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SMARCB1/INI1 is one of the core subunit proteins of the ATP-dependent SWI/SNF

chromatin remodeling complex, and is identified as a potent and bona fide tumor

suppressor. Interactions have been demonstrated between SMARCB1/INI1 and

key proteins in various pathways related to tumor proliferation and progression:

the p16-RB pathway, WNT signaling pathway, sonic hedgehog signaling pathway

and Polycomb pathway. Initially, no detectable SMARCB1/INI1 protein expression

was found in malignant rhabdoid tumor cells, whereas all other kinds of tumor

cells and non-tumorous tissue showed SMARCB1/INI1 protein expression. There-

fore, immunohistochemical testing for the SMARCB1/INI1 antibody has been con-

sidered useful in confirming the histologic diagnosis of malignant rhabdoid

tumors. However, recently, aberrant expression of SMARCB1/INI1 has been found

in various tumors such as epithelioid sarcomas, schwannomatosis, synovial sarco-

mas, and so on. In addition, it has been reported that aberrant expression can be

classified into three patterns: complete loss, mosaic expression and reduced

expression. Although the various pathways related to mechanisms of tumorigen-

esis and tumor proliferation are complexly intertwined, the clarification of these

mechanisms may contribute to therapeutic strategies in SMARCB1/INI1-deficient

tumors. In terms of pathological classifications, SMARCB1/INI1-deficient tumors

may be re-classified by genetic backgrounds.

S MARCB1 (SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily B member 1),

which is also named INI1 (integrase interactor 1), is one of the
core subunit proteins in the SWI/SNF (SWItch/Sucrose Non-
Fermentable) ATP-dependent chromatin remodeling complex
encoded at chromosomal position 22q11.2.(1) SMARCB1 was
first identified as a gene essential for glucose-repressible genes
in Saccharomyces cerevisiae.(2) Characterization of the
SMARCB1/INI1 gene revealed that it encodes glutamine- and
proline-rich domains characteristic of activation domains.(3) As
for the protein, a yeast 2-hybrid screen designed to identify
host proteins that could interact with HIV-1 integrase first,
identified the human homologue of SNF5, which was then
named SMARCB1,(4) and a human polypeptide corresponding
in sequence to yeast SNF5 was isolated using a yeast 2-hybrid
screen in WI38 human fibroblasts.(5)

SMARCB1/INI1 is ubiquitously expressed in the nuclei of
all normal cells.(6) Disruption of SMARCB1/INI1 expression
in mice results in early embryonic lethality: SMARCB1/INI1-
null embryos die between 3.5 and 5.5 days post-coitum.(7)

SMARCB1/INI1 heterozygous-deficient mice and those with
conditional ablation of SMARCB1/INI1 develop aggressive
cancer including rhabdoid-like tumors and T-cell lymphomas
at a median onset of only 11 weeks.(8–10)

This embryonic lethality is rapid compared with other
tumor suppressors. For example, p53 inactivation leads to

cancer at 20 weeks, p19Arf loss at 38 weeks, and p16Ink4a
loss at 60 weeks. Thus, the rapid onset and complete
penetrance of cancer following inactivation of SMARCB1/
INI1 establishes this gene as a potent and bona fide tumor
suppressor.(11,12)

Function of SMARCB1/INI1

Role of SMARCB1/INI1 in the p16-RB pathway. The p16 tumor
suppressor protein functions as an inhibitor of CDK4 and
CDK6, the D-type cyclin-dependent kinases that initiate phos-
phorylation of the retinoblastoma tumor suppressor protein
(Rb) and activate the E2F transcription factor.(13) Rb represses
gene transcription, required for the transition from G0/G1 to S
phase, by directly binding to the transactivation domain of
E2F.(14) Thus, p16 has the capacity to arrest cells in the G1-
phase of the cell cycle.(13)

Reintroduction of SMARCB1/INI1 into malignant rhabdoid
tumor cell lines having SMARCB1/INI1 deficiency induced
the accumulation of cells in G0/G1, and, in some cases, cell
senescence or apoptosis.(15,16) These findings resulted from
G0/G1 cell cycle arrest associated with transcriptional repres-
sion of Cyclin D1, induction of P16, and hypophosphorylation
of RB.(16,17) This repression of Cyclin D1 transcription was
associated with direct recruitment of HDAC activity to the
Cyclin D1 promoter.(16–18)
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Previous studies have suggested that SMARCB1/INI1 sup-
presses tumor progression by signaling through the p16INK4a
and retinoblastoma tumor suppressors to negatively regulate
cell cycle progression from G0/G1 to the S-phase.(19) It was
recently reported that SMARCB1/INI1 signals via the
p16INK4a-Rb-E2F pathway regulate chromosomal stability,
suggesting a new function in tumor suppression for this
chromatin-remodeling protein.(20)

Role of SMARCB1/INI1 in the canonical WNT pathway. Tradi-
tionally, WNT signaling pathways have been characterized by
two large categories: the canonical WNT (or b-catenin-depen-
dent) and non-canonical WNT (or b-catenin-independent) path-
ways. Biologically, the canonical WNT signaling pathway
usually plays important roles regulating cell fate, proliferation
and survival, and its aberrant activation is found in several
types of human cancer, whereas non-canonical WNT signaling
is more associated with differentiation, cell polarity and
migration.(21)

SMARCB1/INI1 deficiency in the developing limb mes-
enchyme leads to aberrant activation of the canonical WNT
pathway and to phenotypic defects consistent with WNT/b-cate-
nin overexpression.(22) In SMARCB1/INI1-deficient tumors,
WNT targets are elevated compared with those in the normal
cerebellum, and aberrant activation of b-catenin target genes
occurs independently of canonical WNT pathway activation.(22)

Thus, SMARCB1/INI1 deficiency causes aberrant activation of
the WNT signaling pathway and results in phenotypic defects
consistent with WNT/b-catenin overexpression.(22)

Role of SMARCB1/INI1 in the sonic hedgehog signaling path-

way. The sonic hedgehog (Shh) signaling pathway is a major
regulator of cell differentiation, cell proliferation, and tissue
polarity.(23) Tumorigenesis, tumor progression and therapeutic
response have all been shown to be impacted by the Shh sig-
naling pathway.(23) Hedgehog signal transduction is initiated
by the binding of Hh proteins to the Patched 1 protein (Ptch1).
Ptch1 inhibits the activity of a smoothened (SMO) protein that
activates factors downstream of the Hh signaling pathway
when those ligands are not bound to Ptch1.(24,25) SMO stimu-
lates a signaling cascade that results in the activation of the
glioma-associated oncogene homolog (GLI) family of zinc fin-
ger transcription factors (GLI1, GLI2, and GLI3), when those
ligands are bound to Ptch1.(24,25)

SMARCB1/INI1 was found to localize to the upstream
regions of the transcription start sites of GLI1 and Ptch1.
Sh-RNA-mediated knockdown of SMARCB1/INI1 leads to
upregulation of the GLI1 and Ptch1 expressions, and to activa-
tion of the Shh signaling pathway.(26) Conversely, re-expres-
sion of SMARCB1/INI1 in malignant rhabdoid tumor cell
lines represses GLI1 expression.(26) Clinical cases of primary
SMARCB1/INI1-deficient tumors (malignant rhabdoid tumor
and atypical teratoid/rhabdoid tumor) showed enrichment of
gene expression associated with Shh signaling pathway activa-
tion and GLI1 overexpression signatures which often possess
activating mutations in the Shh signaling pathway.(26) There-
fore, SMARCB1/INI1 is identified as one of the top regulators
of GLI1, and is a key mediator of Shh signaling pathway.(26)

Role of SMRCB1/INI1 in the Polycomb pathway. Activations of
Polycomb proteins contribute to epigenetically based gene
silencing during the developmental processes of proliferation,
and it has been suggested that these proteins may serve impor-
tant roles during oncogenic transformation.(27) Polycomb pro-
teins form two distinct multiprotein repressive complexes,
PRC1 and PRC2. EZH2, which is the functional enzymatic
component of PRC2, is highly expressed in various cancers,

and is often correlated with tumor progression and poor prog-
nosis, although the mechanisms underlying the upregulation of
EZH2 are poorly understood.(27) EZH2 plays an important role
as the catalytic subunit in PRC2 and mediates gene silencing
by catalyzing the trimethylation of histone 3 lysine 27
(H3K27me3) at the promoter regions of target genes.(27,28)

SMARCB1/INI1-deficient tumor samples also express
higher levels of EZH2.(27) EZH2 transcription is directly
repressed by SMARCB1/INI1 in mouse embryonic fibrob-
lasts.(27) SMARCB1/INI1 deficiency leads to broad repression
of lineage-specific Polycomb-regulated genes, and this repres-
sion is dependent on the presence of EZH2.(27) SMARCB1/
INI1 deficiency causes elevated levels of H3K27me3 at lin-
eage-specific Polycomb targets.(27) Thus, SMARCB1/INI1
deficiency mechanistically leads to elevated expression and
recruitment of EZH2 to Polycomb targets, the trimethylation
of histone 3 lysine 27, and the ultimate repression of Poly-
comb genes in SMARCB1-deficient fibroblasts and can-
cers.(27) In SMARCB1/INI1-deficient malignant rhabdoid
tumors, inhibition of EZH2 functions as a SMARCB1/INI1
surrogate and derepresses neural differentiation genes, cell
cycle inhibitors, and tumor suppressors while reducing GLI1,
Patch1, MYC and EZH2.(29)

Other targets of SMARCB1/INI1. It has been reported that the
other targets of SMARCB1/INI1 are c-MYC and Aurora A.
C-MYC, which is a regulator gene that codes for a transcrip-
tion factor, plays a role in cell cycle progression, apoptosis
and cell transformation. C-MYC is known to be significantly
upregulated in SMARCB1/INI1-deficient malignant rhabdoid
tumors.(30) Recruitment of the SWI/SNF complex, mediated by
the interaction of INI1 with c-MYC, facilitates the transcrip-
tion of a discrete subset of c-MYC target genes, especially
those involved in apoptosis, which might explain the tumor-
suppressor activity of SMARCB1/INI1.(31,32)

Aurora A, which is a member of a family of mitotic serine/
threonine kinases, is implicated with important processes dur-
ing mitosis and meiosis, the proper functionings of which are
critical for healthy cell proliferation. Aurora A is a direct
downstream target of SMARCB1/INI1-mediated repression in
malignant rhabdoid tumor cells, and the loss of SMARCB1/
INI1, which is required for their survival, leads to aberrant
overexpression of Aurora A in these tumors.(33)

SMARCB1/INI1-deficient tumors

In 1990, monosomy 22 as the only cytogenetic abnormality was
found in three cases of atypical teratoid/rhabdoid tumors.(34) In
1998, positional cloning and sequence analysis of malignant
rhabdoid tumors eventually identified mutations, deletions and
other somatic alterations in the SMARCB1/INI1 gene.(35) After
that, aberrant expression of the SMARCB1/INI1 protein has
been reported to occur in various tumors.(36–39) At present, three
patterns of aberrant SMARCB1/INI1 expression- complete loss,
mosaic expression and reduced expression- have been identified
(Table 1).

Complete loss groups

Malignant rhabdoid tumor. Malignant rhabdoid tumors are
classified as tumors of uncertain differentiation. Most such
tumors present at birth or develop in infancy, and occur in the
central nervous system, kidney and soft tissue.(40) Almost all
malignant rhabdoid tumors show complete loss of SMARCB1/
INI1 expression (Fig. 1a,b).(41–44) In a small minority of cases,
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although SMARCB1/INI1 expression is preserved,
SMARCA4/BRG1 is completely lost.(45) SMARCB1/INI1 is
inactivated homozygously in the majority cases of this kind of
tumor by deletions and/or mutations.(41,46) However, about
20% cases with loss of SMARCB1/INI1 protein expression
also showed no alteration at either the DNA or RNA level,
and the mechanism of the inactivation of the SMARCB1/INI1
gene product was not clarified.(41,46)

Epithelioid sarcoma. Epithelioid sarcoma is a rare soft tissue
tumor displaying an uncertain line of differentiation. Two clini-
copathologic subtypes are recognized: the conventional-type,
characterized by its proclivity for distal extremities and a
pseudo-granulomatous growth pattern; and proximal-type, which
arises mainly in the proximal extremities or truncal regions, and
consists of nests and sheets of large epithelioid cells.(47) Com-
plete loss of SMARCB1/INI1 expression is found in 76–100%
cases of proximal-type and 81–93% cases of conventional-type
epithelioid sarcoma.(48–52) The ratio of gene alteration at either
the DNA or RNA level causing SMARCB1/INI1 protein inacti-
vation varies widely between 0% and 58% in conventional-type
or between 19% and 100% in proximal-type cases.(48,52–54) In
addition, it is suggested that microRNAs such as miR193a-5p,
miR-206, miR-381 and miR-671-5p may have the potential to
inhibit SMARCB1 mRNA in epithelioid sarcoma.(55–57)

Pancreatic undifferentiated rhabdoid carcinoma. Undifferenti-
ated carcinoma of the pancreas that are predominantly (>50%)
composed of rhabdoid cells is very rare with only approximately
60 cases reported previously in the medical literature.(58) Agaimy
et al.(58) reported that 4 of the 14 this carcinoma shows the com-
plete loss of SMARCB1/INI1 immunoexpression, and these all
four cases are monomorphic anaplastic histology, whereas the
remaining 10 cases are pleomorphic giant cell histology. In
SMARCB1/INI1 deficient cases, three of the four cases lacked
KRAS alterations (mutations and/or amplifications).(58)

SMARCB1/INI1-deficient carcinoma of the sinonasal or
gastrointestinal tract

SMARCB1/INI1-deficiency has been also found in extremely
small numbers of carcinoma of the sinonasal or gastrointestinal
tract.(59–61) Agaimy et al.(59–61) reported three cases of sinona-
sal SMARCB1/INI1-deficient basal cell carcinoma and five
cases of SMARCB1/INI1-negative rhabdoid carcinoma of the
gastrointestinal tract.

Age/sex of these sinonasal basal cell carcinomas were as fol-
lows: 35 years old (years)/female; 52 years/male; 28 years/fe-
male.(59) Histological features showed a few scattered rhabdoid
cells, basaloid “blue” appearance, papilloma-like exophytic
component, extensive pagetoid surface growth with prominent
denuding features, and replacement of underlying mucous
glands mimicking an inverted papilloma.(59) High-risk human
papilloma virus infection was negative in all cases.(59)

Age/sex/primary site of these rhabdoid carcinomas of gas-
trointestinal tract were as follows: 32 years old (years)/male/
large intestine; 54 years/male/esophago-gastric junction;
58 years/male/antrum; 79 years/male/cecum; 66 years/male/
stomach body.(61) Histological features showed rhabdoid cells
and anaplastic large ones.(61) Spindle-shaped sarcomatoid cells
or medullary structures were also found in each of one case.(61)

Other tumors. Complete loss of SMARCB1/INI1 protein
expression has been reported to occur in all renal medullary
carcinomas, about half of epithelioid malignant peripheral
nerve sheath tumors, some myoepithelial tumor and some
extraskeletal myxoid chondrosarcomas.(6,62–65) Recently, pedi-
atric chordoma with SMARCB1/INI1-deficiency cases have
also been reported.(66) These tumors are known to have rhab-
doid cells, which are characterized by the existence of a large
eosinophilic inclusion within the cytoplasm, eccentric nuclei
and prominent nucleoli.

Mosaic groups

Schwannomatosis. Schwannoma is benign peripheral nerve
sheath neoplasms composed exclusively of Schwann cells.(67)

Schwannomatosis, which is a familial or sporadic syndrome, is
classified into two major categories according to the absence
of vestibular schwannomas and neurofibromatosis type 2
(NF2) pathology.(68) Most cases of familial schwannomatosis
(14/15; 93%) and NF2-associated schwannomas (10/12; 83%),
and some cases of sporadic schwannomatosis (10/18; 55%)
show mosaic patterns of SMARCB1/INI1 protein expression
(Fig. 1c,d).(69) Genetically, most schwannomatosis patients
show missense or splice-site mutations of SMARCB1/INI1
genes at germline.(70,71) These mutations cause the replacement
of an important amino-acid residue or the in-frame deletion or
insertion of amino-acid residues, resulting in the synthesis of a
SMARCB1/INI1 protein with altered activity.(70)

Gastrointestinal stromal tumor. Gastrointestinal stromal tumor
(GIST), which is the specific KIT-positive mesenchymal tumor of
the gastrointestinal tract, demonstrates a gain-of-function muta-
tion of the KIT gene or the PDGFRA gene.(72,73) About half of
GIST cases (17/27; 63%) show mosaic patterns of SMARCB1/
INI1 protein expression.(74) Genetically, among the 27 informa-
tive cases, 19 (70%) showed LOH of at least one of the
microsatellite markers on 22q11.23 including the SMARCB1/
INI1 gene.(74) In another study, four of the seven metastatic GIST
cases harbored a heterozygous deletion of part or the entire arm
of chromosome 22, on which SMARCB1 is located.(75)

Ossifying fibromyxoid tumor. Ossifying fibromyxoid tumors,
characterized by a lobular proliferation of small bland round
cells with a peripheral shell of woven bone, are classified as
tumors of uncertain differentiation.(76,77) Immunohistochemi-
cally, the mosaic pattern of SMARCB1/INI1 was noted in 14
of 19 (74%) cases.(78) Genetically, although epigenetic events
such as posttranslational modifications or small deletions or
mutations are not detectable by FISH, five of seven cases
showed an aberrant signal in the SMARCB1/INI1 gene by
FISH. Five cases showed a hemizygous deletion of both

Table 1. SMARCB1/INI1-deficient tumors

Complete loss group

Malignant rhabdoid tumor (atypical teratoid/rhabdoid tumor)

Epithelioid sarcoma

Renal medullary carcinoma

Epithelioid malignant peripheral nerve sheath tumor

Myoepithelial tumor

Extraskeletal myxoid chondrosarcoma

Pediatric chordoma

Pancreas undifferentiated rhabdoid carcinoma

Sinonasal basaloid carcinoma

Rhabdoid carcinoma of the gastrointestinal tract

Mosaic expression group

Schwannomatosis

Gastrointestinal stromal tumor

Ossifying fibromyxoid tumor

Reduced expression group

Synovial sarcoma
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SMARCB1/INI1 and PANX2 (the control probe) in >50% of
cells, and three of those five had a second population of cells
showing two signals for SMARCB1/INI1 and one signal for
the control, suggesting loss of one copy of the 22q telomeric
region.(78) No cases with homozygous deletion of the
SMARCB1/INI1 gene were found.(78)

Reduced group

Synovial sarcoma. Synovial sarcoma, which is classified as a
tumor of uncertain differentiation, has three major histological
subtypes: the monophasic type, biphasic type and poorly dif-
ferentiated type.(79) Genetically, a fusion of the SS18 gene to

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Hematoxylin–eosin histologic (a, c, e) and
SMARCB1/INI1 (b, d, f) immunohistochemical
findings. (a, b) Malignant rhabdoid tumor (2-year-
old male; kidney). No nuclear expression of
SMARCB1/INI1 protein is observed in tumor cells,
whereas infiltrating lymphocytes or vascular
endothelial cells disclose immunoreactivity (b). (c, d)
Schwannomatosis (48-year-old woman; cauda
equina). SMARCB1/INI1 protein expression is focally
reduced with a mixture of nuclear-positive and
nuclear-negative tumor cells, showing mosaic
pattern (d). (e, f) Synovial sarcoma (22-year-old
woman; abdominal wall). The tumor cells showed
reduced expression of SMARCB1/INI1 protein
compared with the positive control, which included
infiltrating lymphocytes and entrapped normal
tissue (f).

Fig. 2. Target genes and pathways implicated in
the tumor suppressor activity of SMARCB1/INI1.

© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Cancer Association.

Cancer Sci | April 2017 | vol. 108 | no. 4 | 550

Review Article
Oncogenic roles of SMARCB1/INI1 and its deficient tumors www.wileyonlinelibrary.com/journal/cas



an SSX family member as the result of a chromosomal translo-
cation, t(X;18), is recognized.(79–81) Kohashi et al.(81) first
identified reduced SMARCB1/INI1 immuno-expression in the
majority of cases of synovial sarcoma (Fig. 1e,f). Kadoch
et al.(82) clarified the mechanism of reduced expression of the
SMARCB1 protein: SS18-SSX integrates into SWI/SNF com-
plex, and wild-type SS18 and SMARCB1 are displaced from
the complex; then SMARCB1 is proteosomally degraded.

Conclusion

SMARCB1/INI1 plays an important role in various interwoven
factors in several pathways (Fig. 2), and different cancers
show different aberrant expression patterns of its protein.
Although the several pathways related to mechanisms of
tumorigenesis and tumor proliferation are intertwined in

complex ways, the clarification of these mechanisms may con-
tribute to therapeutic strategies in SMARCB1/INI1-deficient
tumors. In terms of pathological classification, SMARCB1/
INI1-deficient tumors may be re-classified by their genetic
backgrounds.
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