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Abstract

An extensive simulation program is used in this study to discover the best ANN model for

predicting the compressive strength of concrete containing Ground Granulated Blast Fur-

nace Slag (GGBFS). To accomplish this purpose, an experimental database of 595 samples

is compiled from the literature and utilized to find the best ANN architecture. The cement

content, water content, coarse aggregate content, fine aggregate content, GGBFS content,

carboxylic type hyper plasticizing content, superplasticizer content, and testing age are the

eight inputs in this database. As a result, the optimal selection of the ANN design is carried

out and evaluated using conventional statistical metrics. The results demonstrate that utiliz-

ing the best architecture [8–14–4–1] among the 240 investigated architectures, and the best

ANN model, is a very efficient predictor of the compressive strength of concrete using

GGBFS, with a maximum R2 value of 0.968 on the training part and 0.965 on the testing

part. Furthermore, a sensitivity analysis is performed over 500 Monte Carlo simulations

using the best ANN model to determine the reliability of ANN model in predicting the com-

pressive strength of concrete. The findings of this research may make it easier and more

efficient to apply the ANN model to many civil engineering challenges.

1. Introduction

Concrete is a type of building material that is extensively used worldwide thanks to its various

advantages. Therefore, the investigation of concrete mechanical properties is very crucial in

designing concrete structures. In which, compressive strength is the most important property

because the compressive strength is directly influenced by the safety and performance of the

structure during the whole life-cycle for both old and new structures [1]. Nonetheless, concrete

is created by different components such as aggregates, cement, supplementary cementitious

materials, additional mixtures, which are all randomly distributed in the concrete matrix. As a

result of the complexity of concrete structure materials, precisely estimating the concrete com-

pressive strength is extremely difficult [2].

Physical experiments are usually the most straightforward means of determining the con-

crete compressive strength. In most cases, cubic or cylinder specimens were made according
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to the mix design ratio and then cured for the specified amount of time. Then, the compressive

test instrument is used for determining the compressive strength [3]. However, the experiment

test is indeed time and money-consuming. As a result, construction efficiency will be severely

impacted. For reducing the time-consuming and cost of experiment tests, some empirical

models are proposed to predict the compressive strength of concrete with different compo-

nents in concrete [4, 5]. However, the compressive strength and concrete components exhibit

a strongly nonlinear relation. Therefore, an accurate regression expression is difficultly derived

in predicting the concrete compressive strength. The different approach to estimate the con-

crete behavior is the numerical model [6, 7]. Li et al. [8] conclude that the reproduction of con-

crete behavior is complex and challenging due to the coupling of randomness and nonlinearity

of each component and concrete compressive strength.

Machine learning (ML) algorithms have become prominent in various aspects of life in the

last few decades, thanks to the rapid growth of artificial intelligence technology [9]. Among

ML algorithms, ANN is a viable algorithm for resolving difficult technical problems at the

moment [10, 11]. The ANN model can solve nonlinear and complex nonlinear problems. The

link between the inputs and outputs, in particular, cannot be stated explicitly. The capacity of

the ANN algorithm to self-learn and modify the weights is a significant benefit. As a conse-

quence, without relying on mechanical equations, physical chemistry, or other factors, model

findings are consistent. Many challenging civil engineering issues have been successfully

solved, such as structure problems [12, 13], geotechnical [14–16], and materials [17–19].

Besides, Abdalla et al. [14] used an ANN model to effectively estimate the minimal safety factor

against slope failure in clayey soils. The mechanical characteristics of FRP concrete may also

be predicted with great accuracy using an ANN model [20, 21]. In materials science, ML

approaches and ANN have been used to predict various concrete characteristics, such as con-

crete beams shear strength [22, 23], corrosion properties [24], crack [25], concrete beams ulti-

mate strength [26], recycled aggregate concrete [27], silica fume concrete [28], concrete using

blast furnace slag [29–34], or concrete using fly ash [35–38]. In the details, Bilim et al. [33]

developed an ANN model to predict the compressive strength using 225 data points. In this

study, R2 = 0.96 is the best value of prediction performance. Furthermore, Palika Chopra et al.

[39] developed an ANN model with one hidden layer and 50 neurons to predict the concrete

compressive strength utilizing 204 data points. The coefficient of determination R2 = 0.92 is

used to measure the performance of such an ANN model. Yeh [40] developed an ANN model

for forecasting the compressive strength of concrete using BFS and FA, with 1030 data points.

The construction of the ANN network in the well-known contribution of Yeh consists of one

hidden layer and eight neurons, and the prediction accuracy of such an ANN model is pretty

high, with R2 = 0.922. Overall, the number of hidden layers and number of neurons in each

hidden layer have a substantial impact on the performance of an ANN model [41]. The effec-

tiveness of ANN model demonstrates that it is a good choice for developing a numerical tool

for engineers to estimate the concrete compressive strength, potentially saving time cost and

reducing experiment costs. As a result, the primary goal of this investigation is to develop an

effective ANN model with an appropriate architecture for forecasting the concrete compres-

sive strength with more accuracy.

The ANN model is utilized to predict the concrete compressive strength in this study. One

of the most significant factors impacting the model’s performance is the ANN architecture. As

a result, the major objective of this article is to examine and improve the ANN architecture for

predicting the concrete compressive strength. The optimal ANN architecture is decided by the

model’s performance, which is assessed using well-known statistical metrics, namely the coeffi-

cient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE).

Then, using Monte Carlo simulation (MSC), 500 runs are performed for each model, taking
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into consideration a random sampling effect to ensure that the suggested model is both feasible

and convergent. In the final part, the features importance is also explored to illustrate the influ-

ence of each input variable on the compressive strength of concrete.

2. Database construction

This study’s experimental database was collected from published papers [4, 32, 33, 42–44]

(Table 1). There are 595 samples, divided into two parts, 70% training data corresponding to

417 samples and 30% testing data corresponding to 178 samples. There are two shapes of sam-

ples, including 36 cylindrical samples and 559 cubic samples, accounting for 93.9% of total

samples. There are 8 input variables in the database, ranging from X1 to X8. They represent the

binder content in the concrete mixture, such as cement (X1) or GGFBS (X5); the water content

(X2); aggregate such as coarse (X3) or fine, sand contents (X4); admixtures contents such as

carboxylic-type hyperplasticizing (X6) or superplasticizer (X7); and age of samples, expressed

in day (X8). The considered output is the compressive strength, measured in MPa (denoted as

Y). Fig 1 depicts the boxplots describing the range of each database input variable. The corre-

sponding correlation analysis of data is shown in Fig 2.

The input variables X1 to X5 have a broad range of values, whereas X6 to X8 have a narrow

range of values. Cement content (X1) varies from 45 to 464 (kg/m3), with 218.352 (kg/m3)

being the average. Water content (X2) varies between 70 and 295 kg/m3. As indicated in

Table 1, coarse aggregate content (X3) ranges from around 402 to 1145 (kg/m3), with no sam-

ple falling between 500 and 700 (kg/m3). Fine aggregate content (X4) ranges from 395 to 1512

(kg/m3), with 680 kg/m3 being the highest frequented sample with such content. The composi-

tion of GGBFS (X5) ranges from 28 to 440 kg/m3. The carboxylic-type hyper-plasticizing con-

tent (X6) is measured in kg/m3 and varies from 0 to 14. Furthermore, with the exception of six

samples (containing roughly 1% of the total), virtually all samples have no superplasticizer

content (X7). There are ten options for the sample age (X8), the sample’s lowest age is one day,

and the sample’s maximum age is 365 days. Table 2 provides more detailed information on

these values and ranges.

Fig 2 depicts various correlations between the inputs and output Y (compressive strength).

The correlation values are given in different colors, depending on the associated values. Some

of the variables, such as X4 and X6 for aggregate and carboxylic-type hyper plasticizing con-

tents, are marginally correlated, as shown. Overall, however, the correlation between inputs

and compressive strength is poor. As a result, all factors are taken into account in order to

improve the suggested ANN model’s accuracy and generalization capability. It is worth noting

that all of the samples in the present database have undergone a traditional curing procedure

(i.e., stored in laboratory conditions up to the testing date). To guarantee data point consis-

tency, any samples with unusual curing conditions are deleted from the database. If it is

Table 1. Detail of database collection.

No. Reference No. of data points (%)

1 Oner and Akyuz [4] 168 samples in cubic form 28.22

2 Shariq et al. [42] 63 samples in cubic form 10.58

3 Chidiac and Panesar [43] 36 samples in cylindric form 6.10

4 Boga et al. [32] 6 samples in cubic form 1.00

5 Bilim et al. [33] 180 samples in cubic form 30.24

6 Han et al. [44] 142 samples in cubic form 23.86

Total 595 samples in cubic form 100

https://doi.org/10.1371/journal.pone.0260847.t001
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considered, another input variable must be added into the input space to represent the curing

process, which may be the goal of future study. In this research, the sample size for performing

compressive strength tests is ignored. Indeed, the database’s sample size is mostly in cubic

shape, with just 36 samples examined with cylindrical ones. It has been shown previously [18]

Fig 1. Boxplot describing input and output variable range.

https://doi.org/10.1371/journal.pone.0260847.g001

PLOS ONE Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS

PLOS ONE | https://doi.org/10.1371/journal.pone.0260847 December 3, 2021 4 / 21

https://doi.org/10.1371/journal.pone.0260847.g001
https://doi.org/10.1371/journal.pone.0260847


that the effect of sample size may be ignored when only cubic and cylindric samples are used

to estimate compressive strength. In situations when there are several kinds of sample size,

additional input parameter may be required to properly represent the prediction process.

3. Methods

3.1. Artificial neural network

As the name implies, an artificial neural network (ANN) consists of a collection of data analy-

sis techniques that enable the complicated mathematical connection between a collection of

influencing factors (Inputs) and a variable or a collection of target variables to be discovered.

Because of ANN’s structure and learning, inference, and regeneration processes, it can

Fig 2. Correlation analysis of the input and output variables.

https://doi.org/10.1371/journal.pone.0260847.g002

Table 2. Summary of the input and output variables.

Sym. Unit Min Median Mean Max StDa SKb

Cement (X1) X1 kg/m3 45.000 210.000 218.352 464.790 70.934 0.004

Water (X2) X2 kg/m3 70.000 175.000 181.305 295.000 53.060 0.019

Coarse Aggregate (X3) X3 kg/m3 402.270 923.000 820.902 1145.000 254.271 -0.494

Fine aggregate (X4) X4 kg/m3 395.000 775.000 929.797 1512.675 324.483 0.484

GGBFS (X5) X5 kg/m3 28.667 175.000 181.547 440.697 95.631 0.518

Carboxylic-type hyperplasticizing (X6) X6 kg/m3 0.000 0.000 1.229 14.400 2.994 2.758

Superplasticizer (X7) X7 kg/m3 0.000 0.000 0.158 2.900 0.389 3.445

Testing age (X8) X8 day 1.000 28.000 76.518 365.000 106.088 1.913

Compressive strength (Y) Y MPa 3.590 40.100 43.298 101.300 19.024 0.599

a = Standard deviation
b = Skewness; Sym. = Symbol.

https://doi.org/10.1371/journal.pone.0260847.t002
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dynamically adapt to a wide variety of data sources. ANN uses the information processing

technique of biological neuron networks in the human brain to process it. To process and eval-

uate information, it is made up of numerous neurons linked by weighted connections. Using a

collection of training patterns, an artificial neural network is built for a particular purpose (pat-

tern recognition, data categorization, regression). The input data will be analyzed by the whole

neural network, relationships will be found, and the output will be reconstructed. These results

will be compared to what the system has already learned about the target data set in the past.

This training-learning procedure will be repeated if there is still a substantial difference in out-

put between what was expected (the target) and what was actually obtained (the deviation

from the target). This cycle is performed as many times as necessary to get the lowest feasible

deviation between the output and the target. Hsu et al. stated that [45], with its versatile mathe-

matical function structure, the ANN network is an excellent estimator. Therefore, a correlation

between input and output may be shown in any system using this technique. Fig 3 depicts the

basic ANN structure, which includes three or more layers of neurons.

Backpropagation learning was utilized by a number of methods to train the ANN model,

such as gradient descent [46], Levenberg-Marquardt [47], and Scaled Conjugate Gradient

(SCG) [48]. The method through which the weights and biases of the network are adjusted dif-

fers across the training methods [49]. According to Moller [48], in comparison to other algo-

rithms, the SCG method achieves a quicker convergence speed because it employs the suitable

extreme detection step ratio mechanism. Using the scaled conjugate gradient technique, the

SCG algorithm is used as a network training function, updating the weight and bias values of

the network. Any network having derivative functions in its weights, network inputs, and

transfer functions may be trained using SCG. Consequently, the SCG method is used as the

ANN model’s training function in this research.

Fig 3. An ANN framework used in this research.

https://doi.org/10.1371/journal.pone.0260847.g003
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3.2. Performance criteria

Different statistical metrics, such as the coefficient of determination (R2), Mean Absolute

Error (MAE), and Root Mean Squared Error (RMSE), are utilized to confirm and assess the

performance of the ANN-SCG model. In regression issues, the R2 criterion is commonly

employed to measure the correlation between the target and expected outputs [50]. Further-

more, MAE and RMSE are used to assess model error [51, 52]. In general, higher R2 illustrates

the better predictive capability of the model, whereas lower RMSE and MAE show represent

the higher accuracy of the model [53, 54]. Calculation of R2, RMSE, and MAE is based on the

following equations:

R2 ¼

XM

k¼1

ðV0;k �
�V 0ÞðVt;k �

�VtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

k¼1

ðV0;k �
�V 0Þ

2

s
XM

k¼1

ðVt;k �
�VtÞ

2

ð1Þ

MAE ¼

XM

k¼1

jV0;k � Vt;kj

M
; ð2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

k¼1

ðV0;k � Vt;kÞ
2

s

ð3Þ

where M is the number of the samples, V0, and �V 0 is the actual value and the average experi-

mental value, Vt and �Vt is the predicted value and the average predicted value determined

using the prediction model (k = 1:M). (k = 1:M).

4. Methodology flow chart

As illustrated in Fig 4, the process for constructing the ANN-SCG model to predict the com-

pressive strength of concrete containing GGBFS consists of four steps:

1st step: The database collecting task is the initial phase. The ANN model is developed

using a database of 595 samples. The data set is divided at random into two parts: 70% of the

total data is used to train the ANN model, and 30% of the remaining data is used to test the

ANN model.

Step 2: Determining the best ANN architecture. The creation of the best ANN structure

based on the training data set is carried out in this second stage.

Step 3: ANN model training. The ANN model with the best architecture is trained using the

training dataset and the Conjugate Gradient technique in the third stage.

Step 4: ANN model validation. The testing dataset is utilized in this final phase to verify and

confirm the trained ANN model. Three statistical measures, R2, RMSE, and MAE, are used to

assess the performance of the ANN model.

5. Results & discussion

The performance of the ANN model is determined by the structure of the neural network

(NN), with the number of hidden layers and the number of neurons in each hidden layer

being two important criteria. Typically, the number of hidden layers is defined initially during

the ANN network structure design, and then the number of neurons in each hidden layer is
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chosen based on the complexity of the relationship between input parameters and output val-

ues. Unfortunately, there is no common rule for determining the number of hidden layers and

the number of neurons inside each hidden layer. As a result, networking based on trial-and-

error experiments is required to determine the ideal network setup.

In this investigation, the number of hidden layers varies from 1 to 2, and the number of

neurons in each hidden layer changes from 1 to 15. In fact, numerous authors proposed differ-

ent formulas to estimate number of neurons in a single hidden layer, such as Paola (1994) [55],

Fig 4. Methodology flow chart.

https://doi.org/10.1371/journal.pone.0260847.g004
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Ripley (1993) [56], Sheela (2013) [41], Nagendra (1998) [57], Wang (1994) [58], Popovics

(1990) [59], Neville (1986) [60]. Based on the number of input and output variables, the high-

est number of neurons is equal to 9 according to the proposed formula of Nagendra [57]

(number of neurons = number of input + number of output). In the case of two hidden layers,

the number of neurons is chosen based on the number of neurons in the case of single hidden

layers to easily compare the effectiveness of hidden layer numbers. Therefore, the number of

neurons in two cases is proposed in the range between 1 to 15 to cover the number of neurons

suggested in the literature and minimize the computation time.

Network training is conducted for each network structure. An epoch is a single cycle of

propagating all training patterns across a backpropagation network. The training procedure is

continued until the network output error reaches an acceptable level (less than the initial speci-

fied error threshold). The goal of this method is to reduce the difference between the experi-

mental data and the model output data. The trial-and-error method is also used to establish

the ideal number of epochs for the ANN-SCG model. As a consequence, the optimization pro-

cedure is repeated 1000 times to tune the neurons’ weights and biases for each ANN structure.

Besides, each ANN structure is performed with 500 different simulations in changing the sam-

ple index in the training data set to obtain reliable results. This means that with the existing

data set, 417 samples will be randomly taken to build the training data set, and the remaining

178 samples will be used to test the predictive capability of the proposed ANN-SCG model. A

total of 120,000 simulations are performed for 240 architectures, corresponding to 15 struc-

tures with one hidden layer and 225 structures with two hidden layers. The activation function

in the hidden layer is the sigmoid function, and for the output layer is a linear function. The

parameters of the ANN-SCG model used in this study are detailed in Table 3.

5.1. Prediction performance of different ANN architectures

For the purpose of pinpointing the optimal ANN structure, it is necessary to compare the per-

formance of several ANN architectures. R2, RMSE, and MAE metrics are used to evaluate the

overall performance of the structures in question. In this section, 240 ANN designs are com-

pared to see which one performs the best. The mean values of R2, RMSE, and MAE are used to

evaluate performance in the training and testing phases. All ANN designs’ mean values for R2,

RMSE, and MAE are shown in Fig 5A, 5B and 5C, respectively, for training and testing

datasets.

The first edge of the curve in Fig 5 corresponds to the mean values of R2, RMSE, and MAE,

representing an ANN model’s performance with one hidden layer and a neuron count ranging

from one to fifteen. The second edge denotes the two-layer ANN architecture. The first point

Table 3. Summary of different ANN characteristics and investigation parameters in this study.

Parameter Parameter Description

Fix Input layer neurons 8

Neurons in the output layer 1

Activation function for hidden layers Sigmoid

Activation function for the output layer Linear

Cost function Mean Square Error (MSE)

Number of epochs 1000

Number of simulations 500

Training algorithm Scaled conjugate gradient backpropagation (SCG)

Parametric study Number of hidden layers 1 and 2 hidden layers

Neurons in hidden layer From 1 to 15 neurons in each hidden layer

https://doi.org/10.1371/journal.pone.0260847.t003
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on the second edge is the performance of an ANN model with one neuron in the first hidden

layer and one neuron in the second hidden layer, or an ANN architecture [8–1–1–1]. Each

point along the remaining edges represents the performance of an ANN designed with one

neuron in the first hidden layer, and the following points represent the performance of an

ANN architecture with one to fifteen neurons in the second hidden layer. That is, the second

edge’s final point corresponds to the ANN structure’s performance [8–1–15–1]. In general,

one edge is displayed for an ANN designed with one hidden layer and fifteen edges for an

ANN architecture with two hidden layers (Fig 5).

As shown in Fig 5, the optimal performance of the case 1 hidden layer corresponds to an

ANN design with a single hidden layer comprising 15 neurons. For the testing section of this

ANN design [8–15–1], the mean values of R2, RMSE, and MAE are 0.89, 15.5, and 11.5, respec-

tively. With two hidden layers, the performance of the ANN model improves somewhat as the

number of neurons grows. However, once the number of neurons in the first hidden layer

reaches 6, the performance of the ANN model seems to remain constant regardless of the

number of neurons in the second hidden layer (Fig 6). The next paragraph provides a more

thorough explanation. The scenario with two hidden layers performs optimally when R2,

RMSE, and MAE are 0.91, 6.0, and 4.0, respectively. These mean values are clearly superior to

those obtained using an ANN with a single hidden layer.

Fig 5. Performance of the ANN as a function of neuron count in two hidden layers, as measured by (a) mean R2 for the training and

testing parts; (b) mean RMSE for the training and testing parts; and (c) mean MAE for the training and testing parts.

https://doi.org/10.1371/journal.pone.0260847.g005
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For a better description of ANN model performance in the case of 2 hidden layers, the per-

formance values of 225 ANN architectures are described by color map in Fig 6 for the testing

part. Only the results from the testing dataset are considered here because the testing data

reflects the model’s accuracy and predictability in the regression problem. Fig 6A and 6C and 6E

Fig 6. Color-map of ANN with two hidden layers for the testing part in relation to (a) mean R2; (b) StD R2; (c) mean RMSE; (d) StD RMSE;

(e) mean MAE; and (f) StD MAE.

https://doi.org/10.1371/journal.pone.0260847.g006
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show the mean values (denoted as μ) of R2, RMSE, and MAE, respectively. For ANN structures

with more than 4 neurons in the first hidden layer, the value of R2 is considerably higher than

0.9 for the testing dataset. Similar findings are made for a particular zone with low RMSE and

MAE values for the testing components. When the number of neurons in the first hidden layer

is equal to or higher than 6, the color values of R2, RMSE, and MAE seem to be more stable. The

optimum area is seen when the number of neurons in the first hidden layer is between 10 and

15, and the number of neurons in the second hidden layer is higher than 3. In addition, the

impact of the number of neurons in the two hidden layers is assessed using three statistical cri-

teria’s standard deviation values. Fig 6B and 6D, and 6f represent the standard deviation values

(denoted as σ) of the three criteria, respectively. The standard deviation value is the minimum

for simultaneously all statistical criteria, respectively, when the number of neurons in the first

layer is 14, and the number of neurons in the second layer is 4. It can be inferred that the optimal

structure of the ANN-SCG model with two hidden layers has the form of [8–14–4–1]. Then, for

the training dataset, the average values of R2, RMSE, and MAE are 0.961, 3.706, and 2.640,

respectively. These values are 0.910, 5.665, and 3.870 for the testing dataset, respectively. These

values are superior than those obtained using an ANN design [8–15–1]. As a result, in the next

part, this architecture is utilized to estimate the compressive strength of concrete.

Model ANN-SCG with structure [8–14–4–1] has been proven the best-structured model to

predict the compressive strength of concrete, as mentioned above. The assessment of the con-

vergence of simulations of the ANN-SCG model with the optimal structure is shown in Fig 7.

The red line represents the average value of the statistical criteria for the training set, the black

line for the testing dataset. The dashed line represents a 1% deviation around the mean value

of the statistical criteria. As observed in Fig 7, after 30 simulations, the criteria achieved con-

vergence within 1% around the convergence values. However, criterion R2 requires at least 350

simulations for the testing dataset to achieve convergence with small errors. With the RMSE

criterion, a minimum of 300 simulations are required for the training dataset, and the MAE

criterion requires a minimum of 200 simulations for the training and testing dataset. These

analyses prove that with 500 simulations, under the random sampling effect of data is enough

for the converged results obtained from the optimal ANN-SCG model.

5.2. Prediction performance of typical ANN architecture

This section depicts a typical simulation to demonstrate the performance of the ANN-SCG

model with the best architecture [8–14–4–1]. For training and testing dataset, the prediction

results with the highest predictive capacity over 500 runs are shown. The relationship between

concrete’s experimental compressive strength of concrete (red dashed line) and the predicted

value (solid black line) from the training and testing parts is shown in Fig 8. In this figure, the

horizontal axis indicates the number of samples in the data set, and the vertical axis denotes

the compressive strength of concrete (MPa). The compressive strength of 417 samples in the

training dataset is quite close to the actual results (Fig 8A). Regarding the testing dataset, 178

experimental results are also predicted with minor errors (Fig 8B). This accuracy is precisely

quantified through the error values and the correlation between the experimental and the pre-

dicted results of the ANN-SCG model presented in the next section.

The distribution and cumulative distribution of the error obtained by the ANN-SCG model

[8–14–4–1] for the training set is shown in Fig 9A, and for the testing set is shown in Fig 9B.

The error values between the training data and the experimental ones are small. Most of the

error values are in the range [-5; 5] MPa, with very few samples having an error outside this

range. Moreover, only 5 samples had an error outside the range [-10; 10] MPa, for both train-

ing and testing datasets. Based on the cumulative distribution (red line), it is easy to determine
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the samples’ percentage error within a range. For example, with the training dataset, the per-

centage of sample with the error between the experimental values and simulated ANN is in the

range [-10; 10] MPa is 97%. This is similar to the testing dataset.

Fig 7. Convergence study of ANN [8–14–4–1] architecture in terms of (a) the R2 of the training and testing parts; (b) RMSE of the

training and testing parts; (c) MAE of the training and testing parts.

https://doi.org/10.1371/journal.pone.0260847.g007

Fig 8. Experimental and predicted shear strength results in function of sample index for the training and testing datasets.

https://doi.org/10.1371/journal.pone.0260847.g008
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Fig 10 shows the correlation analysis between the predicted value by ANN-SCG model and

the experimental compressive strength value for the training and the testing datasets. As

observed, the value obtained from the proposed model for the training dataset (Fig 10A) and

the testing dataset (Fig 10B) is very close to the experimental results. These results show that

the ANN-SCG model can successfully construct a relationship between input and output

parameters and give good prediction results. Besides, the values of the three criteria for the

training and testing data are presented in Table 4. The RMSE value is 3.284 and 3.803, respec-

tively, for the training and testing dataset. The MAE value for the training set is 2.409, and the

testing set is 2.880. The value of R2 is 0.968 corresponds to the training set, and the testing set

R2 is 0.965. These values show that it is feasible to apply the ANN-SCG model to forecast the

compressive strength of concrete containing GGBFS, saving time and costly experiments.

For comparison purposes, Table 5 shows the prediction results in this work, with 6 results

available in the literature. Saridemir et al. [34] used 5 inputs with 284 samples; therefore, the

performance of the ANN model proposed is excellent with R2 = 0.980. Similarly, the investiga-

tion of Boğa et al. [32] could predict the compressive strength of concrete with a high value of

R2 = 0.971 by ANN model using 162 samples and 4 inputs. It is worth noting that among the 6

Fig 9. Experimental and predicted shear strength results in the function of sample index for the training and testing datasets.

https://doi.org/10.1371/journal.pone.0260847.g009

Fig 10. Regression graphs for the case of the best predictor ANN-[9–17–1]: (a) training dataset; (b) testing dataset.

https://doi.org/10.1371/journal.pone.0260847.g010
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compared investigations, these two models have higher R2 value than that of the ANN model

proposed in this investigation. Besides, the RMSE value of ANN model proposed by Saridemir

et al. [34] is lower than that in this investigation. However, the number of samples using in the

ANN models proposed by Saridemir et al. [34] and Boğa et al. [32] are two times and 3.6 times

less than the number of samples in the present work, respectively. Compared with Bilim et al.

[33] and Han et al. [61], the authors used two times fewer samples than that this work, but the

R2 values of the ML models are lower. The RMSE and MAE values in this investigation are

higher than those proposed by Han et al. [61], but the difference is not significant. No compar-

ison could be conducted with Bilim et al. [33] because the RMSE and MAE values are not pub-

lished. Boukhatem et al. [30] and Kandiri et al. [31] collected 726 and 624 samples,

respectively, for the development of some ANN models. The number of samples is slightly

higher than this study (i.e., 595 samples), but the proposed ANN-SCG model shows higher

performance R2 = 0.9650.

The accuracy of a machine learning model depends on numerous factors such as data dis-

tribution, sample size, training model and algorithm, optimization algorithm, number of input

variables. In comparing the R2 value, the ANN model in the present study has higher R2 value

than Boukhatem et al. [30]. The number of input variables of two models is different, with 5

inputs in Boukhatem et al. [30]. Furthermore, Boukhatem et al. [33] have considered the cur-

ing temperature, but not the main objective of the present work.

In comparing the model performance with Kandiri et al. [31], the R2 value of the ANN

model proposed herein is higher than Kandiri et al. [31]. Moreover, the RMSE and MAE

Table 4. Values of the best performance evaluation criteria of ANN-SCG model [8–14–4–1] for training and test-

ing dataset.

RMSE MAE R2

Training dataset 3.284 2.409 0.968

Testing dataset 3.803 2.880 0.965

https://doi.org/10.1371/journal.pone.0260847.t004

Table 5. Comparison of different machine learning models for predicting compressive strength of concrete containing GGBFS.

Reference Machine learning algorithm Input No. of

data

Performance measure

Saridemir et al.

[34]

ANN model 5 inputs: TA, C, GGBFS, W and Agg. 284 R2 = 0.981

RMSE = 2.511

Bilim et al. [33] ANN model 6 inputs: C, GGBFS, W, SP, Agg. and TA 225 R2 = 0.96 (RMSE, MAE not

available)

Kandiri et al. [31] ANN and a multi-objective slap swarm

algorithm (MOSSA)

7 inputs: C, GGBFS, W, fine Agg., coarse Agg., TA 624 R2 = 0.9409

RMSE = 2.39

MAE = 1.89

Han et al. [61] ANN-PSO model 7 inputs: curing temperature, W/binder, GGBFS/total

binder, W, fine Agg., coarse Agg., SP

269 R2 = 0.961

RMSE = 3.332

MAE = 2.689

Boukhatem et al.

[30]

ANN model 5 inputs: C, W/C, GGBFS, temperature, TA 726 R2 = 0.9216 (RMSE, MAE not

available)

Boğa et al. [32] ANN model 4 inputs: cure type, curing period, BFS ratio, CNI ratio 162 ANN: R2 = 0.9710 (RMSE, MAE

not available)

This work ANN-SCG 8 inputs: C, W, coarse Agg, fine Agg, GGBFS, CH, SP, TA 595 R2 = 0.9650

RMSE = 3.803

MAE = 2.880

https://doi.org/10.1371/journal.pone.0260847.t005
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values are also lower than those obtained by the ANN model proposed by Kandiri et al. [31].

These comparisons confirm the feasibility and high accuracy of the ANN-SCG model pro-

posed in this study. The comparisons (Table 5) could help material engineers in selecting the

appropriate ANN model, depending on the input variable, to predict the compressive strength

of concrete containing GGBFS.

5.3. Sensitivity analysis

The ANN model can evaluate the importance and effect of the input variable on the model’s

prediction accuracy. The SHAP values are used to simulate the importance of each input in

this study (Fig 11). As observed, the fine aggregate (X4) is an important feature that positively

impacts concrete compressive strength containing GGBFS. Precisely, with higher fine aggre-

gate content, the compressive strength of concrete is improved. The fine aggregate and the

cement contents are the most important input variables influencing the prediction accuracy of

the ANN-SCG model. Regarding the effect, the difference between the fine aggregate and

cement contents is relatively slight. In fact, the effect range by cement content is greater than

that of fine aggregate content and sharply higher than that of the GGBFS content. The col-

lected database can explain this observation, where the cement content, fine and coarse aggre-

gate contents are the main constitution of concrete and the most gain of concrete compressive

strength. The GGBFS is only a partial replacement of cement. Therefore, the gain of concrete

compressive strength by GGBFS is less than that by the aggregates. Moreover, previous investi-

gations of Tumidajski and Gong [62], or in Tsiskreli and Dzhavakhidze [63] show that the

effect of fine aggregate on compressive strength is higher than that of the coarse aggregate.

Therefore, the fine aggregate content has stronger effect on compressive strength than GGBFS

content. The lowest impact on the prediction accuracy of ANN model is the Carboxylic-type

hyperplasticizing content (X6), which also has a negative impact on the compressive strength.

The lower the content of Carboxylic-type hyperplasticizing, the higher the compressive

strength of concrete. The effect of superplasticizer content (X7) on the compressive strength of

Fig 11. Feature importance of 8 variables used in this investigation.

https://doi.org/10.1371/journal.pone.0260847.g011
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concrete is similar. These observations are in good agreement with the experimental investiga-

tion of Mazloom et al. [64]. At last, the water content (X2) has a negative impact, which means

that the compressive strength of concrete decreases with higher water content. That is also

confirmed in numerous investigations such as Oner and Akyuz [4], Shen and Xu [65], Zhou

et al. [66]. Overall, the feature importance analyses are performed under the evaluation of the

proposed ANN model. The feature importance analysis successfully simulates the effects of

each input variable on the compressive strength of concrete containing GGBFS. Nonetheless,

other types of sensitivity analysis such Partial Dependence Plot (PDP) [67] and Individual

Conditional Expectation Plots (ICE) [68] need to be carried out to quantify and verify the

effect of cement content, fine and coarse aggregate contents, and GGBFS content on the com-

pressive strength value.

6. Conclusion

The goal of this study is to create a simple and effective ANN-SCG model for predicting the

compressive strength of concrete containing GGBFS. To accomplish this goal, the ideal ANN

design is first investigated, with two scenarios of hidden layer numbers ranging from 1 to 2. In

each scenario, the number of neurons in each hidden layer is increased from one to fifteen. In

total, 240 ANN structure alternatives are explored. On the basis of 595 examples gathered

from the literature, 70% are chosen at random and utilized for training, while the remaining

30% are used for testing. For each scenario of ANN architecture, 500 simulations are per-

formed. General statistical measures such as the coefficient of determination (R2), Root Mean

Square Error (RMSE), and Mean Absolute Error (MAE) are used to evaluate the performance

of each ANN architecture. The ANN architecture with 2 hidden layers, 14 neurons in the first

hidden layer and 4 neurons in the second hidden layer, was discovered to be the best architec-

ture for predicting the compressive strength of concrete containing GGBFS (the R2, RMSE,

and MAE values are 0.965, 3.803, and 2.880, respectively, for the testing part). The sensitivity

analysis shows the impact of each input variable on the output of the ANN-SCG model. The

most important input variables are fine aggregate, cement content, testing age, and water con-

tent, which have distinctive effects on the model’s accuracy and should not be neglected while

predicting the compressive strength. The findings of this study can be used to develop a

dependable soft computing tool for precisely and rapidly predicting compressive strength.

However, the accuracy of compressive strength prediction could be further improved by test-

ing different machine learning techniques or optimization algorithms such as evolutionary

algorithms, tree models, or support vector machine. Besides, quantifying the effects of the con-

crete constituents on the compressive strength should also be cross-checked with different sen-

sitivity analysis techniques, namely the Partial Dependence Plot (PDP).
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