the current state of the literature using morphometric MRI to
classify FTD and assess its applicability for clinical practice. A search was completed using Pubmed and
PsychInfo of studies which conducted a classification of subjects with FTD from non-FTD (controls or another
disorder) using morphometric MRI metrics on an individual level, using single or combined approaches. 28
relevant articles were included and systematically reviewed following PRISMA guidelines. The studies were
categorized based on the type of FTD subjects included and the group(s) against which they were classified.
Studies varied considerably in subject selection, MRI methodology, and classification approach, and results are
highly heterogeneous. Overall many studies indicate good diagnostic accuracy, with higher performance when
differentiating FTD from controls (highest result was accuracy of 100%) than other dementias (highest result was
AUC of 0.874). Very few machine learning algorithms have been tested in prospective replication. In conclusion,
morphometric MRI with machine learning shows potential as an early diagnostic biomarker of FTD, however
studies which use rigorous methodology and validate findings in an independent real-life cohort are necessary
before this method can be recommended for use clinically.

1. Introduction

Frontotemporal dementia (FTD1) is one of the most common forms
of early onset dementia, occurring with similar frequency to Alzhei-
mer's Disease (AD) in people under the age of 65 (Onyike and Diehl-
Schmid, 2013). This heterogeneous disorder most often presents with
combinations of personality changes such as apathy, loss of empathy,
and disinhibition (behavioral variant – bvFTD) (Rascovsky et al., 2011)

or language deficits (primary progressive aphasia – PPA). PPA is further
divided into three variants - semantic (svPPA), nonfluent (nfvPPA) and
logopenic (lvPPA) (Gorno-Tempini et al., 2011). The pathology un-
derlying frontotemporal lobar degeneration is equally heterogeneous
and involves abnormal accumulation of proteins including microtubule-
associated protein tau, transactive response DNA-binding protein with
molecular weight 43 kDa (TDP-43), and fused in sarcoma (FUS) protein,
while the lvPPA clinical syndrome is most commonly associated with

https://doi.org/10.1016/j.nicl.2018.08.028
Received 5 June 2018; Received in revised form 31 July 2018; Accepted 28 August 2018
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operator characteristic curve; DBM, deformation-based morphometry; TBM, tensor-based morphometry; PCA, principle component analysis; NDH, Network
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AD, axial diffusivity; LD, longitudinal diffusivity; TD, trace diffusivity; MTL, medial temporal lobe; DLPFC, dorsolateral prefrontal cortex; VMPFC, ventromedial
prefrontal cortex; CT, cortical thickness; Differential-STAND, Differential Diagnosis Based on Structural Abnormality due to Neurodegeneration (Vemuri et al., 2011);
LoCo, Loss in Connectivity (the percent of WM tracts out of the total connecting to a GM region in a normal control that pass through voxels identified in a WM
“injury” map (Kuceyeski et al., 2012)
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AD pathology (Rademakers et al., 2012).
The diagnosis of FTD currently poses a significant challenge for

clinicians as the presenting symptoms overlap considerably with other
diseases including primary psychiatric disorders and other dementias
(Ducharme et al., 2015). This is especially true of bvFTD. Evidence
suggests as many as 50% of people with bvFTD are initially diagnosed
with a psychiatric disorder (Woolley et al., 2011). As well, significant
memory impairment can exist in bvFTD, comparable to that seen in AD
(Bertoux et al., 2014; Mansoor et al., 2015).

The most common imaging method currently used in clinical
practice is structural MRI, which is insufficiently sensitive for early
stage diagnosis of FTD given that atrophy can be very subtle at the
disease onset. Indeed, in a mixed neuropsychiatric population that is
representative of clinical practice, a standard MRI with visual review
had insufficient sensitivity (70%) to identify cases with bvFTD, while
the usual alternative of [18F] FDG-PET had poor specificity (68%)
(Vijverberg et al., 2016). This can lead to erroneous or significantly
delayed diagnosis, causing prolonged periods of uncertainty for patients
and their families. The development of improved diagnostic biomarkers
for the early detection of FTD is critical to ensure patients are getting
the appropriate care as well as for the accurate identification of patients
for clinical trials. Improving MRI methods is ideal given that MRI is
already part of standard practice and there are currently no validated
molecular biomarkers for FTD diagnosis. AD cerebral spinal fluid (CSF)
and PET amyloid tracers can be used in the differential diagnosis of FTD
from AD, as FTD will likely be negative for these (Meeter et al., 2017),
however FTD-specific CSF biomarkers or tau tracers are not available.

There has been considerable interest in automated morphometric
analysis of MRI, most commonly assessing gray matter (GM) atrophy
and, in recent years, white matter (WM) integrity using diffusion tensor
imaging (DTI). Techniques such as voxel-based morphometry (VBM)
and cortical thickness have demonstrated specific patterns of frontal
and temporal GM atrophy on a group level (Meeter et al., 2017). These
patterns differ from those seen in other dementias (such as hippocampal
atrophy found in AD). BvFTD is associated with atrophy primarily in
the frontal lobe, insula, anterior cinguate cortex and basal ganglia
(Meeter et al., 2017; Pan et al., 2012; Schroeter et al., 2014). PPA is
primarily associated with left-sided atrophy (language dominant
hemisphere) in the initial disease stages; nfvPPA with inferior frontal
and insular atrophy, svPPA with anterior temporal atrophy, and lvPPA
with posterior temporal and parietal atrophy (Bisenius et al., 2016;
Meeter et al., 2017; Mesulam et al., 2009; Rogalski et al., 2014). WM
changes have a more widespread distribution and likely precede GM
atrophy (Lam et al., 2014; Mahoney et al., 2014; Meeter et al., 2017).

A high discriminative power is needed to differentiate between
diseases on an individual level, in order to be useful in clinical practice.
However, with improving methods of morphometric analysis and the
use of multivariate statistics and machine learning methods, it is be-
coming increasingly feasible to improve diagnosis at the individual
level. An extensive body of literature exists classifying AD in this way.
These studies have found overall high accuracy levels when comparing
AD to controls (often>90% accuracy) (Falahati et al., 2014; Rathore
et al., 2017). In recent years several studies have attempted this type of
classification for the diagnosis of FTD using a variety of MRI measures
and machine learning algorithms.

The aim of this systematic review is to summarize the current lit-
erature studying the diagnostic classification of FTD utilizing morpho-
metric MRI data on an individual level, with the aim of evaluating its
potential usefulness and readiness for clinical practice.

2. Method

This systematic review follows the recommendations of PRISMA
(McInnes et al., 2018; Moher et al., 2009) as applicable. An initial
search was conducted up to March 12, 2018 using PubMed and Psy-
chINFO with the following search terms: (frontotemporal dementia OR

frontotemporal lobar degeneration) AND MRI AND ((diagnostic OR
diagnosis) AND (accuracy OR classification OR prediction)). The search
was limited to peer-reviewed, full text articles, published in English
within the last 10 years (2007 or later) to focus on the most advanced
image processing methods. All resulting papers were screened by title
and abstract to exclude irrelevant studies, and full texts of selected
articles were reviewed. Studies were included if they meet the following
criteria: (1) conducted a diagnostic classification of FTD (behavioral or
language variant, or both variants combined) versus controls or versus
other disorders on an individual subject level and (2) used classification
features derived from structural MRI, either alone or in combination. In
the case of studies which conducted classifications based on MRI
morphometry alone and in combination with other methods, only those
results pertaining to MRI morphometry were included in this review.
Reference lists of included articles were also manually searched to
identify other relevant articles. The risk of bias and applicability of each
included study was assessed with the QUADAS-2 tool (Whiting et al.,
2011).

3. Results

The search produced 151 articles. Of these, 25 relevant articles were
identified. Cross-reference list searches of each relevant article yielded
three additional papers, resulting in a total of 28 papers for inclusion in
this review (Fig. 1).

3.1. Study characteristics

Eleven studies conducted a binary classification of FTD or specifi-
cally bvFTD from a control group. Seventeen studies conducted a binary
classification of FTD or specifically bvFTD from AD. Six studies con-
ducted a multi-class classification to differentiate FTD, AD and controls,
while four studies conducted a multi-class classification between var-
ious dementia types and controls. Four studies conducted classifications
of PPA; two studies differentiated PPA subtypes from each other and
controls. One study classified PPA from controls. One study differ-
entiated FTD subtypes (bvFTD and PPAs) from a combined group of all
other subtypes and AD. Results are summarized in Tables 1–5. Accu-
racy, sensitivity, specificity, and/or area under the receiver operating
characteristic curve (AUC) are reported, if provided. In cases where raw
numbers were reported, applicable performance measures were calcu-
lated from these numbers. In this paper we consider performance of
90% or greater as high, 70–90% as moderate, and< 70% as low.

Studies varied considerably in methodology. The majority of studies
looked at changes in GM structure, most commonly using VBM to assess
either GM concentration or volume. WM integrity was commonly as-
sessed using DTI measures. Studies used a variety of whole-brain and
region of interest (ROI) based approaches, including a priori selection
of ROIs and the use of ROIs that showed significant differences in
group-level comparison. Studies also varied widely in classification
methods. Machine learning classification techniques were utilized by
most studies, the most common being support vector machines (SVM).
Most studies used a k-fold cross validation (CV) approach, most com-
monly with a leave-one-out CV strategy. Only one study used in-
dependent subject data (from a different cohort) in a separate testing
set (Klöppel et al., 2015).

Almost all studies used a clinically defined diagnosis as the re-
ference standard. Six studies (Chow et al., 2008; Frings et al., 2014;
Mahoney et al., 2014; Meyer et al., 2017; Muñoz-Ruiz et al., 2012;
Wang et al., 2016) included a subset of patients with pathologically
confirmed diagnosis or those with a known genetic mutation consistent
with FTD. Three studies (Klöppel et al., 2008b; Lehmann et al., 2010;
Vemuri et al., 2011) used pathologically defined dementia diagnosis as
the gold standard. Two studies (McMillan et al., 2014; McMillan et al.,
2012) grouped subjects as AD or FTD based on the presence or absence
of CSF biomarkers consistent with AD. Studies also varied considerably

J. McCarthy et al. NeuroImage: Clinical 20 (2018) 685–696

686



in disease severity. Studies report a variety of methods for evaluating
disease severity (Mini Mental State Exam, Clinical Dementia Rating,
disease duration) making comparison difficult. Four studies used a
control group consisting in part or entirely of those with subjective
cognitive decline (Dukart et al., 2011; Koikkalainen et al., 2016; Möller
et al., 2016; Tong et al., 2017). All others consisted of healthy, cogni-
tively normal subjects. Studies also varied widely in their exclusion
criteria. Some studies included FTD with concurrent motor symptoms
while others excluded these subjects.

3.2. bvFTD vs Controls

Five studies classified bvFTD from a control group (Chow et al.,
2008; Mahoney et al., 2014; Meyer et al., 2017; Möller et al., 2016;
Raamana et al., 2014) (Table 1 and Fig. 2a). In general studies could
distinguish FTD from controls with moderate to high accuracy, al-
though results are heterogeneous. Two studies measured GM con-
centration with VBM using a SVM classifier. Meyer et al. (2017)
achieved highest accuracy, sensitivity and specificity when using a ROI
approach (frontal and temporal lobes – 84.6%, 80.7% and 88.5%, re-
spectively), while Möller et al. (2016) reported low sensitivity (60%)
but high specificity (98%) with a whole-brain approach. Mahoney et al.
(2014) achieved moderate results using radial diffusivity from DTI. The
highest result was reported by Raamana et al. (2014) using surface
displacements of the left lateral ventricle as inputs to a SVM, using a
train/test approach (AUC of 0.938, sensitivity of 100% and specificity
of 88%) The result was somewhat lower when using leave-one-out CV
(AUC of 0.826, sensitivity of 79, specificity of 87). These results con-
trast with this study's reported results for other regions (right lateral
ventricle and left and right hippocampus) in which sensitivity is low.
None of the studies classifying the bvFTD subtype from controls looked
at different MRI metrics in combination.

3.3. FTD vs controls

Six studies classified a combined group of FTD clinical subtypes
from a control group (Table 2 and Fig. 2b), again with overall moderate
to high accuracy (Bron et al., 2017; Davatzikos et al., 2008; Du et al.,
2007; Dukart et al., 2011; Muñoz-Ruiz et al., 2012; Zhang et al., 2013).
Davatzikos et al. (2008) reported 100% accuracy when using GM and
WM volumetric features derived from principle component analysis as
inputs to an SVM, however this study was small (FTD n=12) and may
not have used a completely independent test set. Very high results were
also reported by Bron et al. (2017) when using GM, WM, or supra-
tentorial brain volume with an SVM (AUC 0.95–0.96). This study did
not report sensitivity and specificity numbers. In contrast, Zhang et al.
(2013) reported poor results using GM or WM volumes and logistic
regression in a ROI approach extracted from group differences, but
achieved best results using radial diffusivity (accuracy, sensitivity,
specificity, and AUC of 81.4%, 80.7%, 80.5%, 0.877, respectively). Two
other studies reported moderately high results using various measures
of GM structure alone (tensor-based morphometry, volumetry, VBM,
cortical thickness) (Du et al., 2007; Muñoz-Ruiz et al., 2012). Only one
study (Bron et al., 2017) assessed a multimodal approach (WM volume
and fractional anisotropy), which achieved a similar result to that by
WM volume alone (AUC 0.95).

3.4. bvFTD vs AD

Six studies classified bvFTD from AD (Canu et al., 2017; Frings
et al., 2014; Mahoney et al., 2014; Möller et al., 2016; Raamana et al.,
2014; Wang et al., 2016) (Table 1 and Fig. 2c). In general, results in-
dicate that this is a much harder task than distinguishing from controls
and results are highly variable. Canu et al. (2017) achieved moderately
high results using cortical thickness in a random forest approach to

Fig. 1. PRISMA flow chart of study selections.
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distinguish bvFTD from AD (accuracy, sensitivity, and specificity of
82%, 80%, and 87% respectively). These results were not majorly im-
proved when combined with DTI measures. No other study looked at
the accuracy of combined MRI metrics. Other studies reported low to
moderate accuracy in classifying bvFTD from AD using a range of single
metrics including DTI, GM concentration, volumetry, and surface dis-
placements (Frings et al., 2014; Mahoney et al., 2014; Möller et al.,
2016; Raamana et al., 2014; Wang et al., 2016).

3.5. FTD vs AD

Eleven studies classified FTD (combined clinical subtypes, patho-
logical subtypes, or CSF-defined) from AD (Bron et al., 2017;
Davatzikos et al., 2008; Du et al., 2007; Dukart et al., 2011; Klöppel
et al., 2015; Klöppel et al., 2008b; Lehmann et al., 2010; McMillan
et al., 2014; McMillan et al., 2012; Muñoz-Ruiz et al., 2012; Whitwell
et al., 2011) (Table 2 and Fig. 2d). Again, results are highly variable.
McMillan et al. (2012) reported highest accuracy when using a

combination of GM density and fractional anisotropy (sensitivity, spe-
cificity and AUC of 87%, 83%, and 0.938 respectively) when distin-
guishing CSF-defined FTD and AD using regression, although this study
did not use an independent testing set. McMillan et al. (2014) also re-
ported moderately high sensitivity, specificity and AUC (89%, 89%, and
0.874 respectively) to classify CSF-defined FTD and AD when using a
combination of cortical thickness and fractional anisotropy in a data-
driven approach. In contrast Klöppel et al. (2008b) reported similar
numbers using GM volume alone, in a whole-brain approach with an
SVM (accuracy, sensitivity, and specificity of 89.2%, 94.7%, and 83.3%
respectively), while Whitwell et al. (2011) reported high AUC (0.93)
using GM volumes of the temporoparietal cortex and hippocampus.
Other studies again reported low to moderate accuracy in classifying
FTD from AD with a range of different metrics (Bron et al., 2017;
Davatzikos et al., 2008; Du et al., 2007; Dukart et al., 2011; Klöppel
et al., 2015; Lehmann et al., 2010; Muñoz-Ruiz et al., 2012).

Table 1
Classifications of bvFTD versus Controls or AD.

bvFTD vs Controls vs AD

Name Sample Classification Measure ROIs Acc SS SP AUC Acc SS SP AUC

Canu et al.,
2017

27 bvFTD Random forest Cortical thickness L inferior parietal Best 5 (L inferior parietal, R
temporal pole, L isthmus cingulate, R inferior
parietal, R precuneus)

78 76 83

62 AD Best 5 (L inferior parietal, R temporal pole, L
isthmus cingulate, R inferior parietal, R
precuneus)

82 80 87

DWI R uncinate; AD 81 96 43
Best 5 (R uncinate; AD, RD, MD, FA, Genu of
CC; FA)

81 89 61

Combination 5 CT+5 WM tract 82 76 96
Best 5 (L inferior parietal, R temporal pole, R
precuneus, L isthmus cingulate, L superior
parietal)

84 79 81

Chow et al.,
2008

16 bvFTD Logistic regression Volumes L medial middle frontal parenchymal 87 68.8 96.6
30 C

Frings et al.,
2014

15 bvFTD Logistic regression Volume caudate 79
caudate+ gyrus rectus GM 8314 AD

Mahoney et al.,
2014

27 bvFTD DTI-RD Whole-brain 82 80 0.82 0.67
25 AD Corpus callosum 93 75 0.85

L uncinate fasciculus 82 75 0.82
L cingulum bundle 74 70 0.8320 C

DTI-FA Whole-brain 0.73 78 68 0.74
L uncinate fasciculus 77 68 0.76
L cingulum bundle 63 80 0.67
Corpus callosum 56 80 0.73

DTI-TD Whole-brain 0.80 0.66
DTI-AD Whole-brain 0.74 0.59

Meyer et al.,
2017

52 bvFTD SVM VBM-GM density Whole-brain 81.7 78.9 84.6
LOOCV Frontal lobe 80.7 76.9 84.6

Frontal + Basal ganglia & insula 82.7 80.7 84.652 C
Temporal lobe 78.8 76.9 80.8
Frontal & temporal lobe 84.6 80.7 88.5
Frontal + Temporal + Basal Ganglia & insula 84.6 80.7 88.5

Möller et al.,
2016

26 bvFTD SVM Training Set
LOOCV

VBM-GM density Whole-brain 75 62 83 81 69 88
42 AD
47 C
25 bvFTD Test Set 85 60 98 0.87 82 64 93 0.81
42 AD
47 C

Raamana
et al.,
2014

30 bvFTD SVM LOOCV Surface
displacements

L Hippocampus 14 83 0.488 37 62 0.492
R Hippocampus 43 83 0.631 50 41 0.456
L lateral ventricle 79 87 0.826 60 82 0.71234 AD
R lateral ventricle 64 87 0.755 63 79 0.71414 C

Train/Test L Hippocampus 50 62 0.562 50 56 0.528
R Hippocampus 25 75 0.5 0 1 0.5
L lateral ventricle 100 88 0.938 75 56 0.653
R lateral ventricle 75 100 0.875 62 67 0.646

Wang et al.,
2016

55 bvFTD Naïve Bayes VBM-GM volume Amygdale, hippocampus, MTL, temporal pole,
DLPFC, VMPFC, striatum and insula

51.4 36.4 66.7
54 AD 10-fold CV
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3.6. Multi-class classifications

Several studies attempted a multi-class classification with varying
accuracy. Six studies included a three-way classification between FTD,
AD, and controls (Bron et al., 2017; Dukart et al., 2011; Kuceyeski et al.,
2012; Möller et al., 2015; Raamana et al., 2014; Wang et al., 2016)
(Table 3). Kuceyeski et al. (2012) reported the highest accuracy using

radial diffusivity, with accuracy and sensitivity of 89.09% and 97.3%
but lower specificity (72.22%) using linear discriminant analysis. Re-
sults were similar using the LoCo metric, a measurement of the amount
of structural network disruption incurred by a GM region for a parti-
cular pattern of WM integrity loss (accuracy, sensitivity, and specificity
of 87.27%, 91.89%, 77.78% respectively). Four studies conducted a
multi-class classification between various dementias and controls

Table 2
Classifications of FTD vs Controls or AD.

FTD vs Controls vs AD

Name Sample Classification Measure ROIs Acc SS SP AUC Acc SS SP AUC

Bron et al.,
2017

33 FTD SVM VBM-GM volume Whole-brain 0.95 0.78
24 AD 4-fold CV VBM-WM volume 0.96 0.76
34C VBM-Supratentorial

brain volume
0.95 0.72

DTI-FA
VBM-WM 0.91 0.80
volume+DTI-FA 0.95 0.81

Davatzikos
et al.,
2008

12 FTD SVM RAVENS-GM and WM
volume

PCA 100 84.3
37 AD LOOCV
12 C Fisher's

discriminant
Analysis

Volume Hippocampal, ventricular, total brain 75 70.9

Du et al., 2007 19 FTD Logistic
regression

Volume Frontal 89

22 AD LOOCV Parietal 81 79
23 C Temporal 85

Cortical thickness Frontal 88
Parietal 82 82
Temporal 85

Dukart et al.,
2011

14 FTD SVM GM Whole-brain 77.8 80
21 AD LOOCV WM Whole-brain 77.8 74.3
13C GM ROI (a priori) 85.2 60

Klöppel et al.,
2008b

19 FTD SVM GM volume Whole brain 89.2 94.7 83.3
18 AD LOOCV

Klöppel et al.,
2015

12 FTD SVM VBM-GM volume Whole-brain 0.78
122 AD Separate test set

Lehmann
et al.,
2010

23 FTD SVM Cortical Thickness Whole-brain 79.4 91.3 54.5 0.87
17 AD 2-level CV

McMillan
et al.,
2012

38 FTD Logistic
regression

GM density Precuneus 82 79 0.883
Posterior cingulated 87 66 0.890
Anterior temporal 79 69 0.79229 AD

DTI-FA Corpus callosum 79 59 0.795
Combination Corpus callosum, precuneus, posterior cingulated 87 83 0.938

McMillan
et al.,
2014

72 FTD Linear regression Cortical thickness Data-driven 89 81 0.778
Anatomical 100 54 0.80221 AD Train/test

Volume Global GM 65 100 0.820
Global ventricles 100 65 0.826

DTI-FA Data-driven 100 46 0.808
Anatomical 56 78 0.649

Combination Data-driven 89 89 0.874
Anatomical 78 70 0.742

Muñoz-Ruiz
et al.,
2012

37 FTD Regression Volume Hippocampus 83 80 84 55 55 55
46 AD Train/Test
26 C TBM Hippocampus, amygdala, posterior temporal lobe,

lateral ventricle in frontal horn, central part and
occipital horn, lateral ventricle in temporal horn,
gyri hippocampalis et ambiens, anterior cingulate
gyrus and superior frontal gyrus.

82 90 77 62 67 56
VBM-GM
concentration

83 91 77 72 76 67

VBM-GM volume 85 89 82 69 71 66

Whitwell et al.,
2011

14 FTD Logistic
regression

GM volume Temporoparietal cortex 0.81
Hippocampus 0.74
Temporoparietal cortex+ hippocampus 0.9314 AD

Zhang et al.,
2013

25 FTD Logistic
regression

VBM-GM volume ROI1 (B frontotemporal, anterior callosal) 65.7 80.1 48.7 0.665

19 C 4-fold CV ROI2 (L temporal) 63.9 77.0 46.6 0.722
ROI3 (L dorsal frontal) 45.7 74.2 5.4 0.566

VBM-WM volume ROI1 59.2 77.2 34.6 0.627
ROI2 58.1 71.5 36.4 0.657
ROI3 47.4 79.8 5.3 0.606

DTI-RD ROI1 76.0 79.9 72.3 0.853
ROI2 81.4 80.7 80.5 0.877
ROI3 67.6 73.3 58.6 0.722
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Table 3
Multi-class Classifications of FTD, AD, and Controls.

FTD, AD and controls

Name Sample Classification Measure ROIs Acc SS (FTD) SP (FTD) AUC

Bron et al., 2017 33 FTD SVM VBM-GM volume Whole-brain 0.85
24 AD 4-fold CV VBM-WM volume 0.83
34 C VBM-Supratentorial brain volume 0.84

DTI-FA 0.83
VBM-WM volume+DTI-FA 0.87

Dukart et al.,
2011

14 FTD SVM GM Whole-brain 72.9
21 AD LOOCV WM 66.7
13 C GM a priori ROIs 56.3

Kuceyeski et al.,
2012

18 FTD Linear discriminant
analysis

GM volume Whole-brain parcellation 76.36 81.08 66.67
DWI-FA 76.36 72.97 83.33
DWI-RD 89.09 97.30 72.22
DWI-LD 85.45 89.19 77.78
Combination GM+DWI 83.64 91.89 66.67
LoCo 87.27 91.89 77.7818 AD LOOCV

19 C
Möller et al.,

2015
30 bvFTD Discriminant function

analyses LOOCV
1st analysis: VBM-GM volume,
Subcortical volumes, DWI-FA

Significant voxels/regions from paired
group comparisons

91.4 66.7
39 AD
41 C 2nd analysis: VBM-GM volume,

subcortical volumes, DWI- AD, DWI-
RD

86 75

Raamana et al.,
2014

30 bvFTD SVM Volumes L Hippocampus 0.5
34 AD Train/Test R Hippocampus 0.54

L lateral ventricle 0.5
14 C R lateral ventricle 0.5

Laplacian invariants L Hippocampus 0.5
R Hippocampus 0.49
L lateral ventricle 0.5
R lateral ventricle 0.59

Surface displacements L Hippocampus 0.66
R Hippocampus 0.56
L lateral ventricle 0.76
R lateral ventricle 0.77

Wang et al.,
2016

55 bvFTD Naïve Bayes VBM-GM volume Amygdale, hippocampus, MTL,
temporal pole, DLPFC, VMPFC, striatum
and insula

54.2
54 AD 10-fold CV
57 C

Table 4
Multi-class Classifications of Dementia.

Multi dementia types

Name Sample Classification Measures ROIs Acc SS (FTD) SP (FTD) AUC
(FTD)

Klöppel et al., 2015 12 FTD SVM VBM-GM volume Whole-brain 0.78
122 AD Separate test cohort
4 DLB
18C

Koikkalainen et al.,
2016

92 FTD Disease State Index
(DSI)

Volumes Whole-brain parcellation 50.4
VBM-GM concentration 65.1

10-fold CV TBM 64.3
Manifold learning Hippocampus and

frontotemporal lobe
50.4

ROI-based grading 58.3
Vascular burden- WMH, cortical and
lacunar infarcts volumes

32.7223 AD

All features 70.6 62 9547 DLB
24 VaD
118 C

Tong et al., 2017 92 FTD RUSBoost Volumes Whole-brain parcellation 58.6
66.6
7010-fold CV Grading

Combination219 AD
47 DLB
24 VaD
118 C

Vemuri et al., 2011 47 FTD Differential-STAND GM density Whole brain 84.4 93.8
48 AD LOOCV
20 DLB
21 C
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Table 5
PPA classifications.

Name Sample Classification Measures ROIs Acc SS SP AUC Acc SS SP AUC Acc SS SP AUC

nfvPPA vs Controls lvPPA vs Controls svPPA vs Controls

Bisenius et al.,
2017

16 nfvPPA SVM VBM-GM
density

Whole-brain ROI (a
priori from meta-
analyses)

91 88 94 0.94 95 91 100 0.95 97 94 100 0.97
84 81 88 0.90 82 82 82 0.91 100 100 100 117 svPPA LOOCV

11 lvPPA
20 C

Wilson et al.,
2009

32 nfvPPA SVM GM volume PCA 89.1 87.5 90.6 0.941 100 100 100 1 100 100 100 1
38 svPPA 2-level CV
16 lvPPA
115 C

svPPA vs nfvPPA lvPPA vs svPPA lvPPA vs nfvPPA
Bisenius et al.,

2017
16 nfvPPA SVM VBM-GM

density
Whole-brain ROI (a
priori from meta-
analyses)

78 81 75 0.88 95 100 91 0.93 55 64 45 0.59
17 svPPA LOOCV 78 81 75 0.87 95 100 91 0.91 64 73 55 0.64
11 lvPPA
20 C

Wilson et al.,
2009

32 nfvPP SVM GM volume PCA 89.1 84.4 93.8 0.964 93.8 93.8 93.8 0.984 81.3 81.3 81.3 0.879
38 svPP 2-level CV
16 lvPPA
115 C

PPA (svPPA and nfvPPA) vs Controls
Acc SS SP

Chow et al., 2008 14 PPA Logistic
regression

Volumes L anterior temporal 90.9 78.6 96.7
30 C

bvFTD vs others svPPA vs. others nfvPPA vs others
Acc SS SP Acc SS SP Acc SS SP

Tahmasian et al.,
2016

11 bvFTD SVM VBM-GM
volume

A priori based on the
NDH

72.5 45.4 82.7 92.5 50 97.5 82.5 0 94.2
4 svPPA LOOCV
5 nfvPPA
20 AD

Fig. 2. Visual representation of the classification accuracy for the different comparisons (for studies which conducted more than one classification, the best result is
shown). a) behavioral variant frontotemporal dementia (bvFTD) vs Controls. b) Frontotemporal dementia (any subtype - FTD) vs Controls. c) bvFTD vs AD. d) FTD
(any subtype) vs AD.
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(Klöppel et al., 2015; Koikkalainen et al., 2016; Tong et al., 2017;
Vemuri et al., 2011) (Table 4). Vemuri et al. (2011) reported moderate
sensitivity (84.4%) and high specificity (93.8%) for FTD classification
versus all others using whole brain GM density approach and a novel
classification approach (referred to as differential-STAND), however
they did not have a completely independent test set. Results were
considerably lower for other studies (Klöppel et al., 2015; Koikkalainen
et al., 2016; Tong et al., 2017).

3.7. PPA subtypes

Four studies included classifications of PPA (Bisenius et al., 2017;
Chow et al., 2008; Tahmasian et al., 2016; Wilson et al., 2009)
(Table 5). Two studies classified each PPA subtype against controls
using SVM of GM atrophy, with moderate to high accuracy across
studies (accuracy ranged from 84 to 100%) (Bisenius et al., 2017;
Wilson et al., 2009). Both studies also classified subtypes against each
other, with varying results. Wilson et al. (2009) reported highest ac-
curacy, sensitivity, and specificity (89.1%, 84.4%, 93.8% respectively,
AUC of 0.964) to distinguish svPPA from nfvPPA using GM volume and
a principal component analysis approach. Results were very high for
both studies for lvPPA vs svPPA, while Wilson et al. (2009) achieved
highest results for lvPPA vs nfvPPA (accuracy, sensitivity, specificity,
AUC of 81.3%, 81.3%, 81.3% and 0.879 respectively). Tahmasian et al.
(2016) classified each FTD subtype against a group of all others and AD
using GM volume and SVM, resulting in high specificity (97.5% and
94.2%) but very poor sensitivity (50% and 0%) for both svPPA and
nfvPPA vs others, while Chow et al. (2008) combined svPPA and
nfvPPA subtypes together in a classification from a control group,
achieving moderate sensitivity (78.6%) and high specificity (96.7%).

3.8. Risk of bias assessment

The results of the QUADAS-2 evaluation are given in Table 6. The
patient selection domain was rated as high risk of bias in six studies that

had inappropriate exclusion criteria (e.g. exclusion of subjects with
abnormalities on structural MRI other than atrophy, such as WM hy-
perintensities) combined with a case-control design. The index test was
rated as high risk of bias in eight studies which did not use separate
testing data or used all data to perform ROI selection or dimensionality
reduction prior to classification. Two studies were given an unclear risk
of bias on this domain. One study was rated as having applicability
concerns on the index test domain as it only looked at the overall ac-
curacy of multi-class classification of dementia types.

4. Discussion

This systematic review provides a summary of studies attempting to
classify FTD from non-FTD via morphometric MRI data with the aim to
determine its potential for use as a diagnostic aide in clinical practice.
Studies included in this review are highly heterogeneous in terms of
subject selection, MRI methodology and classification methods, com-
plicating the comparison of accuracy of results. However, overall stu-
dies report good levels of accuracy (see Table 7 for a summary of the
best performance for each classification), indicating the potential value
of MRI morphometry in the diagnosis of FTD.

FTD could be diagnosed with high accuracy from control groups,
with many studies finding accuracies of over 80% or 90% with good
sensitivity and specificity. However, most studies include subjects with
well characterized patients in which there is significant atrophy, and
therefore the added benefit of morphometry is uncertain. Results dis-
tinguishing FTD from AD were somewhat poorer. This is unsurprising
given that minimal atrophy is expected in control subjects and that
there exists overlap in atrophy patterns between FTD and AD (De Souza
et al., 2013). Studies which conducted multi-class classifications did not
all report specific sensitivity and specificity values for FTD, although
Vemuri et al. (2011) reported good sensitivity and specificity (84.4%
and 93.8%) in distinguishing FTD from other dementias. Only four
studies specifically classified PPAs, generally with moderate to high
accuracy. No studies attempted to distinguish bvFTD patients from

Table 6
QUADAS-2 Evaluation.

Study Risk of Bias Applicability concerns

Patient selection Index test Reference standard Flow and timing Patient selection Index test Reference standard

Bisenius et al., 2017 Low Low Low Low Low Low Low
Bron et al., 2017 Low Low Low Low Low Low Low
Canu et al., 2017 High Low Low Low Low Low Low
Chow et al., 2008 Low High Low Low Low Low Low
Davatzikos et al., 2008 Low Unclear Low Low Low Low Low
Du et al., 2007 Low Low Low Low Low Low Low
Dukart et al., 2011 High Low Low Low Low Low Low
Frings et al., 2014 Low High Low Low Low Low Low
Klöppel et al., 2008a,b Low Low Low Low Low Low Low
Klöppel et al., 2015 Low Low Low Low Low Low Low
Koikkalainen et al., 2016 Low Low Low Low Low Low Low
Kuceyeski et al., 2012 Low Low Low Low Low Low Low
Lehmann et al., 2010 Low Low Low Low Low Low Low
Mahoney et al., 2014 Low High Low Low Low Low Low
McMillan et al., 2012 Low High Low Low Low Low Low
McMillan et al., 2014 Low Low Low Low Low Low Low
Meyer et al., 2017 Low Low Low Low Low Low Low
Möller et al., 2015 High High Low Low Low Low Low
Möller et al., 2016 Low Low Low Low Low Low Low
Muñoz-Ruiz et al., 2012 High Unclear Low Low Low Low Low
Raamana et al., 2014 Low Low Low Low Low Low Low
Tahmasian et al., 2016 High Low Low Low Low Low Low
Tong et al., 2017 Low Low Low Low Low High Low
Vemuri et al., 2011 Low High Low Low Low Low Low
Wang et al., 2016 Low Low Low Low Low Low Low
Whitwell et al., 2011 Low High Low Low Low Low Low
Wilson et al., 2009 Low Low Low Low Low Low Low
Zhang et al., 2013 High High Low Low Low Low Low
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those with psychiatric disorders, and these two disorders have been
shown to be difficult to distinguish clinically (Woolley et al., 2011).
However, it is likely that this distinction will be similar to that of
control subjects as no atrophy is expected in most psychiatric disorders
other than severe and persistent mental illness, such as schizophrenia
with chronic psychotropic treatment, that have been linked to subtle
volume loss over time (Andreasen et al., 2011).

Most studies have looked at GM atrophy. Fewer studies have used
DTI measures, proving mixed results but with some studies suggesting
DTI may be more sensitive in the early stages of the disease (Kuceyeski
et al., 2012; Zhang et al., 2013). Most studies included in this review
only looked at single MRI measures. Hypothetically a multimodal ap-
proach combining various MRI modalities such as GM structure and
WM integrity should produce more accurate classification than a single
modality, as these modalities should provide complimentary informa-
tion about different aspects of the disease. This is supported by some
studies (McMillan et al., 2014; McMillan et al., 2012) while others
found no improvement when adding white matter to cortical metrics
(Bron et al., 2017; Klöppel et al., 2008a). These differences are likely
due to differing patient groups and methodology.

This review focuses on morphometric MRI measures as the majority
of studies in this area have focused on morphometry, however a few
recent studies have looked at the added benefit of arterial spin labeling
MRI or functional MRI (Bron et al., 2017; Tahmasian et al., 2016). This
may provide additional discriminative power and is feasible given that
these are all MRI sequences that can be performed in the same session.

4.1. Comparison to visual MRI reading

Currently, FTD diagnosis is usually assisted via visual reading of
MRI scans with or without semi-structured visual rating scales in clin-
ical practice. It is therefore important that an effective MRI morpho-
metry-based classification tool improves on current practices.

Klöppel et al. (2008a) found that radiologists with different levels of
experience varied widely in their ability to distinguish pathologically

defined FTD from AD on visual reading of MRI (ranges for accuracy,
sensitivity, and specificity were 56.8–83.8%, 55.6–83.8%, and
57.9–90.0% respectively) and generally performed poorer than an SVM
classifier of GM volume on the same cohort (Klöppel et al., 2008b).
Accuracy was positively correlated with the radiologist's level of ex-
perience. Koikkalainen et al. (2016) reported much poorer results
(overall accuracy of 46.6%, with a sensitivity of 50% for FTD versus
others) when using a disease state index classifier on multiple visual
rating scales in the multi-class classification of dementia types com-
pared to their morphometric results. In a mixed neuropsychiatric po-
pulation, visual reading of baseline MRIs by neuroradiologists using
visual rating scales reported high specificity (93%) but only moderate
sensitivity (70%) in distinguishing bvFTD from non-bvFTD, using
clinical diagnosis at two-year follow-up as the gold standard
(Vijverberg et al., 2016).

In a cohort of pathologically defined dementia (Harper et al., 2016),
unstructured visual assessment by experienced raters resulted in mod-
erate sensitivity (82%) and high specificity (99%) in distinguishing FTD
from controls, while moderate sensitivity (74%) and specificity (81%)
was achieved when distinguishing FTD from AD. These results are
comparable with many of the results obtained from morphometry stu-
dies. Semi-structured visual rating scales were found to provide com-
paratively high sensitivity and specificity in distinguishing FTD from
controls (82% and 89% using the medial temporal lobe atrophy (MTA)
scale, and 89% and 97% when using an SVM on the results of multiple
visual rating scales). Visual rating scales resulted in moderate specifi-
city (81% for an orbito-frontal scale, and 88% when using an SVM on
the results of multiple visual rating scales) but low sensitivity (55% and
56%) when distinguishing FTD from AD.

Overall the results from visual radiologists' review appear generally
poorer than the best reported results from MRI morphometry studies,
indicating the potential usefulness of automated MRI morphometry for
improving diagnosis of FTD. However, it is not proven at this point if
morphometry outperforms semi-structures visual rating scales (Chow
et al., 2011; Harper et al., 2016). It is possible that morphometric

Table 7
Summary of studies with the best performance.

Name Sample Classification Measures ROIs Acc SS SP AUC

bvFTD vs Controls Raamana et al.,
2014

30 bvFTD SVM Surface displacements L lateral ventricle 100 88 0.938
14 C Train/test

bvFTD vs AD Canu et al., 2017 27 bvFTD Random forest Cortical thickness Best 5 (L inferior parietal, R temporal
pole, L isthmus cingulate, R inferior
parietal, R precuneus)

82 80 87
62 AD

FTD vs Controls Davatzikos et al.,
2008

12 FTD SVM RAVENS-GM and WM
volume

PCA 100
12 C LOOCV

FTD vs AD McMillan et al.,
2014

72 FTD Linear regression Combination (Cortical
thickness & DTI-FA)

Data-driven 89 89 0.874
21 AD Train/test

FTD vs AD &
Controls

Kuceyeski et al.,
2012

18 FTD Linear discriminant
analysis

DWI-RD Whole-brain parcellation 89.09 97.30 72.22
18 AD

LOOCV19 C
FTD vs other

dementias
Vemuri et al.,
2011

7 FTD Differential-STAND GM density Whole-brain 84.4 93.8
LOOCV48 AD

20 DLB
21 C4

nfvPPA vs Controls Bisenius et al.,
2017

6 nfvPPA SVM VBM-GM density Whole-brain 91 88 94 0.94
20 C LOOCV

lvPPA vs Controls Wilson et al.,
2009

16 lvPPA SVM GM volume PCA 100 100 100 1
115 C 2-level CV

svPPA vs Controls Bisenius et al.,
2017

17 svPPA SVM VBM-GM density ROI (a priori from meta-analyses) 100 100 100 1
20 C LOOCV

Wilson et al.,
2009

38 svPPA SVM GM volume PCA 100 100 100 1
115 C 2-level CV

svPPA vs nfvPPA Wilson et al.,
2009

32 nfvPPA SVM GM volume PCA 89.1 84.4 93.8 0.964
38 svPPA 2-level CV

lvPPA vs svPPA Bisenius et al.,
2017

11 lvPPA SVM VBM-GM density Whole-brain 95 100 91 0.93
17 svPPA LOOCV

lvPPA vs nfvPPA Wilson et al.,
2009

32 nfvPPA SVM GM volume PCA 81.3 81.3 81.3 0.879
16 lvPPA 2-level CV

J. McCarthy et al. NeuroImage: Clinical 20 (2018) 685–696

693



approaches could improve diagnostic accuracy in settings where clin-
icians have less experience in identifying FTD neuroradiological fea-
tures. (Klöppel et al., 2008a).

4.2. Single-subject approach to structural MRI

While there has been major improvement in automated structural
MRI processing pipelines over the years, there remain significant
methodological challenges to its application at the single-subject level.
One of the main limitations to the clinical validity of such methods is
the variability with regards to different sites, scanners and repeated
image acquisitions. This variability leads to inconsistency in measure-
ments that reduce the accuracy of diagnostic classifications based on
subtle differences in atrophy or other morphometric measures (Potvin
et al., 2017). While a comparison of the performance of the different
currently available processing pipelines is beyond the scope of this
paper, the ideal MRI processing pipeline must perform robust regis-
tration and tissue contrast normalization to achieve precise cortical and
subcortical segmentation across different scanners. It should further be
able to perform intra-subject registration to measure subtle brain
changes over time. Being able to compare subjects to a large database of
healthy controls across ages, sex and education level is also of sig-
nificant benefit (Potvin et al., 2017).

4.3. Limitations

Studies included in this review are highly heterogeneous in terms of
population demographics and methodology. These issues are similar to
those regarding the diagnostic classification of AD (Falahati et al.,
2014; Rathore et al., 2017).

Studies varied considerably on the subjects they included. Studies
using small homogenous samples may result in the overfitting of data. A
major issue with studies is the inclusion of well-characterized subjects
that tend to be at a later disease stage and therefore may find higher
accuracy because brain changes are more substantial and easier to
differentiate. Ideally studies need to include patients in the earliest
stages of the disease when diagnoses are ambiguous, such as the nat-
uralistic symptom-based inclusion approach taken by the Late-Onset
Frontal lobe study (Krudop et al., 2014). Many studies grouped FTD
clinical variants together in analysis. Others have indicated that this
may lead to the language variants driving the classification resulting in
higher performance (Möller et al., 2016). Several studies conducted a
group-level analysis and then used the significant regions from this
analysis in their classification. This will reduce the generalizability of
the results as the regions used may likely be biased to the specific group
of patients included in the study. For these reasons, results may be
artificially high. Most studies utilized a cross-validation approach,
where k subjects are sequentially left out of the training group, while
others split the subjects into separate training and testing sets. Ideally
studies should also validate classifiers on a separate independent co-
hort. It is likely that this would result in lower accuracy than the
numbers reported in several of the studies reviewed here, given the
methodology used.

Studies also differed in the metrics used to report results. Here we
have reported the most common metrics across studies (accuracy,
sensitivity, specificity, and AUC). Some studies did not report sensi-
tivity/specificity but only accuracy or AUC. While useful, these metrics
are not sufficient on their own. As only a small number of studies re-
ported balanced accuracy those numbers are not reported here.

Studies included in this review focused predominantly on sporadic
FTD. A significant proportion of FTD cases are monogenic in nature
(i.e., they are caused by an autosomal-dominant genetic mutation). To
our knowledge there have been no published studies of single-subject
morphometric MRI classification in the presymptomatic or early
symptomatic stages of monogenic FTD. Studies in this population
would be of interest to identify biomarkers of the preclinical or early

clinical stage that would be a great benefit for future disease-modifying
clinical trials of FTD. In addition, it remains to be determined how
accurate FTD MRI biomarkers developed with sporadic FTD cohorts
would fare in a population of genetic FTD given their well-documented
less typical atrophy patterns extending beyond frontal and anterior
temporal areas (Rohrer et al., 2015; Whitwell et al., 2015; Whitwell
et al., 2012).

Most importantly, few published studies have attempted to apply
machine learning derived diagnostic classifiers to real-life clinical set-
tings at the individual level. This is a crucial step given that clinical
populations are more heterogenous than well-characterize cohorts from
large-scale imaging studies. For instance, pre-existing brain changes
(e.g., past cerebro-vascular accident) and co-morbidities (e.g., alcohol
use disorder) are commonly seen in memory clinics but are often not
represented by the training sets of these studies. Only one study iden-
tified in this review attempted to replicate the typical population of a
memory clinic (Klöppel et al., 2015). Although this comes with sig-
nificant challenges and lower accuracy than in the training set (Klöppel
et al., 2015), it is an essential step before recommending the clinical use
of these algorithms.

Limitations of this systematic review include the possibility of in-
complete retrieval of relevant papers, however more than one search
engine was used and reference lists of included papers were reviewed
for additional relevant papers, so this should be minimal. As only
published studies were included in this review there is the potential for
publication bias. The main biases identified in the included studies were
the exclusion of subjects with abnormalities other than atrophy on
structural MRI and the lack of an independent testing set.

4.4. Future directions

In order to translate morphometric tools for FTD in clinical practice,
it will be crucial to validate the use of automated morphometric MRI
methods in a naturalistic mixed neuropsychiatric population, such as
the distinction of those presenting with FTD-like symptoms at baseline
into those ultimately diagnosed with FTD versus those not. Future
studies should validate MRI automated morphometry methods in a
mixed cohort of early disease stage patients, using final diagnosis (and
ideally when available proven pathology at autopsy) as a gold standard.
Larger multi-site datasets will also be important to develop deep
learning approaches for categorical diagnostic classification, disease
course prediction and to build models that could predict pathological
subtypes in vivo (Perry et al., 2017). Morphometry could also improve
practice by identifying data-driven subtypes with clinically relevant
differences in symptom profile or prognosis (Ranasinghe et al., 2016).
The methodology needs to be feasible for use in clinical practice; a
straight-forward process that is not time consuming and is easy to in-
terpret is needed, and it needs to be applicable across scanner types and
centers. This type of method may be especially helpful for those clin-
icians with less experience diagnosing FTD, such as community hospi-
tals and primary care physicians that do not have easy access to spe-
cialty FTD clinics. In addition to leading to earlier diagnosis and
improved prognosis clinically, morphometric biomarkers could poten-
tially improve patient selection and reduce required sample sizes in
clinical trials (Pankov et al., 2016), which would accelerate drug dis-
covery.

5. Conclusions

Automated morphometric MRI has potential to improve the diag-
nosis and prognosis of early stage FTD in clinical practice. Current
evidence provides good support for its ongoing development. The in-
clusion of 3D-T1 MRI sequences in clinical imaging protocols would
facilitate the development of these tools, and eventually the integration
of these methods in practice. However, more studies that use rigorous
methodology and prospectively validate findings in independent real-
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life cohorts are needed before this method could be recommended in
clinical practice.
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