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Abstract

Background

The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing

cholera. However, evaluations of immune responses following vaccination with BivWC

have been limited. To determine whether BivWC induces significant mucosal immune

responses, we measured V. choleraeO1 antigen-specific antibody secreting cell (ASC)

responses following vaccination.

Methodology/Principal Findings

We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine

14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each

vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated,

and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9

cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs

were detected 7 days following the first dose (P < 0.001), but not the second dose. The mag-

nitude of V. cholerae-specific ASC responses did not appear to be associated with recent

exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS)

antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the

LPS response targets the OSP moiety.

Conclusions/Significance

Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort

of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal
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ASC responses over baseline, suggesting that the current dosing schedule may not be opti-

mal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-

endemic area.

Author Summary

The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing
cholera. Despite its increasing use as part of comprehensive cholera prevention and con-
trol efforts, evaluations of immune responses following vaccination with BivWC have
been limited. In this study, we measured the development of cholera-specific antibody
secreting cells, markers of mucosal immunity, following vaccination with BivWC among a
population of adults in Haiti, where cholera is now endemic. BivWC induced development
of robust immune responses following the first dose of vaccine, but similar ASC responses
were not detected following the second dose, suggesting that the currently recommended
14-day interval between doses may not be optimal for boosting mucosal immune
responses among adults in cholera endemic regions. These findings suggest that additional
evaluation of the optimal dosing schedule for oral cholera vaccines is warranted with the
goal of improving long-term immunity.

Introduction
Cholera, a diarrheal disease with epidemic potential caused by the bacterium Vibrio cholerae,
remains a significant cause of morbidity and mortality, accounting for approximately 1.4 to 4.3
million cases of acute diarrhea and 28,000 to 142,000 deaths annually.[1] V. cholerae serogroup
O1 is the current predominant cause of cholera, while serogroup O139 was a major cause of
cholera in the 1990s and early 2000s.[2] The O1 serogroup is further classified into Ogawa and
Inaba serotypes.[3] These differ by the presence of a 2-O-methyl group present in the terminal
carbohydrate of the O-specific polysaccharide (OSP) in the lipopolysaccharide (LPS) of the
Ogawa serotype.[4–6] Protection against cholera is serogroup specific, and serogroup specific-
ity is defined by the OSP moiety of LPS.[7–9]

Recent years have seen the frequency and severity of cholera outbreaks increase worldwide.
[10] For example, the cholera epidemic that began in Haiti in October 2010 has accounted for
750,752 reported cases of acute diarrhea and 9,031 deaths,[11] making it the largest outbreak
of cholera in recent history. While the development of robust water and sanitation infrastruc-
ture is essential in regions affected by cholera, vaccination offers another important and com-
plementary tool for cholera prevention and control.[12]

There are currently three World Health Organization (WHO) pre-qualified, commercially
available oral cholera vaccines (OCV): Dukoral (Crucell, Sweden), which consists of whole-cell
killed V. cholerae O1 Inaba and Ogawa and recombinant cholera toxin B subunit (WC-rBS);
and Shanchol (Shantha Biotechnics, India) and Euvichol (EuBiologics, Korea), which are simi-
lar bivalent whole-cell (BivWC) vaccines containing multiple biotypes of V. choleraeO1 and
O139 which lack the cholera toxin B subunit (CtxB) found in Dukoral. Following Shanchol’s
prequalification by the WHO in 2011, multiple programs in diverse settings including Haiti
have demonstrated the feasibility and efficacy of integrating vaccination with BivWC into com-
prehensive cholera control strategies.[13,14] In 2013, the WHO created an OCV stockpile to
respond to cholera outbreaks worldwide.[15]
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Despite the rapidly growing use of oral cholera vaccination with BivWC, there remain sig-
nificant gaps in our understanding of immune responses following vaccination with BivWC.
Since vaccine immunogenicity is a surrogate for protection, such studies are especially impor-
tant in settings where large scale evaluations of direct effectiveness are not practical, such as in
comparing vaccine formulations, dosing schedules, and in estimating vaccine efficacy across
specific populations. Trials to assess safety and immunogenicity have demonstrated develop-
ment of significant vibriocidal antibody and OSP-specific plasma immunoglobulin A (IgA)
responses among adults and children following vaccination[16–20], including comparable
vibriocidal antibody responses following a 14-day versus a 28-day dosing interval in a cholera-
endemic area of Kolkata, India.[18] Previously, our group demonstrated significant vibriocidal
responses and OSP-specific IgA responses following vaccination with BivWC among adults,
children, and HIV-infected adults in Haiti.[21,22] However, compared to studies characteriz-
ing immune responses following natural cholera infection[23–28] and vaccination with WC-
rBS[29–33], studies evaluating immune responses following vaccination with BivWC are
limited.

Among evaluations of immunogenicity, the detection of antibody secreting cells (ASCs) in
blood is a standard measure of the mucosal immune response. Following stimulation in the
gastrointestinal tract by live V. cholerae or by OCVs, these cells transiently migrate into the sys-
temic circulation where they can be detected by standard Enzyme-Linked ImmunoSpot (ELI-
SPOT) assays.[34] This migration peaks approximately at day 7 following primary infection or
vaccination. Many of these circulating ASCs express gut-homing markers and return to muco-
sal tissue.[35] Detection of LPS-specific ASCs in the peripheral blood correlates with the devel-
opment of V. cholerae antigen-specific antibodies in the small intestinal lamina propria up to 6
months following infection.[36] As such, ASCs provide a critical and early window into subse-
quent immunologic memory at the mucosal surface.

To determine whether vaccination with BivWC induces significant mucosal immune
responses, we measured levels of ASC responses against V. cholerae LPS and OSP at multiple
time points following vaccination with BivWC among healthy participants in Haiti.

Methods

Study Population and Study Design
Healthy adults, ages 18–60 years old attending the Saint Nicolas Hospital outpatient clinic in
Saint Marc, Haiti were invited to participate in May 2015, and were deemed eligible if they
lived in the catchment area. Individuals with an active gastrointestinal disorder, pregnancy (as
determined by urine pregnancy test), those that had previously received OCV, and those
unable to give informed consent were excluded from the study. The BivWC vaccine was stored
at 2°C–8°C prior to administration. Two doses of vaccine were given 14 days apart, in accor-
dance with the package insert. Venous blood from each participant was obtained prior to
immunization and 7 days after each dose of vaccine (on days 0, 7, and 21). A stool specimen
was collected on day 7 to test for enteric pathogens, and a questionnaire on social and nutri-
tional factors was conducted on day 14. The participants enrolled in this study were part of a
larger ongoing study to measure long-term immune responses among adult cholera vaccine
recipients.

Ethics Statement
Written informed consent was obtained from all potential adult participants prior to enrolling
in the study. The study protocol was reviewed and approved by the institutional review board
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of Partners HealthCare in Boston, Massachusetts, and the Haitian National Bioethics Commit-
tee in Port-au-Prince, Haiti.

Sample Collection and Isolation of PBMCs
We collected venous blood from each participant in Vacutainer blood collection tubes (Becton
Dickinson), containing sodium heparin anticoagulant. Samples were obtained at day 0 (before
vaccination), day 7 (7 days after the first dose of vaccine), and day 21 (1 week after the second
dose of vaccine). Following sample collection, blood was diluted in PBS (pH 7.4) and processed
for separation of plasma and peripheral blood mononuclear cells (PBMCs). PBMCs were pre-
pared by differential centrifugation in Leucosep tubes (Greiner Bio-One Ltd) filled with Ficoll-
Isopaque (Pharmacia, Piscataway, NJ), and after two subsequent PBS washes, resuspended at a
concentration of 5 x 106 cells/mL in RPMI complete medium (Gibco, Carlsbad, CA) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) (HyClone, Logan, UT) and 1%
Penicillin-Streptamycin (Sigma-Aldrich). These cells were used immediately as described
below for measuring ASC responses. Plasma was shipped in a liquid nitrogen dry vapor unit
and stored at -80°C prior to analysis in Boston.

Antibody Responses in Plasma
Vibriocidal antibody responses in plasma were measured using a standard protocol described
previously.[24] Briefly, V. choleraeO1 El Tor Ogawa (X25049) and Inaba (T19479) were used
as the target organism. The vibriocidal titer was defined as the reciprocal of the highest plasma
dilutions resulting in a greater than 50% optical density reduction associated with V. cholerae
O1 growth when compared to control wells without plasma. An increase of titer by 4-fold was
considered to represent seroconversion, by convention. Control plasma, a pool of day 7 plasma
from culture-confirmed V. cholerae infected individuals in Dhaka, Bangladesh, was used to
monitor intra-assay variability between plates.

OSP was purified and conjugated to bovine serum albumin (BSA) as previously described;
[37] source strains of OSP Inaba and Ogawa were V. cholerae O1 El Tor PIC018 and PIC058,
respectively.[38] Anti-OSP IgA responses in plasma were measured using a previously
described ELISA protocol.[24] In brief, 96-well polystyrene plates (Nunc, low affinity plates)
were coated with V. cholerae O1 Ogawa OSP conjugated to BSA, or Inaba OSP conjugated to
BSA (1 μg/mL), dissolved in 50mM carbonate buffer (pH 9.6). We added 100 μL of plasma
diluted 1:25 in 0.1% BSA in PBS-0.05% Tween. Plates were incubated at 37°C for 60 minutes
while shaking (100 rpm) and then washed. We detected OSP-specific antibodies using 100 μL
per well of horseradish peroxidase-conjugated goat anti-human IgA at a dilution of 1:1,000
(Jackson Immunoresearch, West Grove, PA) in 0.1% BSA in PBS-0.05% Tween. The plates
were incubated at 37°C for 1 hour while shaking (100rpm), washed three times with PBS-
0.05% Tween, and developed with ABTS/H2O2 (Sigma-Aldrich, St. Louis, MO) in 0.1M cit-
rate-phosphate buffer (pH 4.5) and 0.03% hydrogen peroxide. Measurements were made using
a kinetic reading at 405 nm wavelength using the SoftMax Pro software.

Antibody Secreting Cell Responses to OSP and LPS
ASC responses were measured by enzyme-linked immunosorbent spot (ELISPOT) as described
previously.[34] To measure the total number of circulating ASCs, nitrocellulose-bottom plates
(Millipore, Bedford, MA) were coated with 100μl of affinity-purified goat anti-human IgG F
(ab)2 (Jackson Immunology Research, West Grove, PA) at a concentration of 5 μg/mL in PBS
(pH 7.4). Nitrocellulose plates were also coated with 100μl of the following antigens, to detect
V. cholerae-specific antigen reponses: V. cholerae O1 Ogawa and Inaba OSP:BSA (10 μg/mL),
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Ogawa and Inaba-LPS (25 μg/mL), CtxB (2.5 μg/mL;Sigma-Aldrich), and keyhole limpet
hemocyanin (KLH, Pierce Biotechnology, Rockford, IL, 2.5 μg/mL). While KLH is a standard
control antigen, CtxB was also used to control for ASC responses from possible exposure to
natural V. cholerae O1 infection. The BivWC vaccine lacks recombinant CtxB, therefore should
not elicit a detectable CtxB-specific response.

Plates were incubated with antigen overnight at 4°C, and then blocked for 1 hour at 37°C
with 200 μL of 2% milk-RPMI. A total of 1 x 105 PBMCs were added to the total Ig-coated
wells and serially diluted two times by a factor of 10. A total of 5 x 105 PBMCs were added to
the OSP, LPS, CtxB and KLH-coated wells. Plates were then incubated at 37°C for 3 hours and
then washed. To detect IgG and IgA ASCs, plates were incubated overnight at 4°C with horse-
radish peroxidase-conjugated mouse anti-human IgA (Hybridoma Reagent Laboratory, Balti-
more, MD) and alkaline phosphatase-conjugated IgG (Southern Biotech, Birmingham, AL),
each diluted 1:500 in sterile filtered PBS-0.1%-BSA-tween-0.05%. Following overnight incuba-
tion at 4°C, plates were developed with 5-bromo-4-chloro-3-indolylphosphate-nitroblue tetra-
zolium (BCIP/NBT, Sigma-Aldrich) and 3-amino-9-ethylcarbazole (AEC pre-mix solution,
Sigma-Aldrich). Two individuals using a stereomicroscope independently quantified ASC
numbers. The number of antigen-specific IgG and IgA ASCs were expressed per 106 total
PBMCs and as a percentage of total IgG or IgA expressing cells.

Statistical Analyses
Statistical analyses were performed using STATA Version 14 (StataCorp, LP, College Station,
TX) and Graph-Pad Prism (Graph Pad Software, Inc., La Jolla, CA). Vibriocidal and antigen-
specific plasma antibody responses were expressed as geometric mean titers (GMT) with 95%
confidence intervals. We used the Wilcoxon signed-rank test to compare within-person anti-
gen-specific ASC responses, vibriocidal antibody responses, and antigen-specific plasma anti-
body responses across different time points.

We used Spearman’s correlation to quantify associations between antigen-specific ASC,
vibriocidal and antigen-specific antibody responses. Comparisons between groups previously
exposed and unexposed to V. cholerae were performed using the MannWhitney-U test. We
tested for equivalence between anti-LPS and anti-OSP ASC responses using two-sided 90%
confidence intervals and an equivalence bound of +/- 5 ASCs per 106 PBMCs difference. Confi-
dence intervals within this bound were considered equivalent. All P-values were two-tailed,
with a P� 0.05 defined as the threshold for statistical significance.

Our sample size was based on the number of participants needed to detect a difference
between the baseline and post-vaccination frequency of LPS-antigen specific ASCs. Extrapolat-
ing from other studies,[32,34,39] we estimated that 19 participants would be needed to detect
an increase in both IgG and IgA ASC responses, with at least 90% power following vaccination.

Results

Study Population
Table 1 describes the demographic characteristics of the 24 individuals that enrolled in the
study. One participant dropped out following the first blood draw on day 0, and another
dropped out following the second blood draw on day 7. A third participant was excluded from
the analysis of ASC responses because of excessive red blood cell contamination in PBMCs at
all time points. Thus, 22 participants were included in the analysis of responses following first
dose of vaccine; Twenty-one individuals were included in the analysis following the second
dose of vaccine. Baseline vibriocidal titers among the study population were consistent with
widespread exposure to cholera in a substantial portion of the cohort. 8/22 (36%) participants
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had a vibriocidal� 80 for the Ogawa serotype, and the same proportion of participants (36%)
had a vibriocidal� 80 for the Inaba serotype. A total of 11/22 (50%) had a vibriocidal� 80 for
either the Ogawa or Inaba serotype.

Plasma Antibody Responses to Vaccination
A summary of immune responses to BivWC at each time point is listed in Table 2. Vibriocidal
antibody responses are also depicted in Fig 1. Robust vibriocidal antibody responses to Ogawa
and Inaba were detected by day 7 after a single dose of vaccine (p< 0.0001) with a geometric
mean fold rise (GMF) of 7.3 to V. cholerae O1 Ogawa and 9.1 to Inaba. Vibriocidal titers at day
21 were slightly lower compared to day 7 responses, although these differences were not signifi-
cant. However, vibriciocidal GMT at day 21 remained significantly increased compared to
baseline values for Ogawa (p< 0.01) and Inaba (p< 0.001). Vibriocidal antibody seroconver-
sion rates are depicted in Table 2. The majority of participants seroconverted following the first
dose of BivWC; Ogawa (64%) and Inaba (73%). The seroconversion rate increased to 76% and
81% for Ogawa and Inaba, respectively, following two doses of vaccine. In addition to vibrioci-
dal antibody responses, we observed significant OSP-specific plasma IgA responses to both
Ogawa and Inaba serotypes at days 7 and 21 (Table 2).

Antibody Secreting Cell (ASC) Responses to Vaccination
We did not observe an overall increase in the number of total IgA and IgG antibody secreting
cells either in total or relative to the total number of peripheral blood mononuclear cells follow-
ing vaccination with BivWC (Table 2). Among antigen-specific responses, there was no
response to either of the control antigens, CtxB or KLH, at any time point. Some artefactual
spots (typically<3) are typical of ELISPOT assays. We observed a single KLH spot in only
three of the 130 ELIPSPOT samples analyzed (2.3%), and no more than a single KLH spot was
observed in any of the samples. The low number of KLH spots suggests that there was negligi-
ble artefactual background in the other antigen-specific ASC measurements. Similarly, in four
of the 130 samples (3.1%) analyzed as part of the study, we observed a single CtxB spot, and
again, in no samples, were more than a single CtxB spot observed. As such, we defined the pres-
ence of� 2 ASCs per 106 PBMCs as a positive ASC response. The lack of CtxB responses sug-
gests that responses detected to the OSP or LPS antigens were not likely the result of
intercurrent infection with or exposure to V. cholerae, since natural infection is associated with
significant responses to the CtxB antigen.

Table 1. Demographic characteristics of study participants.

Characteristics Total

N = 22

Mean age, years (S.E.)* 27 (19–50, 10.08)

Gender (%)

Females 8 (36)

Males 15 (64)

Blood Type (%)

A 7 (32)

B 4 (18)

O 10 (45)

AB 1 (5)

*S.E. Standard Error

doi:10.1371/journal.pntd.0004753.t001
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OSP-specific ASC responses are shown in Fig 2. Notably, OSP-specific IgA ASC responses
to Ogawa and Inaba peaked on day 7 following the first dose of vaccine, and were significantly
increased from baseline (P< 0.001). Notably, day 7 OSP-specific IgA antibody responses
detected in plasma were strongly correlated with day 7 OSP-specific IgA ASC responses to
Ogawa (Spearman r = 0.6877, P = 0.0004) and Inaba (Spearman r = 0.6077, P = 0.0027)

An analysis of ASC response based on stratification by a pre-vaccination vibriocidal titer
of� 80, shows no significant difference in mean ASC responses. OSP-specific IgA responses at

Table 2. Immune responses to V. cholerae (O1 Ogawa and O1 Inaba) following vaccination with BivWC.

Total ASC O1 Ogawa O1 Inaba

Day 0 (n = 22)

Baseline Vibriocidal GMTa (95% CI) 35.3 (15.1–82.2) 29.2 (14.7–58.1)

Baseline Serum OSP IgA GMTb (95% CI) 65.8 (52.6–82.4) 60.7 (49.6–74.3)

Baseline Total IgA ASCs 334.5 (237.4–431.6)

Baseline OSP IgA ASCs (per million) 0.02 (-0.02–0.07) 0.07 (-0.01–0.15)

Baseline Total IgG ASCs 920.4 (680.6–1160.1)

Baseline OSP IgG ASCs (mean, per million) 0.045 (-0.020–0.11) 0.045 (-0.049–0.14)

Day 7 (n = 22)

Vibriocidal GMTa (95% CI) 256.7 (146.0–451.2) 264.9 (150.9–464.9)

Vibriocidal GMFb (95% CI) 7.3 (3.4–15.6) 9.1 (4.9–16.9)

Vibriocidal Seroconversionc (#, %) 14 64 16 73

Serum OSP IgA GMTa (95% CI) 93.6 (66.1–132.7) 86.6 (64.0–117.3)

Serum OSP IgA GMFb (95% CI) 1.4 (1.0–1.9) 1.4 (1.1–1.9)

Serum OSP IgA Seroconversiond (#, %) 7 32 4 18

Total IgA ASCs 290 (233.5–346.5)

OSP IgA ASCs (mean, per million) 6.9 (1.9–12.0)

OSP IgA ASCs Responderse (#, %) 13 59

Total IgG ASCs 1017 (666.7–1367.3)

OSP IgG ASCs (mean, per million) 1.2 (0.58–1.87) 0.36 (-0.0059–0.73)

OSP IgG ASCs Responderse (#, %) 5 22.7 3 13.6

Day 21 (n = 21)
Vibriocidal GMTa (95% CI) 165.4 (81.0–333.6) 245.7 (141.7–426.3)

Vibriocidal GMFb (95% CI) 4.9 (2.5–9.6) 9.1 (4.6–18.2)

Vibriocidal Seroconversionc (#, %) 16 76 17 81

Serum OSP IgA GMTa (95% CI) 86.4 (66.0–113.1) 83.5 (65.6–106.5)

Serum OSP IgA GMFb (95% CI) 1.4 (1.1–1.9) 1.5 (1.2–1.8)

Serum OSP IgA Seroconversiond (#, %) 8 38 6 29

Total IgA ASCs 408.3 (306.9–509.7)

OSP IgA ASCs (mean, per million) 1 (0.1–1.9) 0.8 (0.1–1.5)

OSP IgA ASCs Responderse (#, %) 5 23.8 5 23.8

Total IgG ASCs 1035.1 (786.3–1283.9)

OSP IgG ASCs (mean, per million) 0.41 (-0.083–0.90) 0.2 (-0.091–0.50)

OSP IgG ASCs Responderse (#, %) 1 4.8 1 4.8

a Geometric mean titer.
b Geometric mean-fold rise from baseline to 7 days after 1st dose or from baseline to 7 days after 2nd dose.
c # with � 4-fold rise in titers from baseline to 7 days after 1st dose or from baseline to 7 days after 2nd dose.
d 3 with � 2-fold rise in titers from baseline to 7 days after 1st dose or from baseline to 7 days after 2nd dose.
e # with � 2 ASCs detected
# Number of participants

doi:10.1371/journal.pntd.0004753.t002
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day 7 to the Ogawa serotype were 5.2 ASCs per million PBMCs and 7.9 ASCs per million
PBMCs among those exposed and unexposed (P = 0.8894), respectively, whereas OSP-specific
IgA responses to the Inaba serotype were 10.4 ASCs per million PBMCs and 9 ASCs per mil-
lion PBMCs (P = 0.285), respectively. Additionally, no significant differences were seen when
comparing OSP-specific IgA ASC responses at day 7 to the Ogawa and Inaba serotype between
individuals with previous exposure to either Ogawa or Inaba (P = 0.6905 for Inaba OSP
response, P = 0.7889 for Ogawa response). However, our sample size is limited and not suffi-
ciently powered to definitively assess whether prior exposure in this setting impacts mucosal
immune responses.

OSP-specific IgA ASC responses after the second dose of the vaccine decreased nearly to
baseline levels by day 21. OSP-specific IgG antibody responses were proportionally lower than
IgA responses, although OSP-specific IgG ASC responses nonetheless demonstrated a statisti-
cally significant increase from baseline for the Ogawa (p< 0.001), but not the Inaba serotype
(p = 0.099) (Fig 3).

Fig 1. Vibriocidal Responses.Geometric mean titer (+95%CI) of vibriocidal response to V. choleraeO1 Ogawa (A) and
Inaba (B) at baseline (day 0) and 7 days after each immunization (day 7 and 21). Statistically significant differences relative
to baseline are indicated (** = P < 0.01, *** = P < 0.001, **** = P < 0.0001).

doi:10.1371/journal.pntd.0004753.g001

Fig 2. Ogawa and Inaba O-specific polysaccharide (OSP) Immunoglobulin A (IgA) Antibody secreting cell (ASC) responses in
vaccinees. Individual and mean circulating antigen-specific IgA responses to Ogawa and Inaba OSP with standard error bars. P values are
indicated where statistically significant differences from baseline (Day 0) are present.

doi:10.1371/journal.pntd.0004753.g002
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We noted the OSP and LPS responses were not only highly correlated, but appeared nearly
equivalent. (Fig 4) Testing for equivalence of IgA ASC responses to LPS and OSP demonstrated
a mean difference of 0.70 ASCs per million PBMCs (90% CI: -0.799–2.21) and 0.73 ASCs per
106 PBMCs (90% CI: -3.86–2.41) for Ogawa and Inaba, respectively. The confidence intervals
for these mean cell differences lie within the predetermined equivalence range of +/- 5 ASCs
per 106 PBMCs, suggesting equivalence or near equivalence between anti-LPS and anti-OSP
ASC responses at a significance level of 0.05.

Discussion
To our knowledge, this study is the first report of ASC responses to the BivWC oral cholera
vaccine. We demonstrate that when administered according to the recommended two dose
schedule in adults living in Haiti, BivWC induces a robust mucosal response to the V. cholerae

Fig 3. Ogawa and Inaba O-specific polysaccharide (OSP) Immunoglobulin G (IgG) Antibody secreting cell (ASC) responses in
vaccinees. Individual and mean circulating antigen-specific IgG responses to Ogawa and Inaba OSP with standard error bars. P values are
indicated where statistically significant differences from baseline (Day 0) are present.

doi:10.1371/journal.pntd.0004753.g003

Fig 4. Correlation between Day 7 anti-OSP and anti-LPS ASC Responses.Ogawa: Spearman’s
r = 0.7706, p < 0.0001. Inaba: Spearman’s r = 0.9030, p < 0.0001.

doi:10.1371/journal.pntd.0004753.g004
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O1 antigen following the first vaccine dose. However, a second dose of the vaccine adminis-
tered 14 days later did not result in a robust mucosal response to the V. cholerae O1 antigen.

V. cholerae is a non-invasive pathogen, and it is thought that immunity against cholera is
most likely mediated by V. cholerae O1-antigen specific IgA produced at the mucosal surface.
For this reason, IgA-secreting ASCs, which transiently appear in the circulating following vac-
cination and ultimately differentiate into mucosal plasma cells provide an important window
into mucosal immunity. In this context, our finding that a second dose of the OCV adminis-
tered 14 days after the first dose does not result in significant ASC responses in Haitian adults
raises important questions about the appropriate dosing interval for the BivWC vaccine in
cholera-endemic areas. While the 14-day interval may allow for the delivery of two vaccine
doses to people during an outbreak as quickly as possible, it is not clear whether this is a suffi-
cient time period to generate sufficient immunologic memory in order to achieve a prime-
boost effect with the second vaccine dose. Given that our findings mirror previous studies con-
ducted in cholera-endemic areas of South Asia following vaccination with the WC-rBS vac-
cine,[32,34,40] we suspect that the current 14-day dosing schedule is too short for the
generation of memory B cells that can respond to secondary antigenic stimulation upon re-
exposure to V. cholerae O1 OSP.

To address this question regarding the timing of the second vaccine dose definitively would
require additional studies. Specifically, evaluating the effect of re-vaccination with oral cholera
vaccine at different intervals and determining whether repeated vaccination results in increas-
ing levels of class switching and affinity maturation among the resulting V. cholerae-specific
ASCs, would determine whether bona fide functional and long lasting B cell memory can be
boosted following repeated doses of oral cholera vaccination administered at longer intervals.
These results could then provide mechanistic context for larger vaccine effectiveness studies
comparing both single and multi-dose OCV regimens.

Another notable finding in this report was derived from measuring ASC responses sepa-
rately to both V. cholerae O1 LPS and the O-antigen-specific polysaccharide (OSP) moiety of
LPS. These responses were not only strongly correlated, but also nearly equivalent, suggesting
that immune responses primarily target the OSP portion of the antigen, rather than the O-anti-
gen core, lipid A, or other component of the LPS preparation. These findings have implications
both for subsequent evaluations of immune responses following cholera infection or vaccina-
tion, and the development of more immunogenic vaccines for cholera.

Another finding in our study, was the significant correlation we observed between day 7
antigen-specific plasma IgA responses and day 7 antigen-specific ASC responses. This correla-
tion has been previously described following infection with V. cholerae or vaccination, [8,34]
and suggests that plasma IgA responses on day 7 following vaccination does indeed serve as a
potential proxy for the mucosal ASC response in some circumstances.

Our study has a number of limitations. Because cholera is now endemic in Haiti, our cohort
had high pre-existing levels of vibriocidal antibodies before vaccination with 50% of partici-
pants having a vibriocidal� 80 for either the Ogawa or Inaba. These findings are in line with a
serosurvey conducted in Haiti in 2011 demonstrating that 64% of individuals had a vibriocidal
antibody titer� 80 for either V. cholerae Inaba or Ogawa, suggesting high levels of prior infec-
tion.[41] This is important because ASC responses to vaccination are likely to differ between
populations based on the level of previous antigen exposure. For example, in contrast to our
results in Haiti where evidence of cholera exposure was common, a previous study conducted
among Swedish volunteers demonstrated significant CT-specific ASC responses to a WC-rBS
vaccine following the second dose of vaccine as part of a similar vaccination schedule spaced
14 days apart, suggesting differences between responses in endemic and non-endemic settings.
[39] Levels of previous exposure also effect the kinetics of the ASC response, and ASC
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responses peak earlier among primed populations.[42] Because we only measured ASC
responses at a single time point after each vaccination (7-days) we could not evaluate the
kinetic aspects of the response. While this is a limitation of the study, we do not think it
changes the major findings, because based on previous studies, it is very unlikely that such
priming would shift the kinetics of ASC responses to the extent they would become undetect-
able by day 7.[42] Lastly, while our results should be generalizable to adults living in other chol-
era endemic areas, additional studies are also needed in children and other subpopulations in
cholera-affected regions, who may differ in their mucosal response to the BivWC vaccine.

In conclusion, vaccination with the BivWC oral cholera vaccine induces a significant muco-
sal ASC response targeting the OSP portion of V. cholerae LPS in Haitian adults, while a second
dose of vaccine does not appear to stimulate antibody secreting cell responses in this popula-
tion. These findings are similar to responses with the WC-rBS oral cholera vaccine in other
cholera-endemic regions. More detailed evaluations of whether alternate vaccine dosing inter-
vals can stimulate more robust mucosal immune responses, and contribute to improved dura-
tion of memory B cell targeting the V. cholerae O-antigen should be a priority for future
studies.
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