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Correlation of parametrized image texture features (ITF) analyses conducted in different regions of interest (ROIs) overcomes
limitations and reliably reflects image quality. +e aim of this study is to propose a nonparametrical method and classify the
quality of a magnetic resonance (MR) image that has undergone controlled degradation by using textural features in the image.
Images of 41 patients, 17 women and 24 men, aged between 23 and 56 years were analyzed. T2-weighted sagittal sequences of the
lumbar spine, cervical spine, and knee and T2-weighted coronal sequences of the shoulder and wrist were generated. +e
implementation of parallel imaging with the use of GRAPPA2, GRAPPA3, and GRAPPA4 led to a substantial reduction in the
scanning time but also degraded image quality. +e number of degraded image textural features was correlated with the scanning
time. Longer scan times correlated with markedly higher ITF image persistence in comparison with images computed with
reduced scan times. Higher ITF preservation was observed in images of bones in the spine and femur as compared to images of soft
tissues, i.e., tendons and muscles. Finally, a nonparametrized image quality assessment based on an analysis of the ITF, computed
for different tissues, correlating with the changes in acquisition time of theMR images, was successfully developed.+e correlation
between acquisition time and the number of reproducible features present in an MR image was found to yield the necessary
assumptions to calculate the quality index.

1. Introduction

Magnetic resonance imaging (MRI) is the most universal
medical imaging modality applicable to visualize soft tissues
and bones. Although it has certain limitations, magnetic
resonance (MR) yields a high degree of freedom to the image
plane and sequence choice. +is makes MR a widely used
radiological modality in clinical radiology [1, 2]. However,
MR image acquisition is a complex process. To obtain anMR
image, the k-space has to be built in the phase-encoding
direction, which collects the information on the position and
amount of proton molecules present in the examined tissue.
Not only is this step during image collection time consuming

for medical staff and taxing to the patients, but it also
generates large costs for healthcare providers [3]. Moreover,
long periods of data collection are a possible source of
motion artifacts associated with a decrease in the image
quality [4]. +is results in numerous call-back examinations
and further reduces patient comfort and economic efficiency
of the examination. +erefore, techniques that are able to
reduce the scanning time are in high demand. One such
technique is the parallel imaging technique, which relies on
k-space undersampling realized by omitting parts of the
lines in the phase-coding direction. As a result of the reduced
amount of input data, reconstructed tissue images degrade
to a lower quality [5]. Siemens has developed software with
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functionality, known as the I PAT, which provides accelerated
image acquisition with a reduction in the number of echoes.
+is technique is known by its commercial name-Generalized
Autocalibrating Partially Parallel Acquisitions (GRAPPA),
and is available for most imaging sequences [6–8]. GRAPPA1
can prevent undersampling. In GRAPPA2, half of the echoes
are acquired with a 40% reduction in the signal. For
GRAPPA3 and GRAPPA4, the time required to collate the
image is reduced by 60 and 80%, in comparison with the
original acquisition mode, respectively, despite a significant
reduction in the acquired signal [9]. Existingmeasurements of
image quality implemented in the system by vendors, such as
the signal-to-noise ratio (SNR) and peak SNR (p-SNR), often
do not reflect what medical professionals perceive from the
image. Distortions of the imaged tissue, which affect the
measurement, are a recognized factor of SNR measurement
incompatibility [10–12]. +ese problems require a novel
quality assessment technique for theMR image.+erefore, we
focus on the concept of a technique for nonparametrized
image quality assessment using an analysis of image features
based on image textures, as it was performed for CTdata [13].
Image texturing is one of the most important techniques used
for object feature interpretation of an image. Image textures
express complex visual patterns composed of entities, or
subpatterns, which have a characteristic brightness, color, and
size [14, 15]. Texture identification in an image can be
regarded as grouping similar objects in an image to distribute
the grey-level values among the neighboring pixels (for first-
order textures) and in a given region of interest (for second-
order textures) [16]. Textural features are used to parametrize
the spatial patterns of an image responsible for its visual
appearance as brightness coarseness, smoothness, and reg-
ularity, where most of these appearances are perceived by
human senses [17]. Since the implementation of the MR
analysis grey-level co-occurrence matrix by Haralick et al.
[18], magnetic resonance image textures have been used for
the analysis of medical imaging in certain cases, such as
cerebral tissue [19–23], liver [24], breast [19], bone marrow
[25], muscle [26], fat tissue [27], bone, the prostate for au-
tomated cancer detection [28], and colorectal cancer moni-
toring [29, 30]. +e quality of diffusion tensor imaging (DTI)
was also parametrized [31, 32]. Although these studies have
outlined the possible implementation of image textural fea-
tures (ITF) in clinical practice, as well as summarizing their
anticipated usefulness in the analysis of different tissues, the
application of these techniques to image quality measure-
ments has not yet been proposed.

+is study hypothesizes that image textures, which de-
scribe the properties of a visualized object if correlated with
degraded images in a controlled manner and quantified, may
precisely reflect image quality, which is a novel approach
among MR image quality assessment methods. +e pro-
posed technique is accurate and repeatable, with the po-
tential to compute the nonparametric MR image quality
measures.

+e aim of this study was to classify, in a nonparametric
manner, the image quality of different tissues scanned under
different conditions, with iterative degradation of the image
quality with time.

2. Materials and Methods

+e study protocol was designed according to the guidelines
of the Declaration of Helsinki and the Good Clinical Practice
Declaration Statement. Special care was taken regarding
personal data safety, where all images were anonymized
before processing. Written acceptance to conduct this study
was obtained from the Ethics Committee of Jagiellonian
University (no.1072.6120.15.2017 dated: 20.06.2017). Data
for 41 patients, 17 women and 24 men, between the ages of
23 and 56 years old, were utilized in the study. +e criteria
for negative selection were image artifacts that influenced
image analysis. T2-weighted sagittal sequences of the lumbar
spine and T2-weighted coronal sequences of the shoulder
were analyzed (Figure 1). To routinely conduct MR studies
of the spine and shoulder, shortened sequences, made using
parallel imaging, were implemented with GRAPPA2,
GRAPPA3, and GRAPPA4, with an average of 4 minutes
added to the initial exam. For this study, we selected images
of the tissues that were free of pathologies. A selection was
made to meet stable (repetitive) conditions for texture
feature analysis. Intrapatient variability strongly influenced
texture parameter values by extending their range. +us, a
lack of correlation between the original and acquisition time
(AT), reduced texture features, would have led to unclear
conclusions, which can be caused by significant modifica-
tions of the image textures or large variability in evaluated
feature values.

+e MR DTI data were acquired from a 1.5 system
Siemens Essenza (Erlangen, Germany) equipped with 12
dedicated table coils and 8 channel shoulder coils. With a
gradient strength of 30mT/m and a slew rate of 100 T/m/s,
T2-weighted images were acquired. For the lumbar spine
images, the following parameters were used: an applied echo
time of 94ms and a repetition time of 6,500ms, with phase
oversampling of 20, a distance factor of 30, and a flip angle of
150°. +e scan geometry was as follows: an acquisition
matrix of 143× 256 and a slice thickness of 3mm. A voxel of
nonisotropic resolution at 0.8× 0.8× 3mm was acquired.

For the shoulder coronal images, the following param-
eters were selected: an applied echo time of 101ms and a
repetition time of 3,540ms, with a flip angle of 150°, a phase
oversampling of 100, and a distance factor of 30. +e scan
geometry was as follows: an acquisition matrix of 256× 320
and a slice thickness of 3mm. A voxel of nonisotropic
resolution at 0.8× 0.6× 3mm was acquired.

For the knee sagittal images, the following parameters
were selected: an applied echo time of 91ms and a repetition
time of 4,940ms, with a flip angle of 150°, a phase over-
sampling of 63, and a distance factor of 30. +e scan ge-
ometry was as follows: an acquisition matrix of 224× 320
and a slice thickness of 3mm. A voxel of nonisotropic
resolution at 0.7× 0.5× 3mm was acquired.

+e images were sent to a dedicated PACS (Syngo
Siemens). After anonymization, the images were post-
processed with dedicated indigenous software, i.e., MaZda
5.0–2012 (developed at the Technical University of Lodz,
Institute of Electronics [33]), with the use of texture feature
maps in the selected ROIs.
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On three consecutive layers of each sequence (PAT and
non-PAT), the ROI was visualized and analyzed for every
patient (Figure 2). +e average ROI sizes varied from 350
(tendon) to 1,150 (bone) pixels. Such ROI sizes are suffi-
ciently large to represent the statistical textural features. +e
following 257 texture parameters were estimated and av-
eraged for the ROI defined on three selected layers:

(i) Eleven grey-level co-occurrence matrix (GLCM)
parameters [18]: such matrices were computed in
four directions, i.e., vertical, horizontal, 45°, and
135°. In addition, five distances between the pixels,
varying from 1 to 5, respectively, were considered.
In total, 11× 4× 5� 220 parameters were calculated.

(ii) Five run-length matrix (RLM) parameters [18]: as for
the co-occurrence matrices, the calculations included
four directions, yielding 20 parameters. +e run-
length matrix elements, R [i, j], represent the number
of pixel set occurrences of length j and brightness i.

(iii) Five gradient matrix parameters: the image gradient
matrix was initially determined with an appropriate
filter using a 3× 3 mask [18].

(iv) Five parameters defined for the first-order autore-
gressive model (AR): this statistical model is based
on the assumption that the brightness of a given
image pixel depends on the weighted sum of the
neighboring pixels [34].

GRAPPA1 GRAPPA2 GRAPPA3 GRAPPA4

(a)

GRAPPA1 GRAPPA2 GRAPPA3 GRAPPA4

(b)

GRAPPA1 GRAPPA2 GRAPPA3 GRAPPA4

(c)

Figure 1: Changes in quality dependent on the GRAPPA method used. Hence, there were different acquisition times, for example, with
(a) images of the shoulder, (b) images of the knee, and (c) images of the spine.
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(v) Sixteen parameters calculated based on the wavelet
transformation (HW): these data represent the en-
ergy of the ROI subimages in the wavelet coefficient
space.+ewavelet transformwas calculated using the
Haar basis functions for four image scales, resulting
in four subimages for each scale, which yielded 16
parameters in total [35].

(vi) Nine first-order features (FOF) were histogram-
based (mean, variance, skewness, kurtosis, and
percentiles: 1, 10, 50, 90, and 99%, respectively).

Feature values of the texture maps were calculated for
each patient. +e results of the computations were further
correlated with the reference images, with GRAPPA1 (no
PAT images) and between the GRAPPA2–4 images, which
were made with different parallel imaging algorithms as-
sociated with various reductions in the imaging time.

+e following structures were selected and studied:
bones of the spine (n� 8), extensor muscles of the back
(n� 8), femur (n� 7), humerus epiphysis (n� 9), humerus
metaphysis (n� 8), humerus shaft (n� 9), supraspinatus
muscle (n� 9), and supraspinatus tendon (n� 9).

Next, following the methodology described by Midya
et al. [36], Lin’s concordance correlation coefficient (ρc) was
estimated between the reference textural features (obtained
for reference images) and those estimated for the PAT
images. In each analysis, sets of textural features (obtained
for all patients, for which the given structures were visu-
alized) were considered. Equation (1) defines ρc:

ρc �
2ρσrσPAT

σ2r + σ2PAT + μr − μPAT( 
2, (1)

where μ and σ2 are the means and standard deviations of the
reference and PAT texture feature vectors, respectively, and
ρ is a correlation coefficient between these two vectors.
Features with ρc > 0.9 were considered to be reproducible,
i.e., they preserve the properties of reference textures ac-
quired for the PAT images. Furthermore, features with
ρc > 0.8 were also recorded.

Finally, Lin’s correlation coefficients for textural features
averaged for all patients were estimated between the feature
vector, which contains the values obtained for the reference,
and three PAT images, as well as for the vector that consists
of the normalized acquisition times. Features with ρc > 0.9
had a significant correlation with AT and can thus be used
for image quality assessments.

3. Results

Based on Table 1, the largest number of textural features,
which have a significant correlation between the reference and
GRAPPA images, were obtained for the bones of the spine.
For other structures, we observed a significant drop in these
features. However, the number of highly correlated features
was slightly higher for the femur. We note that the distri-
bution of such features was not equal for all GRAPPA modes
but the highest number of significant correlations was ob-
served for AT2. For the humerus epiphysis and supraspinatus
tendon, the number of reproducible textural features was
insignificant. Highly correlated texture feature types are listed
in the last column of Table 1 (best performing textural fea-
tures). In nearly all cases, the GLCM features were charac-
terized by high ρc (sum average, contrast). Another place in
the set of highly correlated features was shared among those
obtained from the RMmatrix (short-run emphasis), the Haar
wavelet parameters, and the first-order features (percentiles).

Different numbers of textural features that correlated
with the acquisition times were obtained for the various
(analyzed) structures. Feature values were estimated for four
acquisition times, which were used as the relative ratio values
(Figure 3). Figure 3 presents the relative time computed by
dividing the time required for examination with the use of
GRAPPA1–4 by the time required for GRAPPA1 exami-
nation. We note that time of these examinations was dif-
ferent due to different body masses of the patients but was
dependent on the patient body mass and selected sequence.

Next, the values for each examination were averaged for
all ROIs and patients. +e average time for the femur and

(a) (b) (c)

Figure 2: Analyzed ROI samples for different AT values for (a) humerus epiphysis (red), supraspinatus muscle (blue), and supraspinatus
tendon (green), (b) femur epiphysis (pink), and (c) bone of the spine (violet) and muscles of the spine (yellow).
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supraspinatus tendon was quite high while the average for
the remaining structures was low, i.e., for the bones of the
spine and humerus epiphysis.

4. Discussion

+enumber of reproducible textural features depends on the
signal-to-noise ratio (SNR) value of the particular structure.
+is parameter is one of the image quality measures, which
can be estimated with the following equation:

SNR �
μROI
σ2noise

, (2)

where μROI is the mean value intensity calculated for the ROI
of the given structure and σ2noise is the standard deviation of
the noise, which was estimated as the standard deviation of
the pixel intensities located in the image region with no

signal (i.e., the top-left or right rectangle, with a size of
100× 200 pixels, were selected for the estimation, depending
on the image type). Table 2 lists the average SNRs for all
analyzed patients and estimates for the different structures.
Based on Tables 1 and 2, the number of reproducible textural
features correlates with the SNR. +e reproducible textural
features are high for larger SNRs (spine bones and femur)
and low for structures that have a low SNR (i.e., tendons and
muscles). +is can be explained by the fact that a low SNR
indicates a dominance of noise in the ROI and, thus, its
texture characterizes the noise properties rather than the
tissue itself. +erefore, there are no texture parameter
correlations among the different PAT images as the texture
modification caused by a shorter AT does not represent the
changes in the tissue structure but reflects the varied noise
distribution (Figure 4).

For structures with a high SNR, the texture describes the
structure of the visualized tissue. Even for a shorter TA,
certain textural features presented a good reproduction of
the tissue components. We suggest that a large number of
the reproducible textural features obtained by the ROI for
the spine bone are actually caused by the high homogeneity
of these textural features (i.e., the features are smoother and
more homogeneous than the texture corresponding to the
femur). +us, the changes in the AT have a weaker influence
on the spine bone texture when compared to rougher tex-
tures that characterize other analyzed tissues.

+us far, other methods have been implemented to
achieve the goal of this study. An extensively used method is
the SNR, which is the quotient of the mean signal intensity
distributed in the imaged object to the standard deviation of
the noise, as it accounts for the background noise [11, 37].
Although popular, this method has several serious limita-
tions. +e manner in which it computes the quotient, i.e., by
comparing the object and background noise with the object
signal, renders it as an imprecise technique to estimate the
noise of an examined object. Moreover, the SNR has other
serious drawbacks, such as insensitivity to tissue-related
artifacts [38]. +erefore, this method can underestimate
patient-related artifacts provoked by magnetic field in-
terference and gradient activity in the human tissue. Medical
image readers also perceive the lack of accurately measured
distortions caused by tissue-specific image degradation

Table 1: Number of correlated textures for the imaging sequences obtained with different acquisition times.

GRAPPA1
vs.

GRAPPA2

GRAPPA1
vs.

GRAPPA3

GRAPPA1
vs.

GRAPPA4

Feature values/acquisition
times (F/A)

Best performing
textural features

Correlation coefficient/tissue >0.8 >0.9 >0.8 >0.9 >0.8 >0.9 >0.9
Bones of the spine (8 patients) 212 166 185 141 60 49 9 GLCM, RLM, Haar wavelets
Extensor muscles (8 patients) 1 0 1 0 0 0 71 GLCM, FOF
Femur (7 patients) 14 8 9 5 6 4 114 GLCM, RLM, Haar wavelets
Humerus shaft (9 patients) 1 1 9 5 0 0 39 FOF, GLCM
Humerus epiphysis (9 patients) 0 0 6 1 0 0 3 FOF, GLCM
Humerus metaphysis (9 patients) 0 0 10 2 0 0 18 RLM, Haar wavelets
Supraspinatus muscle (9 patients) 0 0 12 0 1 0 42 GLCM, Haar wavelets
Supraspinatus tendon (9 patients) 0 0 3 0 0 0 108 GLCM
Results are listed for the different scanned tissues. F/A indicates the features acquired and the correlation with different acquisition times.
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Figure 3: Correlations of different obtained acquisition times with
various PATs (GRAPPA1–4). +e y-axis represents the relative
time computed by dividing the time required for examination with
the use of GRAPPA1–4 by the time required for GRAPPA1
examination.
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[38–42]. +e fact that the SNR does not reflect differences in
the perceptual image quality is a currently topic of debate
[43–45]. +e approach in this study circumvents these
problems as image quality estimation is based on texture
features in the given ROI, which does not require com-
parison with the signal bias in the reference points. Full

quality assessment reference models are frequently used by
the medical community, especially imaging professionals,
such as radiologists. However, significant error plagues these
perceptual techniques as a different medical personnel may
observe different psychosomatic features. Furthermore,
personnel may have different interpretation habits and may

Table 2: Mean values and standard deviations of the SNR estimated for different structures.

ROI
GRAPPA1 SNR

Mean Standard deviation
Tendon 14.47 11.95
Humerus 172.48 143.70
Muscle (shoulder) 10.31 1.59
Vertebra 131.97 161.83
Muscles (spine) 51.29 48.60

GRAPPA1 GRAPPA2 GRAPPA3 GRAPPA4

Figure 4: Texture feature maps (GLCM) of theMR images of the kneemade with gradually reduced acquisition times (GRAPPA1–4). Image
representation is shown on consecutive columns (left to right). +e images show a gradual fading of the anatomical object features with a
decreasing acquisition time. Note the degradation of the bone outline, which is a structure that is the most persistent on the image as
indicated by arrows. +e muscle tissue is indicated with an asterisk (upper row) and a small arrow (bottom row). +e following texture
features are present: GLCM entropy, histogram max, and GLCM-inverse difference moment.
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perform these observations in different environments (i.e.,
varying light conditions, display angles, and display dis-
tances) [43, 46]. +erefore, we are unable to compare the
results of such interpretations.

Moreover, the SNR does not fully reflect the image
quality in our study. First, the SNR value varies for different
tissues in good quality images (GRAPPA 1). +is is because
the SNR is signal dependent (i.e., as a ratio of the ROI mean
to the background standard deviation). For example, the
SNR is high for the bone region (e.g., the humerus and
vertebra) while it is low for muscles (see Table 2). +e SNR is
also characterized by high between-patient variability, as
listed in Table 2, which lists the SNR standard deviations
averaged for all patients. Only the SNR values for muscles
(spine) are closely distributed around the mean value. Fi-
nally, reduction in the SNR for shorter acquisition times
does not correspond to a loss of image quality. +is can
occur when mean SNR values are analyzed for different
tissues in certain images in example supraspinatus-tendon
(ST) and humerus-bone (HB) cases. For GRAPPA2 and
GRAPPA3, significant differences between the SNR values
were found due to the previously mentioned tissues. +e
mean SNR values recorded for the GRAPPA2 image was
10.59 and 131 for the ST and HB, respectively, and for the
GRAPPA3 image, the SNR was 8 and 113.47 for the ST and
HB, respectively.

To our knowledge, there are very few previous studies
that have attempted to introduce nonparametric models for
the successful quality estimation of MR images.+emajority
of previous studies focus on the complexity of quality
analysis in different postprocessing modalities used in
computed tomography (CT) associated with the use of
postprocessing algorithms, such as SAFIRE, ADMIRE
(Siemens), and ASiR (GE) [13, 36, 47, 48]. Woodard and
Carley-Spencer [49] evaluated nonparametric measures of
MR image quality, implementing an analysis of variance
(ANOVA) to demonstrate the variation in different quality
grades.+is study also has several limitations concerning the
restrictions of the ANOVA computational model, which
affects quality measurement discrimination. +erefore, the
proposition of a quality index computation based on the
method of Woodard [49] is disputable.

Mortamet et al. [38] proposed another approach, ap-
plying the concept of a comparison background of the
imaged tissue (scanned air area) and the tissue image itself.
+is approach is based on the assumption that the majority
of the artifacts that appear in the imaged object propagate to
the background, which inhibits a comparison. +is tech-
nique is different from the current technique in terms of the
features analysis of the selected object marked as an ROI.
However, noise distribution estimation in Mortamet et al.
[38] is similar to this study, which provided the assumption
to propose a quality index.

Holli et al. [17] proposed an approach similar to the
approach of this study, implementing first- and second-
order statistics using MaZda 4.5 [33] to analyze the changes
in the MR images of brain tissue of a subject suffering from
mild head trauma. In contrast to this study, the primary
objective of Holli et al. [17] was to present a plausible

practical use for the ITF, but he was not concerned with
image quality discrimination.

A study from Osadebey et al. [50] is the most similar one
to our approach. Osadebey et al. [50] demonstrated a possible
application of texture analysis to test local contrast and en-
tropy as features of the image. Based on the MR images of
brain tissue, Osadebey et al. [50] was able to propose a quality
index. +e use of the ITF combined with the demand to
evaluate nonparametric measurements of MR image quality
inspired this study to propose the current approach.

In this study, although we found a correlation between
the ITF and acquisition times for different GRAPPA (1–4),
several inconsistencies occurred in the results as improved
correlations between the ITF and shorter scan times was
found for GRAPPA3, which resulted in a reduced signal
compared with GRAPPA2, where there was a significant
improvement in signal preservation.

+is inconsistency in the results can be explained by the
impact of systematic errors and concomitant B-matrix
uniformity that are present in the MR acquisitions. A recent
investigation of the magnetic field’s influence showed the
existence and importance of systematic errors related to the
use of hardware and the implementation of specific se-
quences [51–53]. +ere was a presence of concomitant field
and eddy currents in the nonunity of the signal distribution
generated by the gradient and RF coils, which resulted in
B-matrix inhomogeneity [54]. +ese factors are, in part,
responsible for the observed incompatibilities in this study,
especially due to the use of sensitive echo-planar imaging
(EPI) sequences.

+e influence that the hardware (MRI scanner) has on
image quality is important and cannot be neglected in the
reconstruction algorithm. Although both cases yielded
different signal losses, GRAPPA2 and GRAPPA3 produced a
similar SNR quotient. Here, the execution of the re-
construction algorithm in both cases produces substantial
uncontrolled noise [55]. In such cases, discriminating the
features of the imaged object in the noisy time series is
difficult, which was generally described by He [56] and
specifically reviewed for CT images by Bielecka and Piór-
kowski [57]. +e use of a larger series of images should
overcome this issue, which will enable improved statistical
discrimination with the possible evaluation of hardware-
dependent differences. +e novelty of this study is the
evaluation of a comparative, multiparametric analysis for
different ITFs computed at different ROIs derived from the
various image qualities, which provided the assumption
required to propose a numerical quality index. +e major
limitation of our study is the limited number of study
samples. +e analysis of different tissues using a larger
number of samples is necessary to provide comprehensive
and comparative results for different tissues and an evalu-
ation of the reduction in time while maintaining image
quality.

5. Conclusions

In this study, we proposed an approach to estimate image
quality based on image texture analysis. As demonstrated in
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numerous previous studies, image texture correctly de-
scribes the properties of visualized organs and tissues.With a
reduction in acquisition time, the values of certain texture
features, estimated for the analyzed ROIs, changed and were
no longer good descriptors of the analyzed tissues. +is was
caused by degraded image quality. A decreasing number of
texture features indicates that the image of the visualized
tissue was modified and does not resemble the original
image. A reduction in the AT caused this effect, which is a
known factor that influences image quality. +us, we con-
clude that the number of texture features in a degraded
image, which has a significant correlation with texture
features in the original image, is an indicator of image
quality. +is, however, is a rather qualitative measure, and
we are unable to estimate the number of correlating texture
features that will yield good image quality. We can only state
that larger numbers of such features improve the quality.
However, we have demonstrated that the SNR does not fully
reflect the image quality.

A benefit of our approach is that image quality as-
sessment is based on the texture properties of the ex-
amined tissue. +e texture describes a structure of the
visualized object, and it is rather independent on the
signal. +erefore, we assumed that the proposed approach
is more objective because it can express object “fading”
measured based on the decreased correlation of tissue
textural parameters. +e SNR is strongly dependent on the
signal that in turn depends on acquisition protocol and
scanner settings (thus, SNR is also user dependent). +e
proposed approach is less dependent on signal changes in
different ROIs because by applying texture parameters, it
considers variations in visualized object structure with
degrading image quality.

Moreover, the SNR strongly depends on the signal
contrary to applied texture analysis (i.e., instead texture
represents tissue structure and not its intensity distribution).

+e average values of the textural features correlate
differently with the various acquisition times for different
tissue samples. +erefore, nonparametric estimation of
quality is possible for the ROI in the image but not in the
entire scene or MR image. We consider quality assessments
of pathological tissue images as an important issue that will
be addressed in our future studies.
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[57] M. Bielecka and A. Piórkowski, “Automatized fuzzy evalua-
tion of CT scan heart slices for creating 3D/4D heart model,”
Applied Soft Computing, vol. 30, pp. 179–189, 2015.

10 BioMed Research International


