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Observability of Boolean multiplex 
control networks
Yuhu Wu1, Jingxue Xu1, Xi-Ming Sun1,2 & Wei Wang1

Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as 
theoretical arguments for modeling of biological systems and system level analysis. Studying control-
related problems in BMNs may not only provide new views into the intrinsic control in complex 
biological systems, but also enable us to develop a method for manipulating biological systems using 
exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) 
are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are 
constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is 
converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two 
different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, 
examples are given to illustrate the efficiency of the obtained theoretical results.

Human Genome Project, which is an international scientific research project with the goal of determining the 
sequence of nucleotide base pairs1, inspired a new view of biology called the systems biology. Instead of inves-
tigating individual genes, proteins or cells, systems biology studies the behavior and relationships of all cells, 
proteins, DNAs and RNAs in the same biological system, called a cellular network2. The Boolean Networks (BNs) 
as a powerful tool in describing, analyzing, and simulating the cellular networks, has been most widely used3–17.

From decades ago, Kauffman put forward the theory which can describe the net of cell and gene using BNs4. 
And he made expatiation about the relationship between BNs and gene as well as life5,6. Because the construction 
and evolutionary process of cell and gene can be revealed very well by BNs, BNs turn into a hot topic concerned by 
biologists, physicists and neuroscientists. Huang, S. et al. talked about the Boolean modeling and analyzing of bio-
logical system10,11. Aldana, M. et al. studied the topological structure of BNs7. Akutsu, T. et al. and Albert, R. et al.  
considered the dynamic features of BNs12,13. More detailedly and recently, Lu, J. et al. analyzed the synchroniza-
tion problem of master-slave probabilistic BNs18.

In recent years accompany with the development of biology, control of biological system becomes into a hot 
topic19–29. As to the research of genetic regulatory networks (GRNs), one of the major goals is to carry out the 
therapeutic intervention strategies for diseased targets30,31. Correspondingly, Boolean control networks (BCNs) 
as a theoretical branch of the above studies provide an efficient way to investigate the control of GRNs based on 
abstract models. So the interests to the BCNs are increasingly going up. The application of BCNs includes not only 
GRNs32, but also other various fields, such as man-machine dynamic game33 and internal combustion engines34,35. 
Recently, based on semi-tensor product (STP) proposed by Cheng, D. et al.36, many basic problems for BCNs have 
been investigated, for example, realization23, controllability24,26, optimal control15,33, etc.

Observability of a system is a structural property. It is also a fundamental concept in control theory and sys-
tematic science and, not surprisingly, it has found many applications in systems biology. As early as 1976, Cobelli 
et al. studied controllability, observability and structural identifiability of biological compartmental systems of 
any structure37. In evolutionary dynamics, observability is the key to study whether the genetic process itself 
can be recovered from measurements of phenotypic characteristics38. Observability analysis is a necessary pre-
liminary step to the design of observers, that is, systems that provide an estimate of the complete internal state 
based on measurements of the inputs and outputs39. There have been many studies on the observability of BCNs 
in recent years. Cheng, D. et al. have investigated the controllability and observability of BCNs24. Li, F. et al. have 
studied the observability of time-delayed BCNs25. Laschov, D. et al. have considered the observability of BNs 
through a graph-theoretic approach39. Zhang, K. et al. have proposed a unified approach to determine all the four 
types of observability of BCNs in the literature40.
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From the view of systems biology, the analysis in system-level of biological regulation needs to consider the 
interactions of genes on a holistic level, rather than the independent characteristics of isolated parts of an organ-
ism41. To understand the intricate variability of biological systems, where many hierarchical levels and interac-
tions coexist, a new level of description is required. Thereupon, multiplex networks as an extension of complex 
networks were firstly proposed by Mucha in 201042, which is composed of several layered networks interrelated 
with each other shown in Fig. 1. The previous description implicitly assumes that all biochemical signals are 
equivalent and then collapses information from different pathways. Actually, in cellular biochemical networks, 
many different signaling channels do work in parallel43. Not only in cellular biochemical, multiplex networks have 
been applied to the natural, social, and information sciences42. As an old concept, multi-layer social networks 
have been studied from 197544. Transportation systems are natural candidates for a multi-layer network rep-
resentation. In a recent paper, a two-layer structure has been created by merging the world wide port and airport 
networks45. In multiplex networks, each layer could have particular features and dynamical processes. Between 
layers, interconnections are represented by some special nodes on behalf of different roles participating in mul-
tiple layers of interactions. The final states of those common nodes at each time are determined by all involved 
layers, which is different from the traditional sense of coupling.

Recent years more and more researchers studied the BMNs. For example, Xu, M. et al. investigated the syn-
chronizability of two-layer networks46. Cozzo talked about the stability of BMNs43. Luo et al. studied the control-
lability of BMCNs27. Zhong, J. et al. studied controllability problem for multi-level Boolean control networks47. 
But when it comes to the observability problem of BMCNs, to our best knowledge, there have been even no 
results, because there are many differences between BMNs and single-layer BNs. Even for the degenerated BMNs, 
their observability are different from the single-layer BNs’, for example the BCNs studied by Cheng, D. et al.24 and 
Li, F. et al.25. Because even when the number of layer is one, our system still has holistic states, which have logical 
relationship with the states in basic layers. From above discussions, we can know that a study of the observability 
of the BMNs is meaningful and challenging.

In this article, by following this stream of research, we first address and characterize observability of BCNs 
defined on multiple topological layers. Based on the model of Boolean multiplex networks presented by Coozo 
et al.43, we introduce the input controls and the outputs. The model of BMCNs are changed into algebraic rep-
resentation using STP tools. We consider the observability of BMCNs, following the standard formulation of the 
observability problem in systems theory, namely, we assume that the BN structure is known and that the goal is 
to infer the initial condition based on an output sequence. To clearly show the results of our research, we gave 
observable and unobservable examples in the final part of our essay.

The rest of this article is organized as follows. In Section II, we introduce the dynamic structure of BMCNs. 
In Section III, some concepts and properties of the STP are introduced, and we change our network into discrete 
form using STP tool. In Section IV, necessary and sufficient conditions for the observability of the BMCNs are 
obtained. Examples are given to show the effectiveness of the obtained results in Section V. Finally, a brief sum-
mary is given in Section VI.

Model of BMCNs
In this section, we introduce the model of BMCNs. For multiplex networks, different from the single-layer model, 
some nodes exist in multiple layers, the states which on different layers evolve independently of each other. The 
multiplex network we defined has N nodes per layer and K layers, and the number of total different nodes is n 
(N ≤​ n ≤​ NK). For example in Fig. 1, we have that N =​ 4, K =​ 2, n =​ 5. For statement ease, we define some related 
notions.

•	  is the set of {0, 1}.
•	 ∈ai l,  ,  and ai,l = ​ 1 if node i  in the l  layer and 0 otherwise. The layers set of node i is 

= ∈ … = = …
∆i l K a l l l( ) { {1,2, , } 1} { , , , }i l i i i, s1 2

  which refers the set of l which has ai,l =​ 1.
•	 γ ∈i j l, , , and γi,j,l =​ 1 if node j is the incoming neighbors of node i in the l layer. The incoming neighbors set 

of node i in the l layer is Γ = …l j j j( ) { , , , }in i
l l

r
l

( ) 1 2  which refers the set of j which has γi,j,l =​ 1. And we set 

∪Γ = Γ
=

l( )in i
l

K
in i( )

1
( ) .

In Fig. 1, we have that the layers set of node 1 is  =(1) {1,2}, and a1,1 =​ 1 and a1,2 =​ 1, the layers set of node 2 
is =(1) {1} , and a2,1 =​ 1 and a2,2 =​ 0. The incoming neighbors set of node 1 in layer 1 is Γ​in(1)(1) =​ {1,4}, and 

∪ ∪Γ = Γ Γ = =(1) (2) {1, 4} {3, 4} {1, 3, 4}in in in(1) (1) (1) .
In each layer, for the specific ∈ …l K{1,2, , }, if ai,l =​ 1, we assume x t( )i

l  represents the state of node i on layer 
l at time t, then the update dynamics of state xi

l can be described as

+ = = … .∈Γx t f x t i n( 1) ( ( )), 1,2, , (1)i
l

i
l

j l
l

( )in i( )

where ∈x t( )i
l , fi

l is the update rule of node i on layer l.
Furthermore, assume ∈ …x t i n( ), {1, 2, , }i  represents the holistic states of node i at time t, which means the 

g l o b a l  s t a t e s  o f  …x t x t x t( ), ( ), , ( )i
l

i
l

i
li i is1 2 ,  s e e  F i g .   2 .  +x t( 1)i  i s  i n f l u e n c e d  b y 

+ + … +x t x t x t( 1), ( 1), , ( 1)i
l

i
l

i
li i is1 2 , so we describe it as

+ = + + … + = …

x t f x t x t x t i n( 1) ( ( 1), ( 1), , ( 1)), 1,2, , , (2)i i i
l

i
l

i
li i is1 2

where.. is the canalizing function.
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When considering control-related problems for BMNs, based on above system structure, we introduce the 
m-dimensional control … ∈u t u t u t( ), ( ), , ( )m1 2  as the inputs of the system, correspondingly, then we have the 
outputs … ∈y t y t y t( ), ( ), , ( )p1 2 , then the BMCNs can be described as

+ = …∈Γx t f x t u t u t u t( 1) ( ( ), ( ), ( ), , ( )), (3)i
l

i
l

j l
l

m( ) 1 2in i( )

and

+ = + + … + … = …

x t f x t x t x t u t u t u t i n( 1) ( ( 1), ( 1), , ( 1), ( ), ( ), , ( )), 1, 2, , , (4)i i i
l

i
l

i
l

m1 2
i i is1 2

where f i is the canalizing function of node i with the controls …u t u t u t( ), ( ), , ( )m1 2 , see Fig. 3.
In finally, the output dynamics of the BMCNs are given by the following equation

= … = …  y t h x t x t x t j p( ) ( ( ), ( ), , ( )), 1, 2, , , (5)j j n1 2

where hj is the output function.

Remark 1. The BMCNs are not the simple superposition of K single-layer BCNs. Because we have the holistic 
states which are affected by corresponding states in each layers. Between the holistic states with the states in basic 
layers, we have the canalizing functions = …f i n( 1, 2, , )i , which determine the value of the holistic states. Even 
when the number of layer is one, our system still has holistic states, which have logical relationship with the states 
in basic layers through the canalizing functions. So it is still different from the one layer BNs.

Algebraic representation of BMCNs
In this section, we introduce some concepts and properties, changing our BMCNs into algebraic representation.

Concepts and properties of the semi-tensor product.  In this subsection, some concepts and proper-
ties of the STP will be briefly introduced36.

Definition 1.36

•	 Let X be a row vector of dimension np, and Y =​ [y1, y2,…​, yp]T be a column vector of p dimension. Then we 
split X into p equal-size blocks as X1, X2, …​, Xp, which are 1 ×​ n rows. Define the STP, denoted by , as





∑

∑











= ∈

= ∈ .

=

=

X Y X y

Y X y X

,

( )
(6)

i

p
i

i
n

T T

i

p

i
i T n

1

1





•	 Let  ∈ ∈× ×A Bandm n p q. If either n is a factor of p, say nt =​ p and denote it as A Bt , or p is a factor of n, 
say n =​ pt and denote it as A Bt , then we define the STP of A and B, denoted by =C A B, as the following: 
C consists of m ×​ q blocks as C =​ (Cij) and each block is

= = … = …C A B i m j q, 1, 2, , , 1, 2, , ,ij i
j

where Ai is the i–th row of A and Bj is the j–th column of B.
And here we give some fundamental properties of the STP in the following36:

Lemma 1.36 Assume A Bt , then (where ⊗​ is the Kronecker product, It is the identity matrix).

= ⊗ .A B A B I( )t

Assume A Bt , then

= ⊗ .A B A I B( )t

Lemma 2.36 Assume A ∈​ Mm×n is given.

•	 Let Z ∈​ Rt be a row vector. Then

 = ⊗ .A Z Z I A( )t

•	 Let Z ∈​ Rt be a column vector. Then

= ⊗ .Z A I A Z( )t 

It is easy to find out that STP of matrix can be seen as a generalization of conventional matrix product. All the 
fundamental properties of conventional matrix product, such as distributive rule, associative rule, remain true. So 
we can omit the symbol .
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Here we defined some notions for statement ease.
•	 δ∆ = = …i n{ 1, 2, , }n n

i , where δn
i denotes the i–th column of the identify matrix In.

•	 Assume a matrix δ δ δ= …A [ , , , ]n
i

n
i

n
is1 2 , where ≤ … ≤i i i n1 , , , s1 2  are positive integer constants. We can 

briefly denoted it as δ= …A i i i[ , , , ]n s1 2 .
•	 A matrix ∈ ×A m n is called a logical matrix if the columns of A, denoted by Col (A), satisfy ⊂ ∆Col A( ) m. 

And the set of m ×​ n logic matrices is denoted by  ×m n.

Then we define a swap matrix ∈ ×W m n mn mn[ , ]  , which is constructed in the following way: label its columns 
by (11, 12, …​, 1n, …​, m1, m2, …​, mn) and its rows by (11, 21, …​, m1, …​, 1n, 2n, …​, mn). And its element in the 
position ((I, J), (i, j)) is assigned as

ω δ= =





= =
.

I i J j
otherwise

1, & ,
0,I J i j i j

I J
( , ),( , ) ,

,

And we denote W[n] =​ W[n, n] when m =​ n.

Lemma 3.36 Let ∈X m and ∈Y n be two columns. Then

     = = .W X Y Y X and W Y X X Ym n n m[ , ] [ , ]

For the logical function with n arguments →f : n , we can convert it into an algebraic function using the 
STP of matrices. A logical domain, denoted by , is defined as  = = =T F{ 1, 0}. We identify each element in 
 with a vector as δ~T 2

1, δ~F 2
2 and δ δ∆ = ∆ = ~: { , }2 2

1
2
2 . Based on this, we have

Lemma 4.36 Any logical function f(x1, x2, …​, xn) with logical arguments x1, x2, …​, xn ∈​ Δ​, can be expressed in a 
multi-linear form as

… = =f x x x M x( , , , ) ,n f i
n

i1 2 1

where ∈ ×M f
2 2n

 is unique, which is called the structure matrix of logical function f.
And here we give another lemma:

Lemma 5.36 Assume = … = =X x x x xn n i
n

i1 2 1 , then

= ΦX X ,n n n
2

where

∏Φ = ⊗ 

⊗ 


.

=

− −( )I I W Mn
i

n

r
1

2 2 [2,2 ]i n i1

Here Mr =​ δ4[1, 4], which is power-reducing matrix and it can be verified that P2 =​ MrP, ∀​P ∈​ Δ​.
Based on the above properties of STP, we put forward an obvious proposition.

Proposition 1. For each ∈ …i n{1, 2, , }, if Γ = … ≤j j j r n{ , , , }, ( )in i r( ) 1 2 , we can find a matrix Ri such that

… = … .R x x x x x xi n j j j1 2 r1 2

Algebraic structure of the BMCNs.  In this subsection, we change our BMCNs into discrete version using 
STP tool. To express it more clearly, here we give some description of variables.

•	 = =x t x t( ) ( )l
a i

l
1i l,

  means the state of layer l.
•	 = =u t u t( ) ( )i

m
i1  means the control.

•	 = =x t x t( ) ( )l
K l

1  means the state of all layers.

In the following step we will change the given BMCNs (3)-(4) into algebraic representation, as we will find out 
the algebraic relation between x(t +​ 1) and x(t) as well as the algebraic relation between +x t( 1) and x(t).

At the first place, we will find out the algebraic relation between x(t +​ 1) and x(t). Using lemma 4 and propo-
sition 1, for each logical rule fi

l, we can find its structure matrix Mi
l, so we obtain that

+ = … …

= …

=
∼

=



x t M u t u t u t x t x t x t

M u t u t u t R x t

M u t R x t

M u t x t

( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ), (7)

i
l

i
l

m j
l

j
l

j
l

i
l

m
l

a i
l

i
l l l

i
l l

1 2

1 2 1

l l
r
l

i l

1 2

,


where  = == =x t x t u t u t( ) ( ), ( ) ( )l
a i

l
i
m

i1 1i l,
, and = ⊗
∼M M I R( )i

l
i
l l

2m . Hence
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+ = +

= + + … +

= …

= ⊗ Φ …
= …

= ⊗ Φ ⊗

× Φ … ⊗ Φ

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

∼

=

+

+

+ +

+

+ +

+



x t x t

x t x t x t

M u t x t M u t x t M u t x t

M I M u t x t M u t x t

M I M I M

I M u t x t

L u t x t

( 1) ( 1)

( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ),

l
a i

l

i
l

i
l

i
l

i
l l

i
l l

i
l l

i
l

i
l

m N
l

i
l l

i
l

i
l

m N i
l

m N i
l

m N
l

l l

1

2

2 2

2

i l

N

N

m N
N

m N m N

m N
N

,

1 2

1 2

1 2

1 2 3

with = ⊗ Φ
∼ ∼

= ++L M I M{( ) }l
i
l

i i
i

i
l

m N2
N m N

1 2
 . And we have defined that = =x t x t( ) ( )l

K l
1 , so we obtain that

+ = + + … +

= …

= ⊗ Φ …
= …
= ⊗ Φ … ⊗

× Φ …

+ +

+ + + −

+ −



x t x t x t x t
L u t x t L u t x t L u t x t
L I L W u t x t x t L u t x t

L I L W I L

W u t x t x t x t

Lu t x t

( 1) ( 1) ( 1) ( 1)
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ), (8)

K

K K

m
K K

m
K

m
K

1 2

1 1 2 2

1
2

2
[2 ,2 ]

1 2

1
2

2
[2 ,2 ] 2

[2 ,2 ]
1 2

m N m m N

m N m m N m K N

m m K N

( 1)

( 1)

where = ⊗ Φ= + − + −L L I L W{( ) }l
K l

m
1

2 2 [2 ,2 ]m l N m m l N( 1) ( 1) .
Subsequently, we will find out the algebraic relation between +x t( 1) and x(t). Using the similar steps above, 

the algebraic representation of (4) can be obtained as

Figure 1.  Schematic of multiple networks with two layers. Here K =​ 2 means that the system is a two layers 
network. N =​ 4 means that there are four nodes in each layer. And n =​ 5 means that there are five total different 
nodes in the system. x x x x, , ,1

1
2
1

3
1

4
1 are the states in layer 1, and x x x x, , ,1

2
3
2

4
2

5
2 are the states in layer 2.
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+ = … + + … +
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u t x t x t M u t x t

M I R M I M

W u t x t x t x t

L u t x t
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( ) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( ) ( )
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]} ( ) ( ) ( ) ( )
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i i m i
l

i
l

i
l

i i i i i
K

i i i i i
K K

i i i m i i
K K

i i i m i i
K K

i i i m i m

i
K K

i i i m l
K

i
l

m
K

i

1 2
1 2

1 1 2 2

2
1 1 2 2

2
1

2
2 1 2

2
1

2
2

[2 ,2 ]

1 2

2
1

2 2

[2 ,2 ]
1 2
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m

m m N

m m N m m N

m m l N

m m l N

1 2

( 1)

( 1)



where = ⊗ Φ ⊗ Φ= ++ − + −˜ ˜ ˜ ˜L M I R M I M W( ) { [( ) ]}i i i i m l
K

i
l

m2
1

2 2 [2 2 ]m m l N m m l N( 1) ( 1)  is the structure matrix of logical 
function f i. And we have that = =x t x t( ) ( )l

K l
1 . So we obtain that

+ = + + + … +

= …

= ⊗ Φ …
= …
= ⊗ Φ ⊗

× Φ … ⊗ Φ

+

+

+ +

+

+ +

+

�

� � � � �
� � � �
� � � �
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�

�

x t x t x t x t x t
L u t x t L u t x t L u t x t L u t x t
L I L u t x t L u t x t L u t x t

L I L I L

I L u t x t

Lu t x t

( 1) ( 1) ( 1) ( 1) ( 1)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ),

n

n

m NK n

m NK

m NK n m NK

1 2 3

1 2 3

1 2 2 3

1 2 2 2 3

2

m NK

m NK m NK

m NK

where = ⊗ Φ ⊗ Φ … ⊗ Φ+ + ++ + +    L L I L I L I L( ) ( ) ( )m NK m NK n m NK1 2 2 2 3 2m NK m NK m NK .
Means that

+ = .

x t Lu t x t( 1) ( ) ( ) (9)

Similarly, by letting = …y t y t y t y t( ) ( ) ( ) ( )p1 2 , we obtain the algebraic expression of the output dynamics (5) 
as follows:

Figure 2.  Schematic illustration of the relationship of node states in the fixed layers with the holistic states 
in BMNs. Where,     x x x x x, , , ,1 2 3 4 5 represent the holistic states of BMNs. For example x1 is the holistic state of x1

1 
and x1

2. It is affected by x1
1 and x1

2 through canalizing function f 1. The second node is only existed in layer one. 
So holistic state x2 is only affected by x2

1.
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= .y t Hx t( ) ( ) (10)

where = ⊗ Φ=H H I H{( ) }j
p

j n1 2 2n , here Hjs are the structure matrixes of hj, j =​ 1, 2, …​, p.
Here we give an example to illustrate this process.

Example 1. Consider following two-layer BMCN, with N =​ 2, K =​ 2, n =​ 4 and m =​ 4

=







+ = ↔

+ = ↔ .
l

x t u t x t
x t u t x t

1:
( 1) ( ) ( ),
( 1) ( ) ( )

1
1

1 1
1

2
1

2 2
1

=







+ = ↔

+ = ↔ .
l

x t u t x t
x t u t x t

2:
( 1) ( ) ( ),
( 1) ( ) ( )

3
2

3 3
2

4
2

4 4
2

and we have that 











+ = ¬ +

+ = +

+ = ¬ +

+ = +









x t x t
x t x t
x t x t
x t x t

( 1) ( 1),
( 1) ( 1),
( 1) ( 1),
( 1) ( 1),

1 1
1

2 2
1

3 3
2

4 4
2

where ¬ ∨ ∧ → ↔, , , and  represent the logical functions of negation, disjunction, conjunction, implication, and 
equivalence, respectively. Based on Lemma 4, we obtain the corresponding structure matrices of those logical 
operators, as given in Table 1.

Define  = == = x t x u t u t( ) , ( ) ( )i i i i1
4

1
4 . Then we calculate the control-depending network transition matrix 

of system.

Figure 3.  Schematic illustration of BNs with control and output. The inputs m dimension control 
… ∈u u u, , , m1 2  have been introduced. …y y y, , , p1 2  denote outputs. From the figure, we see that inputs 

…u u u, , , m1 2  affect the node states in each layers as well as the abstract holistic states. And outputs 
…y y y, , , p1 2  are affected by holistic states     x x x x x, , , ,1 2 3 4 5.
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=







+ =

+ = .
l

x t M u t x t
x t M u t x t

1:
( 1) ( ) ( ),
( 1) ( ) ( )

e

e

1
1

1 1
1

2
1

2 2
1

=







+ =

+ = .
l

x t M u t x t
x t M u t x t

2:
( 1) ( ) ( ),
( 1) ( ) ( )

e

e

3
2

3 3
2

4
2

4 4
2

and we have that 











+ = +

+ = +

+ = +

+ = + .









x t M x t
x t x t
x t M x t
x t x t

( 1) ( 1),
( 1) ( 1),
( 1) ( 1),
( 1) ( 1)

n

n

1 1
1

2 2
1

3 3
2

4 4
2

Then 

δ

+ = + +

= + + + +

=
= …
=

.

x t x t x t
x t x t x t x t

M u t x t M u t x t M u t x t M u t x t

u t x t
Lu t x t

( 1) ( 1) ( 1)
( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 1, 4, 3, 6, 5, 8, 7,
10, 9, 12, 11, 14, 13, 16, 15, 3, 4, 1, 2, 7, 8, 5, 6, 11, 12, 9, 10, 15, 16,
13, 14, 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13, 5, 6, 7, 8, 1,
2, 3, 4, 13, 14, 15, 16, 9, 10, 11, 12, 6, 5, 8, 7, 2, 1, 4, 3, 14, 13, 16,
15, 10, 9, 12, 11, 7, 8, 5, 6, 3, 4, 1, 2, 15, 16, 13, 14, 11, 12, 9, 10,
8, 7, 6, 5, 4, 3, 2, 1, 16, 15, 14, 13, 12, 11, 10, 9, 9, 10, 11, 12, 13,
14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 11, 14, 13, 16, 15, 2, 1, 4,
3, 6, 5, 8, 7, 11, 12, 9, 10, 15, 16, 13, 14, 3, 4, 1, 2, 7, 8, 5, 6, 12, 11,
10, 9, 16, 15, 14, 13, 4, 3, 2, 1, 8, 7, 6, 5, 13, 14, 15, 16, 9, 10, 11,
12, 5, 6, 7, 8, 1, 2, 3, 4, 14, 13, 16, 15, 10, 9, 12, 11, 6, 5, 8, 7, 2,
1, 4, 3, 15, 16, 13, 14, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4, 1, 2, 16, 15, 14,
13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] ( ) ( )

( ) ( )

e e e e

1 2

1
1

2
1

3
2

4
2

1 1
1

2 2
1

3 3
2

4 4
2

16

δ

+ = + + + +

= + + + +
= …
=

.�

� � � � �

�

x t x t x t x t x t

M x t x t M x t x t

u t x t

Lu t x t

( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

[11, 12, 9, 10, 15, 16, 13, 14, 3, 4, 1, 2, 7, 8, 5, 6, 12, 11, 10, 9, 16,
15, 14, 13, 4, 3, 2, 1, 8, 7, 6, 5, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4,
5, 6, 7, 8, 10, 9, 12, 11, 14, 13, 16, 15, 2, 1, 4, 3, 6, 5, 8, 7, 15, 16, 13,
14, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4, 1, 2, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7,
, 6, 5, 4, 3, 2, 1, 13, 14, 15, 16, 9, 10, 11, 125, 6, 7, 8, 1, 2, 3, 4, 14, 13,
16, 15, 10, 9, 12, 11, 6, 5, 8, 7, 2, 1, 4, 3, 3, 4, 1, 2, 7, 8, 5, 6, 11, 12, 9,
10, 15, 16, 13, 14, 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12,
11, 14, 13, 16, 15, 7, 8, 5, 6, 3, 4, 1, 2, 15, 16, 13, 14, 11, 12, 9, 10, 8, 7,
6, 5, 4, 3, 2, 1, 16, 15, 14, 13, 12, 11, 10, 9, 5, 6, 7, 8, 1, 2, 3, 4, 13, 14, 15,
16, 9, 10, 11, 12, 6, 5, 8, 7, 2, 1, 4, 3, 14, 13, 16, 15, 10, 9, 12, 11] ( ) ( )

( ) ( )

n n

1 2 3 4

1
1

2
1

3
2

4
2

16

Here we have found out the algebraic relation between x(t +​ 1) and x(t) as well as the algebraic relation 
between +x t( 1) and x(t). Furthermore, we assume that 











= ¬

= ¬

= ¬

= ¬ .









y t x t
y t x t
y t x t
y t x t

( ) ( ),
( ) ( ),
( ) ( ),
( ) ( )

1 1

2 2

3 3

4 4

f(x1, x2) ¬x1 x1 ∨ x2 x1 ∧ x2 x1 → x2 x1 ↔ x2

Mf Mn =​ δ2[2, 1] Md =​ δ2[1, 1, 1, 2] Mc =​ δ2[1, 2, 2, 2] Mi =​ δ2[1, 2, 1, 1] Me =​ δ2[1, 2, 2, 1]

Table 1.   Structure matrices of some basic logical functions.
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Then, according to properties of STP, we obtain the matrix expression of output, as follows 

δ

=

=
=

.�

� � � �
�

�

y t y t y t y t y t
M x t M x t M x t M x t

x t
Hx t

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1] ( )
( )

n n n n

1 2 3 4

1 2 3 4

16

Observability of BMCNs
In this section, we will analyze and characterize the observability of the BMCNs, with two different types of con-
trols. We first provide some definitions as follows.

Consider the BMCN (3)-(4) with output dynamics (5). For any initial state ∈ ∆x(0) ,2NK  and control input 
sequence = u uu { (0), (1), }, the holistic trajectory at time t is denoted by x t xu( ; , (0)). Output trajectory at 
time t denote by y(; u, x(0)).

Definition 2. The BMCN (3)-(5) is observable if there exists a finite control sequence = …u u u u s{ (0), (1), , ( )}, 
with s >​ 0, such that for any δ δ ∈ ∆, ,i j

2 2 2NK NK NK  with i ≠​ j, we have δ δ≠y t y tu u( ; , ) ( ; , )i j
2 2NK NK  for some 

∈ t s{1, , }.
In other words, there exists a control input sequence for which the initial state can be uniquely determined 

from the knowledge of the output sequence.

Remark 2. Our definition is motivated by the definition of observability for BCNs proposed in Laschov, et al.39, 
which is different from the one proposed by Cheng, D. et al.24. In Cheng, D. et al.24, a BCN is said to be observable 
if the initial state can be uniquely determined from the knowledge of the control inputs (which may depend on 
the initial state) and the outputs.

We consider two kinds of controls. The first is that the controls are determined by certain logical rules, which 
called the input networks.











+ = …

+ = …

+ = … .


u t g u t u t u t
u t g u t u t u t

u t g u t u t u t

( 1) ( ( ), ( ), , ( )),
( 1) ( ( ), ( ), , ( )),

( 1) ( ( ), ( ), , ( )) (11)

m

m

m m

1 1 1 2

2 1 1 2

1 1 2

where ∆ → ∆ = …g i m: , 1, 2, ,i 2m , are logical function.
According Lemma 4, we know that the input network (11) can be expressed as

+ =u t G u t( 1) ( ),j j

where = G j m, 1, ,j  are the structure matrix of logical function gi, respectively. Then,

+ = … .u t G u t G u t G u t Gu t( 1) ( ) ( ) ( ) ( ) (12)m1 2

with  Φ= ⊗=G G I G{( ) }j
m

j m1 2 2m .

Theorem 1. Consider (3)-(5) (or equivalently (8)-(10)) with input network control (11). The system is observable 
if and only if there exists finite time s, s >​ 0, such that δ =rank( ) 2c

k NK
2m , for some δ ∈ ∆k

2 2m m, where

Φ
=







⊗

⊗ ⊗ ⊗ Φ Φ

⊗ … ⊗ ⊗ Φ …Φ







.

− −
− −

�

�
�

�

�

HL
HLG I L

HLG I LG I L I

HLG I LG I L I

( )
( )( )( )

( ) ( )( )

c

m

m m

s s
m m

2
2

2 2 2

( 1)
2

( 2)
2 2

m

m m m

m s m s m

2

( 1) ( 2)



Proof. By considering the input network, put together (8)-(9) with (12), we can obtain the system











+ =
+ =
+ =

= .






u t Gu t
x t Lu t x t
x t Lu t x t

y t Hx t

( 1) ( ),
( 1) ( ) ( ),
( 1) ( ) ( ),

( ) ( ) (13)

A straightforward computation shows, we calculate the output …y y y s{ (0), (1), , ( )} as follows
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= =

= = = = ⊗
× Φ

= = = =
×

= ⊗ = ⊗
× ⊗

= ⊗ ⊗ Φ = ⊗
× ⊗ ⊗ Φ

= ⊗ ⊗ ⊗ Φ Φ

= = ⊗ … ⊗ ⊗
× ⊗ Φ … ⊗ Φ Φ .

− −
− −

−

�

�
�

�

�

�
� � �

� � �

� �

� �

�

�

y Hx HLu x
y Hx HLu x HLGu Lu x HLG I L

u x
y Hx HLu x HLG u Lu x HLG u

LGu Lu x
HLG I LG u u Lu x HLG I LG

I L u u u x
HLG I LG I L u u x HLG I LG

I L I u u x
HLG I LG I L I u x

y s Hx s HLG I LG I GL I L
I I u x

(1) (1) (0) (0),
(2) (2) (1) (1) (0) (0) (0) ( )

(0) (0),
(3) (3) (2) (2) (0) (1) (1) (0)

(0) (0) (0)
( ) (0) (0) (0) (0) ( )

( ) (0) (0) (0) (0)
( )( ) (0) (0) (0) ( )

( )( ) (0) (0) (0)
( )( )( ) (0) (0),

( ) ( ) ( ) ( )( )
( ) ( ) (0) (0)

m

m

m

m m

s s

m m m

2

2 2

2
2

2
2

2
2

2 2
2

2

2 2
2

2 2 2

( 1)
2

( 2)
2 2

2 2

m

m m

m

m m m

m m

m m m

m s m s m

s m m

2

2

2

2

( 2) ( 1)

( 2)

Hence, in the matrix form, we obtain

= .y y y s u x( (1) , (2) , , ( ) ) (0) (0) (14)T T T T
c

From the solution structure of the system of linear algebraic equations, we know that for some initial control 
input δ=u (0) k

2m, the system of linear equations (14) with 2NK-dimension unknown vector x(0) has a unique solu-
tion if and only if the system matrix δc

k
2m  has rank 2NK. That is, for some initial control input δ=u (0) k

2m, the initial 
state x(0) is uniquely determined by the knowledge of the output sequence y y y s{ (1), (2), , ( )} if and only if

 δ = .rank ( ) 2 (15)c
k NK

2m

This completes the proof.

Remark 3. From the proof of above theorem, we obtain that for some δ ∈ ∆ ,k
2 2m m  if the matrix δc

k
2m  has full col-

umn rank, means that δ =rank( ) 2c
k NK
2m , then the initial state x(0) can be reconstructed by the left inverse of 

δ( )c
k

2m  operation on output sequence y y y s{ (1), (2), , ( )},

  δ δ δ= .−
x y y y s(0) (( ) ) ( ) ( (1) , (2) , , ( ) )k T

c
T

c
k

c
k T T T T T

2 2
1

2m m m

In the following, we consider the case when the controls are free Boolean sequence. Precisely, m controls are 
described as = =u t u t( ) ( )j

m
j1  and freely designed.

Theorem 2. Consider (3)-(4) and (5) (or equivalently (8), (9) and (10)), with a free Boolean sequence control. The 
system is observable if and only if there exists a finite control sequence δ δ δ= = =u u u s(0) , (1) , , ( ) ,i i i

2 2 2m m ms0 1  
with ∈ i i i, , , {1, , 2 }s

m
0 1  such that =rank( ) 2f

NK , where



δ

δ δ

δ δ δ

δ δ δ δ

=







⊗

⊗ ⊗

⊗ ⊗ … ⊗ …







.

− −

�

�

�

�

�

HL

HL I L

HL I L I L

HL I L I L I L

( )

( )( )

( )( ) ( )

f

i

i i

i i i

i i i i

2

2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

m

m m m

m m m m m

m m s m ms m m m

0

1 0

2 2 1 0

2 ( 1) 1 2 1 0

Proof. If the controls come from a free Boolean sequence, the system is that









+ =
+ =

= .






x t Lu t x t
x t Lu t x t
y t Hx t

( 1) ( ) ( ),
( 1) ( ) ( ),
( ) ( ) (16)

If free control inputs …u u u s{ (0), (1), , ( )} are given, then a straightforward computation shows the following:

= =

= = = = ⊗

= = = = ⊗

= ⊗ = ⊗
× ⊗

= = ⊗ ⊗ … ⊗
× − … .

−

�

�
�
�

�

�
� � �
� � �

� �

�

y Hx HLu x
y Hx HLu x HLu Lu x HL I L u u x
y Hx HLu x HLu Lu x HL I L u u x

HL I L u u Lu x HL I L
I L u u u x

y s Hx s HL I L I L I L
u s u u u x

(1) (1) (0) (0),
(2) (2) (1) (1) (1) (0) (0) ( ) (1) (0) (0),
(3) (3) (2) (2) (2) (1) (1) ( ) (2) (1) (1)

( ) (2) (1) (0) (0) ( )
( ) (2) (1) (0) (0),

( ) ( ) ( )( ) ( )
( 1) (2) (1) (0) (0)

2

2

2 2

2

2 2 2

m

m

m m

m

m m s m

2

2 ( 1)
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Hence, in the matrix form, we obtain

= .y y y s x( (1) , (2) , , ( ) ) (0) (17)
T T T T

f

As a similar analysis discussed in the proof of Theorem 1, we know that for a given free control inputs 
…u u u s{ (0), (1), , ( )}, the system of linear equations (17) with 2NK-dimension unknown vector x(0) has a unique 

solution if and only if the system matrix  f  has rank 2NK. That is, for a given free control inputs 
…u u u s{ (0), (1), , ( )}, the initial state x(0) is uniquely determined by the knowledge of the output sequence 
y y y s{ (1), (2), , ( )} if and only if  =rank ( ) 2f

NK. Furthermore, as mentioned in Remark 3, the initial state 
x(0) can exactly calculated as = −

x y y y s(0) ( ) ( (1) , (1) , , ( ) )f
T

f f
T T T T T1    This completes the proof.

Remark 4. The observability in our paper is the observability of = =x x(0) (0)l
K l

1  which is the all initial states of 
all layers in the initial time. Boolean control network (3)-(4) is observable if for the initial state ∈x(0) 2NK

, there 
exists finite time ∈s  , such that the initial state can be uniquely determined from the knowledge of the controls 

...u u u s(0), (1), , ( ) and the outputs ...y y y s(0), (1), , ( ). Based on the initial state ∈ ∆x (0) 2NK , we can easily 
obtain the holistic states …  x x x(0), (0), , (0)n1 2  through the canalizing function = …f i n( 1, 2, , )i . So the holistic 
states …  x x x(0), (0), , (0)n1 2  are also observable.

Examples
In this section, we will give some examples to illustrate our results. Example 2 is a observable case and Example 
3 is an unobservable case.

Example 2. (Continue to Example 1) Consider the two-layer BMCN given in Example 1. Assume that the control 
inputs are determined by the following input network











+ = ¬
+ = ¬
+ = ¬
+ = ¬ .

u t u t
u t u t
u t u t
u t u t

( 1) ( ),
( 1) ( ),
( 1) ( ),
( 1) ( ) (18)

1 1

2 2

3 3

4 4

Then we obtain that

δ=G [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1],16

If we take δ= .u (0) 16
16  By calculation, we have 

δ

Φ δ

Φ Φ

δ

= =

= ⊗ =

= ⊗ ⊗ ⊗

= .







y H Lu x x
y H LG I L u x

x
y H LG I LG I L I u x

x

(1) (0) (0) [11, 12, 9, 10, 15, 16, 13, 14, 3, 4, 1, 2, 7, 8, 5, 6] (0),
(2) ( ) (0) (0) [11, 12, 9, 10, 15,

16, 13, 14, 3, 4, 1, 2, 7, 8, 5, 6] (0),
(3) ( )( )( ) (0) (0)

[6, 5, 8, 7, 2, 1, 4, 3, 14, 13, 16, 15, 10, 9, 12, 11] (0)

m m

m m m m m

16

2 16

2
2 22 2

16

Then we have that

 δ =










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.

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

c 16
16
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And we can obtain that  δ = =rank( ) 2 16c
NK

16
16 . Then from Theorem 1, we know that the system is observ-

able under the input network (18).

Example 3. Consider following two-layer BMCN, with N =​ 2, K =​ 2, n =​ 3 and m =​ 1
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and we have that
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Then we calculate the control-depending network transition matrix of system.
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Furthermore, we assume that






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Then, according to properties of STP, we obtain the matrix expression of output, as follows
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δ
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Now, we analyze the observability of this system, based on Theorem 2. We can calculate that while δ=x(0) 16
1 ,
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And while δ=x(0) 16
2 , we have that

δ
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Then, by induction, we easy obtain that, for any s >​ 0, and free control input = u u u su { (0), (1), , ( )}, 
δ δ= x t x tu u( , , ) ( , , )16

1
16
2 , and furthermore, δ δ δ δ= = = y t Hx t Hx t y tu u u u( , , ) ( , , ) ( , , ) ( , , )16

1
16
1

16
2

16
2 . That 

implies, for any s >​ 0, and free control input = u u u su { (0), (1), , ( )}

δ δ=s su u( , ) ( , ) , (19)f f16
1

16
2 

So the linear homogeneous equation

 =x 0 (20)f

has the non-zero solution. Then we obtain that for arbitrary s >​ 0, we still have that  <rank ( ) 2f
NK, by Theorem 

2, the system is unobservable.

Conclusions
In this paper, input controls were introduced into BMNs. By means of STP approach, the above logical dynamics 
has been converted into an algebraic form and the observability of dynamics is discussed. Firstly, we gave the the-
orem about the observability of whole dynamic system. Subsequently, the observability of each node in the special 
layer has been proved. Finally, we put forward some examples to illustrate our results.
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