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Review
In the past decades, China’s computational drug design
and discovery research has experienced fast development
through various novel methodologies. Application of
these methods spans a wide range, from drug target
identification to hit discovery and lead optimization. In
this review, we firstly provide an overview of China’s
status in this field and briefly analyze the possible reasons
for this rapid advancement. The methodology develop-
ment is then outlined. For each selected method, a short
background precedes an assessment of the method with
respect to the needs of drug discovery, and, in particular,
work from China is highlighted. Furthermore, several
successful applications of these methods are illustrated.
Finally, we conclude with a discussion of current major
challenges and future directions of the field.

Drug discovery in China
Since its emergence at the end of the 1970s, computational
drug discovery and design (CDDD) has experienced a rapid
increase in development, to which China has made signifi-
cant contributions. With consistent financial support from
the government and tremendous research effort, the over-
all research level of China in this field continues to ad-
vance. This trend can be partially revealed by a brief
analysis of the research output over the past few years.
Taking the structure-based drug design (SBDD) as an
example, the publication of scientific papers from China
during 2006 to 2010 ranked fifth (citation ranking is sev-
enth), only behind the USA, the UK, Germany, France, and
Italy. Among Asian countries, China ranked the top in both
the number of publications and citations [1]. Currently,
more than 80 universities and research institutions in
China have established drug design research departments
or centers and over 100 domestic research groups are
engaged in drug design. The main reason for the rapid
advancement of research should be ascribed to the major
breakthrough in methodology and software development.
0165-6147/$ – see front matter

� 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tips.2013.08.004

Corresponding author: Jiang, H. (hljiang@mail.shcnc.ac.cn).
* These authors contributed equally to this work.
Currently, many technologies have been developed to
boost the efficiency of the drug discovery process. Research-
ers in China, following the recent trend of scientific
advances, have brought us a wealth of innovations, espe-
cially in the development of CDDD approaches. In this
review, we first summarize leading computational techni-
ques (Table 1) that include target prediction and drug
repositioning approaches, docking and scoring algorithms,
virtual screening (VS) and lead optimization techniques, as
well as new absorption, distribution, metabolism, excre-
tion, and toxicity (ADME/T) related frameworks, with a
focus on how China has helped to drive new efforts in this
field. In the second section, we show how these approaches
have been successfully applied in drug discovery. In the
final section, we discuss up-to-date research as the final
symphony – a successful case of binding kinetics simula-
tion, which is a paradigm of drug target binding kinetics
calculation and is expected to inspire future research.

Computational strategies and techniques in drug
design
Drug target prediction

Identifying targets is the first key step in the drug discov-
ery pipeline. As of 2006, there were only 324 identified
molecular targets for FDA-approved drugs [2]. Although
this total figure is under debate, it is significantly lower
than the number of proteins unveiled by the completion of
human and numerous pathogen genomes, of which many
can be potentially druggable [3]. Moreover, many drugs
elicit their therapeutic activities by modulating multiple
targets, but the multi-target interactions are either largely
unknown or insufficiently understood in most cases. The
use of computational tools to predict protein targets of
small molecules has been gaining importance in recent
years. One of the computational approaches demonstrated
to be efficient and cost effective in target identification is
‘reverse’ docking [4–6]. Molecular docking is a method to
predict the predominant binding mode(s) of a ligand with a
protein of known 3D structure, which is routinely used in
structure-based drug discovery for hit identification (VS)
and lead optimization. More details about the method are
provided in the section ‘Protein–ligand interaction’. Re-
verse docking, opposite to the conventional process of
docking application, for example, in structure-based VS,
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Table 1. Summary of the highlighted computational techniques for drug design and discovery

Name Method Features Refs

Drug target

prediction

TarFisDock Reverse docking � An associated large database for potential drug targets (PDTD)

� User-friendly web sever

[6,8]

PharmMapper Pharmacophore

mapping

� Auto-generation of 3D structure for small molecules

� User-friendly web sever

� Fast (fit for batch processing)

[12]

miRTarCLIP Sequence analysis � miRNA target prediction using CLIP sequencing data

� User-friendly web sever

[20]

Drug

repositioning

STITCH Search tool for

interactions of

chemicals

� Explore known and predict interactions of chemicals and proteins

� User-friendly web sever

� Visual presentation of results in network

[29,30]

Drug repositioning

by Li et al.

Cross-docking � Large-scale docking to predict novel drug–target interactions [31]

SEA Ligand-based

similarity

� Compare targets by the similarity of the ligands that bind to them

� User-friendly web sever

� 3D structure of drug molecule is not required

[32,33]

NBI, EWNBI,

and NWNBI

Network-based

inference

� Interaction of novel protein or chemical can be predicted

� 3D structure of drug molecule is not required

[34,35]

Protein–ligand

interaction

GAsDock and

MOSFOM

Docking � Fast (time is in linear scale with the number of the rotatable

bonds of ligand)

[39,41]

Induced fit

docking by

Koska et al.

Flexible docking � CHARMm-based docking/refinement

� Protein flexibility can be considered

� Computationally intensive

[42]

Induced fit

docking by

Sherman et al.

Flexible docking � Iteration of rigid docking and protein structure prediction

� Protein flexibility can be considered

[43]

IPMF Knowledge-based

scoring function

� ‘Enriched’ knowledge base by incorporating protein–ligand

binding affinity data

� Improved accuracy for protein–ligand binding affinity prediction

[45]

Virtual screening

and lead

optimization

Pocket v.2 Structure-based

pharmacophore

modeling

� Derive pharmacophore models based on a given receptor or

complex structure

� Insensitive to minor conformational changes of protein upon

binding of different ligands

[50]

SHAFTS 3D similarity

calculation

� Fit for large-scale virtual screening

� Single or multiple bioactive compounds as searching ‘templates’

� User-friendly web sever

[52,80]

LigBuilder De novo drug

design

� Detect and score potential binding sites of a protein

� Build ligand molecule according to receptor-based pharmacophore

� Analyze synthesis accessibility of designed molecule

[53]

LD1.0 Target-focused

library construction

� Comprehensive consideration of binding affinity, drug-likeness,

and ADME/T properties

[54]

AutoT&T De novo drug design � Fast (conformation searching is not required)

� Fragment database is not required

� Fit for fragment-based drug design

[55]

iScreen Web service for

TCM-related design

� Perform virtual screening and de novo drug design online

� User-friendly web sever

[56,57]

ADME/T

properties

prediction

SOMEViz Web service for

SOM prediction

� Predict reaction-specific CYP450-mediated SOMs

� User-friendly web server

[63,64]

RS-WebPredictor Web service for

SOM prediction

� Predict isozyme-specific CYP450-mediated SOMs

� User-friendly web sever

� 3D structure of ligand is not required

� Fast

[65]

hERG prediction

by Wang et al.

Ligand-based

SAR analysis

� Structural patterns favorable or unfavorable for hERG

potassium channel blockage are highlighted

� 3D structure of ligand is not required

[69]

hERG prediction

by Di Martino et al.

Docking protocol � Explain the structure–activity relationship for congeneric chemicals [70]

PKKB Web service for

ADME/T property

searching

� High quality ADME/T data for drug molecules [72]

AdmetSAR Web service for

ADME/T property

searching

� A user-friendly web server

� Various ADME/T-related databases

� Predefined SAR models allowing users to predict for chemicals

not in database

[73]

MetaADEDB Online web service

for ADE property

searching

� A user-friendly web server

� Predefined SAR models allowing users to predict for chemicals

not in database

[74,75]
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Figure 1. Schematic diagrams to compare (A) conventional docking and (B) reverse docking in ‘hit’ identification. Although conventional docking is used to screen libraries

of compounds against one potential drug target, reverse docking is used to dock a given compound into the predefined binding sites of a pool of drug targets.
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is to dock a given small molecule into the predefined
binding sites of a pool of protein structures. A comparison
of these two paradigms is shown in Figure 1.

The identified protein ‘hit’ can then serve as a potential
candidate target for experimental validation. Li et al. pre-
sented such a computational tool named ‘Target Fishing
Dock’ (TarFisDock) [6], which consists of a front-end web
interface and a back-end using DOCK [7] for reverse dock-
ing. A feature of this work is a companion potential drug
target database (PDTD) containing 1207 entries and 841
potential drug targets [8]. The repository of drug targets
can be categorized into 14 types according to their thera-
peutic areas, constituting a comprehensive and valuable
source for identifying potential targets of small molecules.
By searching through PDTD, TarFisDock can not only
predict potential binding targets for a given small molecule
but also provide valuable information about their related
diseases, biological functions, and regulating (signaling)
pathways. So far, TarFisDock has been used for evaluating
over 5000 small molecules by more than 2497 users from
over 30 countries and regions. Some of the predicted
results have been verified by bioassay and crystallographic
studies [9–11].

Despite increased efficiency and convenience, the dock-
ing-based methods still take a considerable amount of
computational resources as a single job may involve exe-
cuting hundreds or even thousands of molecular docking
runs. Moreover, they heavily rely on the available 3D
structures of the targets and a priori knowledge about
the ligand binding sites. As a result, these methods are
not appropriate for assessing a large batch of small mole-
cules. Pharmacophore modeling is another frequently used
technique in drug hit discovery, which usually requires less
time to screen a ligand than docking. It measures to what
extent a query molecule possesses the spatial arrangement
of features essential for protein–ligand interaction. Similar
to molecular docking, this approach can also be used ‘in
reverse’ to screen a given small molecule against a collec-
tion of predefined pharmacophores representing different
targets and binding sites. Recently, Liu et al. reported a
free web server that hosts a large repertoire of pharmaco-
phores essential for interaction modes between ligand
probe and potential targets, entitled PharmMapper [12].
A total of 7302 pharmacophores were constructed by using
a protein structure-based modeling approach [13]. Given
the query of a small molecule, PharmMapper automatical-
ly starts the procedure of reverse mapping against the
deposited models and outputs the top ranked hits. Owing
to its high throughput ability, PharmMapper can be used
for large-scale target screening to profile the regulation
genomic network.

miRNAs are small non-coding RNA molecules capable of
suppressing protein synthesis and regulating genes in
many organisms [14]. This ability makes miRNA a prom-
ising technology for future therapeutic development be-
cause dysregulation of miRNA function and the changes in
miRNA expression level are related to many disorders,
including cancers, metabolic and neurodegenerative
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diseases. Therefore, it is of particular interest to reliably
predict potential miRNA targets which might be involved
in these diseases [15,16]. In mammals, miRNAs associate
with members of the Argonaute (Ago) protein family, and
function in multi-protein complexes to direct mRNA cleav-
age or repress the translation of complementary RNAs
[17]. However, molecular details about the interactions
between miRNAs and their target RNAs associating with
Ago are lacking. Wang et al. analyzed RNA-bound and
RNA-free Ago forms by performing molecular docking,
molecular dynamics simulation, and binding free energy
calculation [18]. Pang et al. investigated the role of miR-
NAs in choriocarcinoma, through the combined usage of in
silico miRNA target prediction, luciferase functional
assays, and western blotting analysis. Their study demon-
strated that miR-34a is a tumor suppressive miRNA in
choriocarcinoma cells that may be used as a therapeutic
target for treating choriocarcinoma [19]. Recently, some
computational approaches have been developed for the
prediction of miRNA targets. Chou et al. reported a sys-
tematic approach to identify miRNA–target interactions
(MTIs) by mining miRNA–target sites from crosslinking
and immunoprecipitation (CLIP) and photoactivatable ri-
bonucleoside-enhanced CLIP (PAR-CLIP) sequencing da-
ta, namely miRTarCLIP [20]. The workflow was integrated
into a web-based browser to provide a user-friendly inter-
face and detailed annotations of MTIs.

Drug repositioning

In addition to finding novel drug targets, another practice
to boost the productivity of the current drug design process
is to find new uses for an existing drug [21]. This concept is
also known as drug repositioning (also known as drug
repurposing or reprofiling) and has gained considerable
attention recently [22,23]. Because the starting point in
drug repositioning is usually approved drugs with known
bioavailability and safety profiles, this approach can sig-
nificantly reduce the failure risks associated with drug
development and potentially facilitate the repositioned
compounds to enter clinical phases more rapidly and less
costly than new chemical entities [24]. Given that most of
the repositioned drugs currently in the market are discov-
ered by chance [25], it is of great interest to develop
computational methods to rationalize and facilitate the
process. The knowledge about interactions between pro-
teins and small molecules is essential for developing drug
repositioning tools. There are some databases that focus
on the biological actions of drugs, for example, DrugBank
[26], TTD [27], SuperTarget [28], and MATADOR [28].
Recently, Kuhn et al. reported on STITCH (search tool for
interactions of chemicals), which integrates information
about interactions from metabolic pathways, crystal
structures, binding experiments, and drug–target rela-
tionships [29]. In the latest version, the database contains
over 300 000 chemicals and 2.6 million proteins from 1133
organisms [30]. On the basis of these resources, many
computational models have been developed to predict
characteristic interactions between the existing drugs
and novel molecular targets through target across assess-
ment or ligand–target pathway analysis for prospective
repositioning.
552
Li et al. performed a large-scale molecular docking of
4621 small molecule drugs from DrugBank against 252
human protein drug targets, in order to map the drug–
target interaction space and find novel interactions. The
method emphasizes removing false positive predictions
using annotated ‘known’ interactions, consensus scoring,
and ranking thresholds. The utility of the method was
verified by predicting novel drug–target interactions.
Through a literature search, 31 of the top ranked interac-
tions found corresponding experimental evidence. The
method was also used to identify the cancer drug nilotinib
as a potent inhibitor of MAPK14, which is a target in
inflammatory diseases [31].

On the basis of the central premise of medicinal chem-
istry that ‘structurally similar molecules have similar
biological activity’, potential drug targets can be associated
with small molecules or known pharmacological properties
through chemical similarities. Shoichet and colleagues
developed a statistics-based chemoinformatics method
named SEA (Similarity Ensemble Approach), which com-
pared targets by the similarity of the ligands that bind to
them [32]. The approach was used to predict new off-
targets for 878 purchasable FDA-approved small molecule
drugs and 2787 pharmaceutical compounds. Overall, there
were 6928 pairs of drug and ligand sets showing statistical
significance. Subsequent pharmacological experiments
confirmed 23 new drug–target associations and revealed
the cross-activity of some drugs on G-protein-coupled
receptors (GPCRs), ion channels, and HIV reverse tran-
scriptase. These results suggested that polypharmacology
widely exists, which is probably therapeutically essential
for some types of drugs [33].

Besides classical target- and ligand-based computation-
al methods, in recent years, many drug repositioning
approaches based on systems biology have been developed.
Cheng et al. proposed an unweighted network-based infer-
ence (NBI) method [34], which used the topology similarity
of the ligand–target network to prioritize new targets for a
given drug, or vice versa. New drug–target interactions for
five known drugs were predicted and confirmed by in vitro
assays. One restriction of NBI is that it is only suitable for
those drugs having initial links to targets in the network.
To tackle this problem, they further developed edge-
weighted NBI (EWNBI) and node-weighted NBI (NWNBI)
integrating both NBI and similarity strategies [35]. One
significant advantage of these proposed approaches is that
they are able to predict protein targets of small molecules
even if the 3D structures of both the protein and the small
molecule are unknown. Similar to the above-mentioned
drug target prediction approaches, they have potential
values in gaining insights into the promiscuous nature
of the drug.

Protein–ligand interaction

Among various computational approaches, molecular
docking plays a central role in predicting protein–ligand
interactions, which has been extensively used for drug hit
discovery and lead optimization [36]. Although detailed
algorithms and their implementation may differ, docking
involves a conformational sampling component to generate
theoretical conformations in the binding pocket, and a
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binding affinity related scoring component to rank these
conformations. Evaluation of some frequently used docking
programs can be found elsewhere [37,38]. There are gen-
eral trends that accuracy is system-dependent, suggesting
that the tested methods are specific for particular protein
families. Significant progress has been presented by sev-
eral research groups in China recently. GAsDock devel-
oped by Li et al. is an ultra-fast and flexible docking
program [39]. It features a conformation-sampling algo-
rithm that utilizes an entropy-based genetic algorithm to
optimize the binding poses of small molecules. To further
increase the accuracy and speed of the program, Li et al.
subsequently developed a new optimization model based
on an improved adaptive genetic algorithm [40]. Some
techniques including a multi-population genetic strategy
and a new iteration scheme were adopted. The model
showed reasonable predictive accuracy on reproducing
the native binding poses and the docking time is in propor-
tion to the number of rotatable bonds of the ligands. As a
continuation of previous work, they also presented two
multi-objective optimization methods (MOSFOM) [41], in
which the solution will simultaneously satisfy energy and
shape complementarity goals, effectively enhancing the
performance as compared with those with a single score
(GAsDock). Instead of accurately predicting the binding
free energy, MOSFOM could yield reasonably ranked bind-
ing poses on eliminating the conformations that cannot
satisfy the overall objective functions.

One of the factors influencing the reliability of molecular
docking is protein flexibility [36]. There is increasing ex-
perimental evidence showing that many proteins may
undergo significant conformation changes upon ligand
binding. Traditional docking methods assume the rigidity
of protein, and consequently their accuracy is limited for
the ‘induced-fit’ protein–ligand systems. However, owing to
the large size and many degrees of freedom of proteins, the
computational complexity of algorithms accounting for
protein flexibility increases dramatically. Several approx-
imations have been frequently used to account for protein
flexibility, including soft docking, side chain flexibility,
molecular relaxation, and protein ensemble docking.
Koska et al. proposed a two-stage protein flexible docking
protocol that models flexibility of the protein before and
after ligand placement [42]. The protein side chain con-
formations are firstly calculated, and low energy poses of
ligands are obtained by docking and computing binding
site hotspots. Then, side chains of the protein are refined
and an energy minimization of the ligand pose in the
presence of the protein is performed. Sherman et al. pre-
sented a novel procedure for modeling ligand–receptor
induced fit effects. Both ligand and protein flexibility are
accurately considered by iteratively combining rigid recep-
tor docking (Glide) with protein structure prediction
(Prime) techniques. Compared with traditional rigid re-
ceptor docking, this approach showed a significantly im-
proved success rate in reproducing correct ligand binding
poses on a test set containing 21 pharmaceutically relevant
examples [43]. Although this flexible docking procedure
mainly focuses on the flexibility of protein side chains, it
can be extended to consider backbone motions by incorpo-
rating a loop prediction module.
Scoring poses another major obstacle for the reliability
of molecular docking. The current scoring functions for
docking are typically classified into force field-based, em-
pirical, and knowledge-based [36]. Force-field based meth-
ods employ classical molecular mechanical models to
compute the direct noncovalent interactions between the
protein and ligand, such as van der Waals and electrostatic
energies. Empirical scoring functions, by contrast, decom-
pose the overall interactions into different energetic terms
and obtain their weight factors by regression analyses on
experimental protein–ligand binding affinities. Generally,
force-field methods have wider applicability and empirical
scoring functions can make a more accurate prediction
within the range of regression model. For knowledge-based
methods, ‘knowledge’ means structural information from
experimentally determined protein–ligand complexes.
This type of method uses the Boltzmann law to transform
the atom pair preferences into distance-dependent pair-
wise potentials. The results usually show reasonable accu-
racy in reproducing the experimental binding poses, but
are less accurate on approximating binding free energy
[44]. Shen et al. reported an improved knowledge-based
scoring function named IPMF [45]. Typically, the knowl-
edge-based functions are developed by applying the Boltz-
mann law to transform the atom pair preferences into
distance-dependent pairwise potentials. In addition to
structural information, IPMF integrated experimental
binding affinity information into the extracted potentials
via an iteration optimization approach. It was found that
the scoring function with the ‘enriched’ knowledge might
achieve increased accuracy in binding affinity prediction.
Compared with seven commonly used scoring functions on
a third party test set containing 219 diverse protein–ligand
complexes, IPMF performed best in predicting the binding
affinity. With the rapid growing volume of high-quality
structural and protein–ligand interaction data in the pub-
lic domain, this work represents a positive step towards
improving the accuracy of scoring in binding affinity
prediction.

Virtual screening and lead optimization

From the perspective of computational drug design, the
drug discovery process commonly involves two steps: hit
identification and lead optimization. Hit identification
related methods are frequently investigated for searching
compounds with interesting biological activity, which is
also known as VS [46,47].

Pharmacophore-based VS is an established in silico tool
that has resulted in the identification of many active
compounds in drug discovery programs [48]. Generally,
a pharmacophore model is deduced from a set of ligands
with known activities when the 3D structure of a receptor
is lacking. Several programs for automatic ligand-based
pharmacophore derivation have been developed, which
show different abilities to retrieve active compounds
[49]. Alternatively, a pharmacophore model can be directly
generated from a protein crystal structure, revealing the
key elements required for protein–ligand binding. With
fast advances in structural biology, the development of a
reliable protein structure-based pharmacophore is gaining
more and more attention. Chen and Lai developed a tool
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named Pocket v.2 for generating pharmacophore models
based on given receptor or complex structures [50]. In this
approach, hotspot analysis and grid-based scoring were
used to identify essential pharmacophore features. As
suggested by case study results, Pocket v.2 can yield
consistent pharmacophore models for proteins with minor
conformational changes upon binding of different ligands,
indicating the robustness of the approach.

Shape-based VS is another useful tool for searching for
novel lead compounds. Following the frequently used simi-
larity concept, it assumes that molecules of shape and
chemistry comparable to known active agents have a signif-
icant probability to show similar biological activities. The
definition of shape similarity is usually derived from the
alignment that achieves an optimal overlap of 3D structures
of compounds, where the metric distance is the mismatch
volume. Many application studies revealed that shape-
based VS can result in good enrichment of active compounds
and, meanwhile, sufficient diversity in the discovered com-
pounds. As suggested by the comparative study of Hawkins
et al., shape matching showed better VS performance than
molecular docking in some test cases [51]. Liu et al. reported
a useful VS tool named SHAFTS (SHApe FeaTure Similari-
ty) [52], which is a hybrid approach for 3D molecular simi-
larity searching by comparing both molecular shape and
pharmacophore features. SHAFTS performs rigid body su-
perimposition of 3D molecular models and can use single or
multiple bioactive compounds as the query ‘templates’. On
the basis of a feature triplet hashing algorithm, SHAFTS
can efficiently perform rigid body superimposition of 3D
molecular models for query and bioactive compounds. Com-
pared with other ligand-based VS methods, it can also
achieve a superior performance in enrichment assessment,
which measures the number of active compounds found by
employing a certain VS strategy as opposed to the number
found by random sampling. These results suggest that
SHAFTS is suitable for large-scale VS and prospectively
exploring potential mechanisms for drug side effects.

Commercial chemical libraries for high-throughput
screening (HTS) are primary sources for hit identification.
Although increasing size and availability of libraries raises
the possibility of finding useful compounds, it is of great
interest to design new compounds independent of known
chemical structures using de novo methods. Yuan et al.
proposed a de novo structure-based drug design program
LigBuilder, which can automatically build and screen
ligand molecules within the binding pocket of a target
protein [53]. In the updated version of the program, the
synthesis accessibility of designed compounds can be ana-
lyzed with the aid of an embedded chemical reaction
database and a retrosynthesis analyzer, which recursively
checks if a target molecule or its precursor structures
obtained by retrosynthetic rules are found in the database.
LigBuilder can use Pocket v.2 to define the pharmacophore
features within the binding pocket, which quantitatively
calculates the ligandability of the binding site, and pro-
vides a visual presentation of the properties of the site. It
also allows users to pick and remove fragments of a lead,
and then uses ‘grow’ and ‘link’ strategies for optimization.
In this way, it can also serve as an effective tool for
fragment-based lead optimization.
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One of the critical challenges of de novo drug design is to
select fragment sets that have the best potential to be part
of new drug leads for a given target. Virtual library con-
struction has been suggested as one potential solution.
Chen et al. established such an approach to build a tar-
get-focused library for finding hits towards studied targets
by combining the scores of structural diversity, binding
affinity, and drug-likeness assessment. On the test of
constructing cyclooxygenase-2 (COX-2) and peroxisome
proliferator-activated receptor g (PPARg) focused librar-
ies, this model can not only successfully reproduce the key
substructures of FDA-approved drugs but also generate
some novel chemical classes with increased in vitro inhibi-
tion activities against COX-2 and PPARg, respectively. At
the same time, a software package, named LD1.0 [54], was
developed for this new approach.

Active hits obtained from HTS typically exhibit low or
medium level of activities, which are subsequently modified
to improve their potency, selectivity, and to incorporate
other favorable physical chemical properties. Recently,
Li et al. devised a method called AutoT&T (automatic
tailoring and transplanting) [55], which can capture strong
binding fragments of hits from VS outputs and transplant
them into a lead compound with novel and optimized chem-
ical structure. It means that the approach does not need to
perform sampling of the possible combinations of fragments
and conformations of the resulting molecules during struc-
tural operations, making it more efficient than conventional
de novo design methods. Another apparent advantage of
AutoT&T is that it does not rely on a predefined library of
building blocks but detects important fragments from VS
hits. This feature expands the application of VS from hit
discovery to lead optimization.

Traditional Chinese medicine (TCM), the quintessence
of Chinese culture heritage, constitutes valuable sources
for hit identification and lead optimization. Increasing
effort has been devoted to study TCM and has resulted
in a large number of isolated bioactive compounds. Recent-
ly, Chen constructed a 3D structure TCM database (Data-
base@Taiwan) based on structures collected from Chinese
medical literature and scientific publications [56]. Further-
more, based on this database, Tsai et al. constructed a web
computing system for TCM intelligent screening system
(iScreen). It provides users accession to the TCM database
and performs VS and de novo drug design online [57].

In silico prediction of ADME/T properties

Most studies on ADME/T commence by highlighting the
contribution of these properties to the failure rates of drug
discovery and the resultant mounting cost of bringing a
new drug to the market. Meanwhile, the number of mar-
keted drug withdrawals continues to increase, mainly
because of underlying ADME/T issues that could not have
been detected earlier [58]. Currently, many solutions are
proposed for identifying and addressing these issues before
any leading compounds progress to clinical stages [59].
Among them, the role of early screening ADME/T proper-
ties with in silico tools has been widely appreciated [60,61].

Metabolic biotransformation of a new chemical entity is
of high interest because it may profoundly affect its bio-
availability, activity, and toxicity profile. Cytochromes
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P450 (CYPs) are the major enzymes involved in the process
responsible for the metabolism of �90% FDA-approved
drugs [62]. Zheng et al. reported the CYP450-mediated
site of metabolism (SOM) prediction for six most important
metabolic reactions by incorporating the use of machine
learning and semi-empirical quantum chemical calcula-
tion [63]. Both internal and external validation results
suggest that the developed models are reasonably success-
ful. Furthermore, Shen et al. developed a web-based SOM
prediction service SOMEViz, which provides medicinal
chemists a visual and easy-to-use interface for addressing
some metabolism-related problems [64]. Although consid-
erable overlap is present, individual CYP450 isoenzymes
each have unique substrate specificity. Recently, Zaretzki
et al. developed a server named RS-WebPredictor that can
predict the isozyme-specific regioselectivity for CYP450-
mediated reaction [65]. Given the genetic polymorphism of
the enzyme, this valuable information may provide a basis
for understanding and predicting individual differences in
drug response.

Blockade of the human ether-a-go-go related gene
(hERG) potassium channel has been identified as the most
important mechanism of QT interval prolongation leading
to severe cardiotoxicity, which has resulted in the with-
drawal of many major drugs [66]. Therefore, it is important
to assess hERG binding of compounds in the early phase of
drug discovery [67,68]. On the basis of a diverse set of 806
compounds, Wang et al. developed a ligand-based classifi-
cation model for hERG blockade prediction [69]. The model
achieved over 85% accuracy for one internal and two
external test sets. Moreover, some important structural
fragments favorable or unfavorable for hERG channel
inhibition were highlighted. Accurate prediction of hERG
inhibitory potency can offer the possibility of screening and
optimizing hit compounds to eliminate potentially lethal
side effects. Although a full crystal structure for hERG is
not yet available, considerable effort has been devoted to
the development of structure-based models for hERG
blockers. Recently, Di Martino et al. developed and vali-
dated an automated docking protocol that quantitatively
characterizes the binding of a series of hERG channel
blockers [70]. This approach turned out to be successful
in both increasing the consistency of the docked binding
modes and explaining the structure–activity relationships
for the blockers. Clearly, as the 3D structures of some
major ADME/T-related proteins become available, struc-
ture-based models will play an increasingly important role
in this field [71].

Hou and colleagues have carried out extensive studies on
in silico modeling of various ADME/T-related properties,
including blood–brain barrier partitioning, Caco-2 perme-
ability, human intestinal absorption (HIA), oral absorption,
oral bioavailability, P-glycoprotein inhibition, etc. In a re-
cent contribution, they developed a combined database
PKKB (PharmacoKinetics Knowledge Base) [72], collecting
structures, pharmacological information, important experi-
mental or predicted physiochemical properties, and experi-
mental ADME/T data for 1685 drugs. This database
provides a useful resource for benchmarking pharmacoki-
netic studies, validating the accuracy of existing ADMET
predictive models, and building new predictive models.
The web service AdmetSAR (http://www.admetexp.org)
developed by Cheng et al. is a more comprehensive source
of chemical ADME/T properties [73]. It provides a user-
friendly interface to a database covering over 210 000
ADME/T annotated data points for more than 96 000
unique compounds with 45 types of ADME/T-associated
properties. Moreover, the database includes classification
and regression models with highly predictive accuracy,
allowing users to predict the properties for chemicals that
cannot be found in the database. Recently, Cheng et al.
reported a database of adverse drug events (ADEs) named
MetaADEDB, collected by data integration and text min-
ing [74,75]. The database included more than 52 000 of
drug–ADE associations among 3059 compounds and
13 200 ADE items. In addition, a computational module
was developed for predicting potential ADEs based on the
database and phenotypic network inference model (PNIM),
which shows high prediction accuracy for an external
validation set extracted from the US-FDA Adverse Events
Reporting System.

Successful applications of computational drug
discovery and design
As outlined above, the novel computational tools and
strategies recently reported in China cover most aspects
of drug discovery and development processes, and overall
they have had a profound impact on rational drug design.
Some approaches may have the potential to significantly
accelerate and streamline all stages of drug discovery in
conjunction with other techniques. In the following sec-
tions, we will demonstrate how these methods are success-
fully applied in different drug discovery phases.

Cases of drug target identification

Natural products provide a vast source for discovery of
useful therapeutics. Because the molecular targets of
many natural products remain unknown, unraveling the
target or targets for a natural compound should provide
insights into its molecular mechanism(s) and help in opti-
mizing its potency and selectivity. The pathogenic bacteri-
um Helicobacter pylori is a major causative factor for
gastrointestinal illnesses. A natural product isolated from
Ceratostigma willmottianum, a folk medicine used to rem-
edy rheumatism, traumatic injury, and parotitis, was
found effective in inhibiting the bacterium. However, the
specific mechanism of action of the compound is unknown.
Cai et al. used this compound as a probe to search PDTD
with TarFisDock [9]. In total, 15 putative interacting
proteins were found, among which diaminopimelate decar-
boxylase (DC) and peptide deformylase (PDF) showed a
shared sequence homology to H. pylori. Particularly, the
sequence of H. pylori PDF (HpPDF) shares 40% identity
with that of Escherichia coli PDF. The interaction between
the natural product and these two proteins was experi-
mentally evaluated. Enzymatic assays demonstrated that
the natural product and one of its analogs are potent
inhibitors against HpPDF, with IC50 values of 10.8 and
1.25 mM, respectively. Moreover, the later determined X-
ray crystal structures of apo–HpPDF and inhibitor–
HpPDF complexes were confirmed at the atomic level. This
study reveals that HpPDF is a potential target for anti-H.
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pylori agents [9]. Another interesting finding using Tar-
FisDock includes revealing the mechanism of [6]-gingerol,
the active constituent of fresh ginger, in cancer control and
management. It exhibits considerable physiological effects
such as antioxidant, anti-inflammatory, and antitumori-
genic activity, but its exact molecular mechanism of action
remains elusive. With TarFisDock, Jeong et al. ascertained
that [6]-gingerol suppressed carcinogenesis by inhibiting
the enzymatic activity of leukotriene A4 hydrolase
(LTA4H). Given that leukotriene LTA4H is overexpressed
in several human cancer cell lines, including colorectal
cancer, the findings support the anticancer efficacy of
[6]-gingerol [11].

Torcetrapib is a cholesteryl ester transfer protein
(CETP) inhibitor suppressing the exchange of lowered high
density lipoprotein (HDL) and triglyceride-rich lipoprotein
in patients with hyperlipidemia. It is also documented that
it may induce cardiac events associated with severe ad-
verse effects. However, the detailed mechanism regarding
the safety issue of torcetrapib is still lacking. Fan et al.
established a systems biology approach by combining a
human reassembled signaling network with microarray
gene expression data to study drug–target interactions of
torcetrapib. Furthermore, the obtained potential off-tar-
gets of torcetrapib were identified by employing the reverse
docking strategy. The results suggested that platelet-
derived growth factor receptor (PDGFR), hepatocyte
growth factor receptor (HGFR), interleukin-2 (IL-2) recep-
tor, and epidermal growth factor receptor (ErbB1) tyrosine
kinase were highly relevant to unfavorable adverse effects
[76].

Another case study of in silico target prediction include
fibroblast growth factor receptors (FGFRs), which are a
family of four structure-related receptor tyrosine kinases
that are targets for the treatment of various human can-
cers. Qian and colleagues used the reverse pharmacophore
mapping approach PharmMapper to identify target candi-
dates for an active compound that they previously synthe-
sized and showed great in vitro antiproliferative effects
[10]. Among the predicted target candidates, tyrosine
kinases were revealed as potential targets for the com-
pound. This result was subsequently validated by enzyme-
linked immunosorbent assay. After following structural
optimization, the derivatives of the compound were found
to be effective antiproliferative inhibitors against FGFR1-
expressing cancer cell lines with micromolar to submicro-
molar IC50 values.

Cases of hit discovery

For hit discovery, molecular docking is one of the most
widely employed techniques, and it is normally embedded
in the workflow of different in silico as well as experimental
approaches. Liu et al. reported a combinatorial computa-
tional strategy for discovering potential inhibitors against
insulin-like growth factor-1 receptor (IGF-1R). IGF-1R
belongs to the tyrosine kinase family and plays a pivotal
role in the signaling pathway involving cell growth, prolif-
eration, and apoptosis. The initial hit obtained from hier-
archical VS was subsequently used as the query scaffold for
the substructure search to build a focused library. The
library was then screened against IGF-1R with an in-house
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pharmacophore-constrained docking protocol (PACDock).
Eventually, 15 out of 39 purchased compounds exhibited
inhibitory activity in enzymatic assessment. Strikingly,
the two most potent inhibitors not only demonstrated
excellent inhibitory potency (IC50 = 57 and 61 nM, respec-
tively) but also presented considerable selectivity over the
insulin receptor (IR) that is highly homological to IGF-1R
[77]. Aside from being potential antitumor agents, the
promising selective IGF-1R inhibitors can be investigated
as molecular probes to differentiate the biological functions
of IGF-1R and IR.

New Delhi metallo-b-lactamase-1 (NDM-1) has recent-
ly attracted extensive attention for its rapid dissemina-
tion and resistance to almost all known b-lactam
antibiotics. Using the two-stage protein flexible docking
protocol mentioned in the methodology section [43], Shen
et al. established an interaction model for NDM-1 and the
thiophene-carboxylic acid inhibitor. The results revealed
that sulfur atoms of ligand might interfere with the water
bridge and zinc ions in the active site of NDM-1, which
provide useful clues for the rational design of effective
NDM-1 inhibitors [78].

Another distinguished contribution made by Chinese
researchers is the identification of a new indication for an
old drug cinanserin, a well-characterized serotonin antag-
onist. During the severe acute respiratory syndrome
(SARS) outbreak in China in the spring of 2003, by dock-
ing-based VS, Chen et al. identified that cinanserin is a
potential inhibitor of the 3C-like (3CL) protease of SARS
[79]. The later experimental tests showed that cinanserin
can indeed inhibit 3CL protease (IC50 = 5 mM) at nontoxic
drug concentrations and has the potential to kill the SARS
virus. Because it is an old drug that is cheap and has an
established safety record, cinanserin could be used as an
emergency treatment or for stockpiling for future SARS
pandemics. This is a paradigm for repurposing an existing
drug, which provides a cost-effective new way of tackling a
devastating disease.

Ligand-based VS is integral to the tool chest of computa-
tional chemists, as the effectiveness of docking in VS is
highly variable owing to many factors, such as protein
flexibility or scoring problems. Liu et al. reported applying
SHAFTS to the discovery of novel inhibitors for p90 ribo-
somal S6 protein kinase 2 (RSK2), which plays a pivotal role
in the regulation of diverse cellular processes. SHAFTS was
used to perform 3D similarity searching by adopting two
weak inhibitors as query templates. Sixteen compounds
were discovered with IC50 < 20 mM, three of which showed
low micromolar inhibitory activities against RSK2 and
exhibited selectivity across a panel of related kinases [80].
In contrast to this, these new scaffolds were not identified by
conventional 2D fingerprint methods. The result suggests
that SHAFTS is an efficient and powerful tool in scaffold-
hopping and hit identification endeavors.

Cases of lead optimization

The customized design of a library focused on a target of
interest is expected to select and assemble fragment sets
that have the best potential to be parts of new drug leads
for the target. With the help of other technologies, the
usefulness of designing a focused library in lead structure
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optimization has been well documented. Here, we illus-
trate the combined lead optimization strategies by three
case studies and highlight some of the issues and successes
observed when screening target-focused libraries.

The first successful application is the discovery of three
series of potent inhibitors against b-Hydroxyacyl-Acyl Car-
rier Protein Dehydratase FabZ of H. pylori (HpFabZ) that
is of intense interest in the treatment of gastric diseases.
On the basis of fragments isolated from previously discov-
ered HpFabZ inhibitors, a focused library was designed by
the LD1.0 program. Through docking into binding pockets,
12 candidates were synthesized and tested with bioassays,
among which eight compounds showed significant inhibi-
tory activities with IC50 values ranging from 0.86 to
42.7 mM [81]. The high hit rate demonstrates the efficiency
of the focused library. Moreover, by adopting a similar
strategy, Liu et al. reported novel purine derivatives with
potent and selective inhibitory activity against c-Src ki-
nase. The most remarkable agent showed kinase inhibitory
activity with an IC50 value of 0.02 mM, making it a poten-
tial lead for further development of c-Src kinase-related
anticancer drugs [82].

The last excellent work to present is the design of
inhibitors for Cyclophilin A (CypA) that is responsible
for a variety of biological processes regulation via its
peptidyl-prolyl isomerase (PPIase) activity. It is also
reported to be a promising target for cardiovascular, im-
munosuppressive, and cancer therapy. Initially, Li et al.
designed a focused library by LD1.0 on the basis of the
previously reported CypA inhibitors and selected 16 com-
pounds for synthesis. All 16 compounds were CypA binders
with dissociation constants (Kd) ranging from 0.076 to
41.0 mM, and five compounds showed PPIase inhibitory
activities (IC50) of 0.25–6.43 mM [83]. The hit rates for
binders and inhibitors were as high as 100% and
31.25%, respectively. Encouraged by the results, the
authors continued the study with an acylurea linker that
was previously identified crucial to CypA ligand binding.
The de novo drug design program LigBuilder 2.0 was
customized to generate inhibitors that incorporate the
complementary properties and fit the shape of the CypA
binding site. A potent inhibitor with IC50 of 31.6 nM was
firstly obtained. Then, after two rounds of structure–activ-
ity analyses (SAR) and chemical modifications, two highly
potent CypA inhibitors with nanomolar inhibitory poten-
cies (2.59 nM and 1.52 nM) were obtained out of 19 syn-
thesized compounds [84]. These promising results clearly
demonstrate that the LD1.0 and the de novo method
LigBuilder 2.0 are powerful tools for lead optimization.

Future directions
The year 2012 marked three decades of protein structure-
based drug design, since the first docking program, DOCK,
was published in 1982 by Kuntz et al. [85]. A special issue
published in the Journal of Computer-Aided Molecular
Design reflected on 25 years of molecular design and it
was concluded that new compounds are ‘easy to design but
challenging in evaluation’ [86]. Medicinal chemists use a
variety of computational approaches to modify the chemi-
cal structure of a compound to maximize its in vitro activi-
ty. However, good in vitro activity cannot be extrapolated
to good in vivo activity without the understanding of
pharmacokinetics and drug metabolism properties. Even
at the protein–ligand binding level, it is challenging to
predict the efficacy of a ligand. Traditionally, drug discov-
ery is driven by the idea that a ligand with higher binding
affinity to a target should be more efficacious than that
with lower binding affinity to the same target. It is clear
that the efficacy of a drug is not only associated with
thermodynamics but also related to the binding kinetics
between the drug and a defined target. Numerous exam-
ples demonstrated that drug efficacy does not always
linearly correlate with binding affinity. In particular, there
is now a renewed emphasis to ligand–receptor binding
kinetics in almost all steps along the drug research and
development (R&D) pipeline. Similar to experimental
approaches for drug discovery, the current computational
drug design methods focus on maximizing ligand-binding
affinity, which are either fast-but-inaccurate or slow-but-
accurate. This situation tends to change with the develop-
ment of a binding kinetics-emphasized paradigm. Drug
efficacy mainly depends on the drug–target residence time
t, calculated from koff – the dissociation rate constant (t = 1/
koff). Despite more than 30 years of effort, predicting
binding free energies for ligands interacting with targets
with sufficient accuracy (within � 3 kcal/mol) is still an
unsolved problem due to the time-consuming free energy
perturbation calculation and crude docking result, not to
mention calculating koff.

Recently, our research team has made significant prog-
ress in this area. The energy landscape theory that was
developed to understand protein folding and function can
be extended to develop a generally applicable computa-
tional framework, making it possible to construct a com-
plete ligand–target binding free energy landscape (BFEL)
[87]. This enables both binding affinity and binding kinet-
ics to be accurately estimated, and possible binding (un-
binding) pathway(s) may be obtained as well. We applied
this method to simulate the binding event of the anti-
Alzheimer’s disease drug (–)-Huperzine A (HupA) to its
target acetylcholinesterase (AChE). The computational
results are in excellent agreement with the concurrent
experimental measurements. All predicted values of bind-
ing free energy and activation free energies of association
and dissociation only deviate from the experimental data
by less than 1 kcal/mol. The method also provides atomic
resolution information for the HupA binding pathway,
which may be useful in designing AChE inhibitors with
higher potency.

Concluding remarks
CDDD is a multidisciplinary technology by exploiting
state-of-art in silico models and algorithms to speed up
the drug development process. Over the past decades,
there has been significant progress in China in both
development and application of novel methodologies.
These methods streamline many aspects of drug discov-
ery, from hit screening and lead optimization to drug
target identification and ADME/T assessment. In future
development, it is necessary to establish a research pat-
tern that is oriented by computational analyses and brings
into full play chemistry, biology, and other disciplines with
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complementary strengths. In particular, the philosophy
embodied in CDDD is shifting from ‘one gene, one drug,
and one disease’ to ‘multicomponent therapeutics, net-
work targets’. Accordingly, the emerging discipline of
network pharmacology [88], which combines network bi-
ology with chemogenomics, makes notable impact on the
fundamental challenges of traditional medicines for com-
plex diseases. Under the new paradigm, CDDD will play
an even more pivotal role in discovering lead compounds
with the desired polypharmacological profiles, and sys-
tematic data mining to elucidate synergistic effects, side
effects, and to understand the promiscuity of drugs.
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