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Transcriptional repression can occur via various mechanisms, such as
blocking, sequestration and displacement. For instance, the repressors can
hold the activators to prevent binding with DNA or can bind to the
DNA-bound activators to block their transcriptional activity. Although the
transcription can be completely suppressed with a single mechanism, mul-
tiple repression mechanisms are used together to inhibit transcriptional
activators in many systems, such as circadian clocks and NF-κB oscillators.
This raises the question of what advantages arise if seemingly redundant
repression mechanisms are combined. Here, by deriving equations describ-
ing the multiple repression mechanisms, we find that their combination can
synergistically generate a sharply ultrasensitive transcription response and
thus strong oscillations. This rationalizes why the multiple repression mech-
anisms are used together in various biological oscillators. The critical role of
such combined transcriptional repression for strong oscillations is further
supported by our analysis of formerly identified mutations disrupting the
transcriptional repression of the mammalian circadian clock. The hitherto
unrecognized source of the ultrasensitivity, the combined transcriptional
repressions, can lead to robust synthetic oscillators with a previously
unachievable simple design.
1. Introduction
Transcription, the first step of gene expression, is regulated by activators and
repressors, i.e. the bindings of the activators and repressors to a specific DNA
sequence promote and downregulate transcription, respectively [1,2]. The
repressors can also indirectly inhibit transcription by binding with the activa-
tors rather than with DNA (figure 1a) [3,4]. That is, the repressors can bind
to the DNA-bound activators to block their transcriptional activity (blocking;
figure 1a), hold the activators to prevent them from binding with DNA (seques-
tration; figure 1a), and dissociate the activators from DNA by forming a
complex (displacement; figure 1a).

Each repression mechanism appears to be able to suppress transcription
solely. However, various repressors use a combination of multiple repression
mechanisms [3]. For example, retinoblastoma (Rb) protein, a key regulator of
mammalian cell cycle genes, represses transcription by blocking the activator
and recruiting histone deacetylase, which alters the structure of chromatin [5–7].
Similarly, PHO80, a component of a yeast nutrient-responsive signalling pathway,
represses transcription by blocking the activator and sequestering the activator
in the cytoplasm [8–10]. This raises the question of the advantages of using a
combination of multiple repression mechanisms, which seems redundant.

In the transcriptional negative feedback loop (NFL) of various biological
oscillators, repressors also inhibit their own transcriptions via combinations
of the multiple repression mechanisms. For example, IκBα inhibits its own
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Figure 1. Multiple transcriptional repression mechanisms are used together in the transcriptional NFL of the circadian clock. (a) Repressors (R) can suppress the transcrip-
tional activity of activators (A) with multiple mechanisms. For example, R binds to the DNA-bound A to block its transcriptional activity (blocking), holds A to prevent binding
to DNA (sequestration), or dissociates A from DNA (displacement). (b) Such multiple repression mechanisms are used together in the transcriptional NFL of the Drosophila
circadian clock. The activator CLK:CYC (A) promotes the synthesis of the repressor PER:TIM (R). Then, R inhibits the transcriptional activity of A in various ways: R sequesters the
free A from DNA, and blocks the transcriptional activity of the DNA-bound A and then displaces it from DNA. (c) Similarly, in the mammalian circadian clock, the repressors
PER:CRY and CRY (R) inhibit their own transcriptional activator CLOCK:BMAL1 (A) via blocking, sequestration and displacement.
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transcriptional activator NF-κB by sequestering it in the
cytoplasm [11] as well as displacing it from DNA [12,13],
which induces the NF-κB oscillation under stress conditions.
In the transcriptional NFL of the circadian clock, the tran-
scription is also suppressed in multiple ways. Specifically,
in the Drosophila circadian clock, the repressor (PER : TIM)
sequesters its own transcriptional activator (CLK:CYC) from
DNA (sequestration), blocks the transcriptional activity by
binding to DNA-bound CLK:CYC (blocking), and then dis-
places it from DNA (displacement; figure 1b) [14]. Similarly,
in the mammalian circadian clock, the repressors (PER:CRY
and CRY) also inhibit their own transcriptional activator
(CLOCK:BMAL1) by sequestration, blocking anddisplacement
(figure 1c) [15–17].

The transcriptional NFL can generate oscillations when the
transcriptional activity shows an ultrasensitive response to
changes in the concentration of repressors [18–21]. Such ultra-
sensitivity can be generated solely by sequestration when the
activators and repressors tightly bind [22,23]. In particular,
the sequestration requires only tight binding, which seems to
be physiologically more achievable than the conditions for
the other ultrasensitivity-generating mechanisms based on
cooperativity (e.g. cooperative oligomerization). Thus, seques-
tration has recently been adopted for mathematical models
of circadian clocks [21,24–31]. However, Heidebrecht et al.
pointed out that the tightness of the binding between the acti-
vator and repressor required for the sequestration to generate
sustained rhythms is beyond the physiologically plausible
binding affinity [32].

Here, we find that combining multiple transcriptional
repression mechanisms can synergistically generate ultrasensi-
tivity by deriving their governing equations. Specifically, we
find that the sole blocking-type repression can generate only
low-sensitivity transcriptional activity. When sequestration is
added, the ultrasensitivity can be generated with stronger
sequestration compared to the blocking. The required strong
sequestration is challenging to achieve with a physiologically
plausible binding affinity. Interestingly, this limitation to gener-
ate ultrasensitivity and strong oscillations can be overcome by
adding displacement. To test whether the combination of the
multiple repressions is critical for the mammalian circadian
clock to generate strong rhythms, we investigated the pre-
viously identified mutations disrupting the transcriptional
repressions [33–36]. Indeed, when any of the blocking, seques-
tration or displacementwas disrupted, the circadian rhythms of
PER2-LUC becameweaker inmice. Our work explains why the
combination of seemingly redundant repression mechanisms is
used in various systems requiring ultrasensitivity, such as the
cell cycle and the circadian clock.
2. Results
2.1. The sole blocking-type repression generates a

hyperbolic response in the transcriptional activity
To investigate how the transcription is regulated by the mul-
tiple repression mechanisms (figure 1a), we first constructed a
model describing the single blocking-type repression
(figure 2a; see Methods for details). In the model, the tran-
scription is triggered when the free activator (A) binds to
the free DNA (EF) with a dissociation constant of Ka to
form the activated DNA (EA). The transcription is inhibited
when the repressor (R) binds to the DNA-bound A (EA) to
form ternary complex (ER) with a dissociation constant
of Kb (i.e. the blocking-type repression). Therefore, the tran-
scriptional activity is proportional to the probability that
DNA is bound with only A and not R, i.e. EA=ET , where
ET ¼ EF þ EA þ ER is the conserved total concentration of
DNA. In particular, when the transcription rate is normalized
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Figure 2. The combination of multiple repression mechanisms leads to ultrasensitive transcription response. (a) Diagram of the model describing the blocking-type
repression. The binding of the activator (A) to DNA with a dissociation constant of Ka leads to the transcription, and the binding of the repressor (R) to the DNA-
bound A with a dissociation constant of Kb, inhibits the transcription. (b) As the molar ratio between the total repressor and activator concentrations (~RT ) increases or
their binding affinity increases (i.e. ~Kb decreases), the transcriptional activity decreases. The sensitivity of the transcriptional activity is quantified using the effective
Hill coefficient (Log(81)=Log(EC10=EC90)), which increases as the width of the EC90 and EC10 box decreases (i.e. the red box). The grey dashed lines denote the
10% and 90% values of the maximal transcriptional activity, respectively. Here, ~Ka ¼ 10�4. (c) The effective Hill coefficient is one regardless of the values of ~Kb
and ~Ka, indicating that the sole blocking can generate only low sensitivity. The square and triangle marks represent the parameter values used for (b). (d ) The
sequestration-type repression is added to the blocking model in (a): R sequesters the free A with a dissociation constant of Ks from DNA. (e) When the sequestration
is weaker than the blocking (i.e. ~Ks . ~Kb; dotted line), the sensitivity of the transcriptional activity is similar to that regulated by only the blocking-type
repression (b). On the other hand, when the sequestration is stronger than the blocking (i.e. ~Ks , ~Kb; solid and dashed lines), a switch-like transition in the
transcriptional activity occurs. Here, ~Kb ¼ 10�5 and ~Ka ¼ 10�4. ( f ) The effective Hill coefficient increases as ~Ks decreases. The circle, square and triangle
marks represent the parameter values used for (e). (g) The displacement-type repression is added to the model in (d): the RA complex dissociates from DNA
with a dissociation constant of Kd. (h) When ~Kd ¼ ~Ka ¼ 10�4 (dashed line), it satisfies the detailed balance condition (i.e. ~Ks~Kd=~Kb~Ka ¼ 1) and thus the dis-
placement has no effect on the transcriptional activity (cf. dashed line in (e)). When the effective displacement occurs (i.e. ~Kd . ~Ka; solid line), the sensitivity
increases. Here, ~Ks ¼ 10�5, ~Kb ¼ 10�5 and ~Ka ¼ 10�4. (i) When ~Kd . ~Ka, the effective Hill coefficients become larger compared to those obtained with the
sequestration and blocking ( f ). The circle, square and triangle marks represent the parameter values used for (h).
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to one, the transcriptional activity and EA=ET become the
same. Thus, for simplicity, we refer to EA=ET as the
transcriptional activity throughout this study.

The transcriptional activity (EA=ET) increases as A
increases or R decreases. This relationship can be quantified
by deriving the steady state of EA=ET . Because the steady
state of EF depends on the single pair of binding and unbind-
ing reactions with the dissociation constant of Ka, its steady
state equation is AEF ¼ KaEA. Similarly, the steady state
equation of ER is also simple as REA ¼ KbER. Therefore, EF:
EA: ER = 1: A/Ka: ðR=KbÞðA=KaÞ at the steady state, leading
to the steady state of EA=ET as follows:

EA

ET
¼ A=Ka

1þ ðA=KaÞ þ ðR=KbÞðA=KaÞ , ð2:1Þ

where A and R are the steady states of the free activator
and repressor, respectively (see Methods for details).
Because the steady states of A and R depend on the dis-
sociation constants (i.e. Ka and Kb), it is challenging to
analyse equation (2.1).

Equation (2.1) can be further simplified because the
concentration of DNA is typically negligible compared to
the concentration of activator and repressor proteins (see
Methods for details about the validity of the assumption).
Specifically, EA and ER can be neglected in the conserved
total concentration of the activator ðAT ¼ Aþ EA þ ERÞ and
the repressor ðRT ¼ Rþ ERÞ, and thus A � AT and R � RT .
This allows us to get the simplified approximation for
equation (2.1) as follows:

EA

ET
� ðAT=KaÞ

1þ ðAT=KaÞ þ ðRT=KbÞðAT=KaÞ

¼
~Kb

~RT þ ~Kb(1þ ~Ka)
, ð2:2Þ

where ~RT ¼ RT=AT is the molar ratio between RT and AT ,
and ~Kb ¼ Kb=AT and ~Ka ¼ Ka=AT are the dissociation con-
stants normalized by the concentration of the total activator.
Equation (2.2) indicates that the transcriptional activity shows
a hyperbolic response with respect to the molar ratio ~RT

(figure 2b). Specifically, when ~RT ¼ 0, EA=ET has themaximum
value 1=(1þ ~Ka), which becomes closer to one as A binds to
DNA more tightly (i.e. ~Ka � 1). When ~RT ¼ ~Kb(1þ ~Ka),
EA=ET is reduced to its half-maximal value. Thus, as the bind-
ing between the DNA-bound A and R becomes tighter (i.e. ~Kb

decreases), the transcriptional activity achieves its half-maxi-
mal value at the lower ~RT (figure 2b). The sensitivity of the
transcriptional activity with respect to ~RT can be quantified
using the effective Hill coefficient Logð81Þ=Log(EC10=EC90),
which is equivalent to the Hill exponent for a Hill curve
[37]. The effective Hill coefficient of the transcriptional
activity is one regardless of the ~Kb and ~Ka values (figure 2c),
as expected from the Michaelis–Menten-type equation
(equation (2.2)). Taken together, with the sole blocking repres-
sion, the transcriptional activity cannot sensitively respond
to ~RT :

2.2. The combination of the sequestration- and
blocking-type repressions can generate
ultrasensitivity

We wondered whether the sensitivity of the transcriptional
activity can be increased by incorporating an additional
repression mechanism. To investigate this, we added the
sequestration-type repression to the blocking model: R
binds with the free A to form complex RA with a dissociation
constant of Ks, and thus sequesters A from DNA (figure 2d;
see Methods for details). Due to the complex RA, the
conservations are switched to AT ¼ Aþ RA þ EA þ ER and
RT ¼ Rþ RA þ ER. When the binding between A and R is
weak (i.e. ~Ks ¼ Ks=AT � 1) and thus RA is negligible, the
steady states of A and R can be approximated with simple
AT and RT . On the other hand, when the binding is not
weak, RA is not negligible and thus the approximations for
the steady states of A and R become slightly complex (see
Methods for details):

A � AT � RT � Ks þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(AT � RT � Ks)

2 þ 4ATKs

p
2

,

R � RT � ðAT � AÞ: ð2:3Þ

When the binding between A and R is extremely tight
(~Ks � 0), A and R can be approximated by the simple func-
tions max(AT � RT , 0) and max(RT � AT , 0), respectively
[21,28,30]. By substituting equation (2.3) for equation (2.1),
the approximated EA=ET can be derived:

EA

ET
�

~A=~Ka

1þ ð~A=~KaÞ þ ð~R=~KbÞð~A=~KaÞ
, ð2:4Þ

where ~X ¼ X=AT (X [ {A, R, Ka, Kb, Ks}). Because ~A and ~R
are determined by the molar ratio (~RT ¼ RT=AT), EA=ET is
still the function of ~RT like in equation (2.2).

The transcriptional activity described by equation (2.4)
shows more sensitive responses with respect to ~RT compared
to the blocking model as the sequestration becomes
stronger (i.e. ~Ks decreases; figure 2e). Specifically, when the
sequestration is weaker than the blocking (i.e. ~Ks . ~Kb), the
transcriptional regulation is mainly governed by the block-
ing, and thus the transcriptional activity shows a hyperbolic
response (figure 2e, dotted line) similar to the sole block-
ing-type repression (figure 2b). On the other hand, when
the sequestration is stronger than the blocking (i.e. ~Ks , ~Kb;
figure 2e, solid line), R is more likely to bind with the free
A rather than the DNA-bound A. Thus, when there are
more activators than repressors (i.e. ~RT , 1), the majority
of R is bound to the free A, not the DNA-bound A, and
thus the high level of transcriptional activity is maintained.
As ~RT is greater than one and thus the free R, not sequeste-
red by the free A, is available, R can block the DNA-bound
A, leading to the rapid drop in the transcriptional activity
(figure 2e, solid line). This switch-like transition in the
transcriptional activity generates the ultrasensitivity
(figure 2e). Consistently, the effective Hill coefficient increases
as the sequestration becomes stronger (i.e. ~Ks decreases;
figure 2f ).

The ultrasensitivity can be generated when the blocking
and sequestration act synergistically (electronic supplemen-
tary material, figure S1). That is, when the blocking is
stronger than the sequestration (~Kb , ~Ks; electronic sup-
plementary material, figure S1a–c), the ultrasensitivity
cannot be generated, similar to the sole blocking model
(figure 2c). When the blocking is too weak (~Ks � ~Kb), and
thus the transcriptional regulation is mainly governed by
the sequestration, the DNA-bound activator cannot be
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inhibited effectively via blocking. As a result, ultrasensitivity
cannot be generated when the activator binds to DNA
more tightly than the repressor (~Ka , ~Ks; electronic sup-
plementary material, figure S1d,e). Taken together, to
generate ultrasensitivity, the appropriate level of blocking
and stronger sequestration compared to the blocking are
needed. This requires a mechanism for the repressor to
have different binding affinities with the free activator and
the DNA-bound activator. Furthermore, due to the require-
ment of stronger sequestration compared to the blocking,
the condition is challenging to achieve with physiologically
plausible binding affinities. Specifically, the concentration of
transcriptional factors (AT) is 2� 10�9–10�7 M as their
number is 104–105 (i.e. 2� 10�20–10�19 mol) and the typical
mammalian cell volume is 10�11–10�12 l [32,38,39]. Thus,
even the extremely high affinity protein whose dissociation
constant is picomolar (i.e. Ks � 10−12 M) has ~Ks with the
range of 0:5� 10�5–10�3. With these physiologically plaus-
ible values of ~Ks, the range of ~Kb where the ultrasensitivity
can be generated is narrow (electronic supplementary
material, figure S1).
84
2.3. The combination of the displacement-,
sequestration- and blocking-type repressions can
readily generate ultrasensitivity under
physiologically plausible conditions

To investigate whether the requirement of the strong
sequestration can be relaxed by adding the displacement-
type repression, we expanded the model where the
complex RA can dissociate from DNA with a dissociation
constant of Kd (figure 2g; see Methods for details). Due
to the displacement, EF is affected by two different reversible
bindings between RA and EF as well as between A and EF

unlike in the previous models. Thus, the steady state
equation of EF is switched to AEF þ RAEF ¼ KaEA þ KdER

from AEF ¼ KaEA (see Methods for details). Similarly,
the steady state equation of ER is also switched to
KbER þ KdER ¼ REA þ RAEF from KbER ¼ REA: By solving
these coupled equations, we can get the ratio of the steady
states of EF, EA and ER, i.e. 1: I(R)A=Ka: J(R)ðR=KbÞðA=KaÞ,
where IðRÞ¼ðKs þ sKa þ RÞ=ðKs þ sKa þ sRÞ and J(R) ¼
ðKs þ Ka þ RÞ=ðKs þ sKa þ sRÞ, and s ¼ KsKd=KbKa: Note
that when s ¼ 1, which is known as the detailed balance
condition [40], I(R) ¼ J(R) ¼ 1 and thus the ratio becomes
the same as the previous simple one. This is because
under the detailed balance condition, all reversible
bindings reach equilibrium, and thus the steady state
equations of the species affected by multiple reversible
reactions (e.g. AEF þ RAEF ¼ KaEA þ KdER) can be parti-
tioned into the equilibrium relations for each reversible
reaction (i.e. AEF ¼ KaEA and RAEF ¼ KdER) [40]. Therefore,
under the detailed balance condition, the transcriptional
repression by the three types of repressions becomes
equivalent to the repression by the blocking and
sequestration types.

When s = 1, the ratio of the steady states of EF, EA

and ER are changed and thus we get EA=ET ¼ I(R)
ðA=KaÞ=ð1þ I(R)ðA=KaÞ þ J(R)ðR=KbÞðA=KaÞÞ, different from
equation (2.1). After substituting equation (2.3) into A and
R and normalizing the variables and parameters with AT ,
we can derive the approximation for EA=ET in terms of the

molar ratio ð~RTÞ:

EA

ET
�

~Ið~RTÞð~Að~RTÞ=~KaÞ
1þ ~Ið~RTÞð~Að~RTÞ=~KaÞ þ ~Jð~RTÞð~Rð~RTÞ=~KbÞð~Að~RTÞ=~KaÞ

,

ð2:5Þ

where ~Ið~RTÞ ¼ ð~Ks þ s~Ka þ ~Rð~RTÞÞ=ð~Ks þ s~Ka þ s~Rð~RTÞÞ,
~Jð~RTÞ¼ð~Ks þ ~Ka þ ~Rð~RTÞÞ=ð~Ks þ s~Ka þ s~Rð~RTÞÞ, and ~X ¼
X=AT ðX [ {A, R, Ka, Kb, Ks, Kd}Þ. To investigate whether
the displacement enhances the sensitivity of the transcriptional
activity, we first consider the case where R binds to the free A
and the DNA-bound A with the same affinity (i.e. ~Kb ¼ ~Ks),
so the combination of the sequestration- and blocking-type
repressions fails to generate the ultrasensitivity (figure 2f and
electronic supplementary material, figure S1). In this case, if
RA and A have the same binding affinity with DNA (i.e.
~Kd ¼ ~Ka), s ¼ 1 and thus the displacement-type repression
does not make any difference compared to the combination of
the sequestration- and blocking-type repressions (figure 2e,h,
dashed lines). On the other hand, if effective displacement
occurs (i.e. RA more easily dissociates from DNA compared to

A, ~Kd . ~Ka), ER decreases and EA increases. As a result, the

higher level of transcriptional activity is maintained until ~RT

becomes closer to one, yielding greater sensitivity (figure 2h,
solid line). Consistently, the effective Hill coefficient becomes

larger as ~Kd becomes greater than ~Ka (figure 2i). Furthermore,

even if ~Kb , ~Ks (i.e. the sequestration is weaker than the block-
ing), the ultrasensitivity can be generated when the effective
displacement occurs (electronic supplementary material,
figure S2), unlikewith the combination of blocking and seques-
tration (figure 2f and electronic supplementary material, figure
S1). Taken together, effective displacement can eliminate the
requirement for the combination of the sequestration- and
blocking-type repressions to generate the ultrasensitivity.

When there is no energy expenditure, the dissociation
constants have to satisfy the detailed balance condition
ðs ¼ ~Ks~Kd=~Kb~Ka ¼ 1Þ [41]. In this case, effective displacement
can occur ð~Kd . ~KaÞ under limited conditions ð~Ks , ~KbÞ,
which is challenging to achieve physiologically. On the
other hand, when energy is expended to break the detailed
balance condition ðs . 1Þ, effective displacement can occur
without the limitation. Such energy expenditure can happen
mechanistically by adenosine triphosphate hydrolysis [42].

Interestingly, when there is no energy expenditure to break
the detailed balance condition, the equilibrium relations for
each reversible reaction (i.e. AEF ¼ KaEA, RAEF ¼ KdER) hold
at the steady state [40]. Thus, the transcription regulated by
all three repressions becomes the same as that regulated
by any two of the repressions (see electronic supplementary
material for details). This allows us to easily identify the con-
dition for ultrasensitivity generated with any two repression
mechanisms by substituting the detailed balance condition
(s ¼ ~Ks~Kd=~Kb~Ka ¼ 1) to the condition for the ultrasensitivity
generated with the three repression mechanisms (electronic
supplementary material, table S1). This reveals that the
requirement of strong sequestration of the blocking and
sequestration model, which was challenging physiologically,
is switched to the effective displacement of the blocking and
displacement model. Importantly, with energy expenditure,
the combination of all three repressions can generate ultrasen-
sitivity over a wider range of conditions compared to the
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combination of any two repressions (figure 2i; electronic
supplementary material, table S1 and figures S2 and S3).

2.4. The transcriptional negative feedback loop with
multiple repression mechanisms can generate
strong rhythms

Ultrasensitivity is critical for the transcriptional NFL to gen-
erate sustained and strong oscillations [18–21]. Thus, when
the transcriptional repression is regulated by the combination
of the multiple repression mechanisms, the strong oscillations
can be generated. To investigate this, we constructed a simple
transcriptional NFL model (figure 3a), where the free activa-
tor (A) binds to the free DNA, and then promotes the
transcription of the repressor mRNA (M). M is translated to
the repressor protein in the cytoplasm (Rc). After transloca-
tion to the nucleus, the repressor protein (R) inhibits its
own transcriptional activator (A) with the previously
described repression mechanisms (figure 2a,d,g). Thus, the
transcription of M depends on the transcriptional activity
EA=ET . We assumed that EA=ET rapidly reaches its quasi-
steady-state because the reversible bindings regulating the
transcriptional activity typically occur much faster than
the other processes of the transcriptional NFL (i.e. transcrip-
tion, translation, translocation and degradation). Using
the quasi-steady-state approximation (QSSA) and the non-
dimensionalization, we can obtain a simple NFL model (see
electronic supplementary material for details):

dM
dt

¼ EAð~RTÞ
ET

�M,
dRc

dt
¼ M� Rc,

dRT

dt
¼ Rc � RT , ð2:6Þ
where EAð~RTÞ=ET is the QSSA for the transcriptional activity.
Depending on the repression mechanism, we can use the
steady state equations for EA=ET derived in the previous sec-
tions (i.e. equations (2.2), (2.4) and (2.5)). Note that these
QSSAs are known as the ‘total’ QSSAs as they are determined
by the molar ratio between the ‘total’ concentrations of the
repressor and activator, ~RT ¼ RT=AT , which is not affected
by the fast reversible bindings. Thus, the QSSAs are accurate
as long as the reversible bindings are fast [43]. In this way, the
NFL model (equation (2.6)) can accurately capture the
dynamics of the interactions between A and R even when
their levels are comparable [43].

As more repression mechanisms are added, EAð~RTÞ=ET

more sensitively changes in response to the variation of ~RT

(figure 3b), which is critical for amplitude amplification. Thus,
stronger rhythms, which have a high relative amplitude (i.e.
the amplitude normalized by the peak value of the rhythm),
are generated (figure 3c). Specifically, while the NFL with the
sole blocking repression cannot generate rhythms (figure 3c,
red dotted line), the NFL with the combination of the blocking,
sequestration, and displacement can generate the strongest
rhythms (figure 3c, green solid line). Such strong rhythms
become weaker as the displacement becomes ineffective (i.e.
~Kd becomes smaller than ~Ka; figure 3d), or the blocking or the
sequestration become weaker (i.e. ~Kb or ~Ks increases; figure 3e).

2.5. In the mammalian circadian clock, the disruption
of synergistic multiple repressions weakens
rhythms

In the transcriptional NFL of the mammalian circadian clock,
the transcriptional repression occurs via the combination
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of blocking, sequestration and displacement (figure 4a).
Specifically, CLOCK:BMAL1 binding to E-box regulatory
elements in the Period (Per1 and Per2) and Cryptochrome
(Cry1 and Cry2) genes activates their transcription
at around circadian time (CT) 4–8. After CRY and PER are
translated in the cytoplasm, they form the complex with the
kinase CK1δ and enter the nucleus. The complex dissociates
CLOCK:BMAL1 from the E-box and sequesters CLOCK:
BMAL1 to prevent binding to the E-box at around CT12–22
(displacement- and sequestration-type repression). At
around CT0–4, CRY binds to the CLOCK:BMAL1:E-box com-
plex to block the transcriptional activity (blocking-type
repression) [15–17,44].

In the mammalian circadian clock, because the PER:CRY
complex recruits CK1δ, inducing dissociation of CLOCK:
BMAL1 from the E-box [15], the binding affinity of CLOCK:
BMAL1 with the E-box is higher compared to its complex
with PER:CRY (i.e. Kd=Ka . 1). This effective displacement is
critical for strong rhythm generation (figure 4b, black solid
line) according to our model prediction (figure 3d). Then we
can expect that, as either Ka increases or Kd decreases
(i.e. Kd=Ka decreases), which deactivates the displacement-
type repression, the circadian rhythms become weaker
(figure 4b, orange solid line). Indeed, when Ka was increased
by a BMAL1 mutant lacking the basic region (BMAL1Δbasic),
which is critical for the binding of BMAL1 to the E-box
element (figure 4a, top right), the amplitude of PER2-LUC
rhythms from the fibroblasts of mutant mice was reduced
compared to that from wild-type (WT) mice (figure 4c) [36].
Furthermore, when Kd was decreased by a CK1δ−/− mutant
lacking the CK1δ-induced dissociation of CLOCK:BMAL1
from the E-box (figure 4a, bottom left), the amplitude of
PER2-LUC rhythms in the suprachiasmatic nucleus (SCN)
of mutant mice was also reduced compared to that in
WT mice (figure 4d) [33]. Note that the amplitude reduc-
tion by the CK1δ−/− mutant could be due to other factors
because CK1δ also regulates the stability and nucleus entry
of PER [45].

The blocking- and sequestration-type repressions also
effectively occur in the mammalian circadian clock. That is,
PER:CRY binds with CLOCK:BMAL1 tightly (i.e. small Ks ),
and CRY binds with CLOCK:BMAL1:E-box tightly (i.e.
small Kb ) [46]. Such tight bindings are important for strong
rhythm generation (figure 4e, black solid line) according to
our model prediction (figure 3e). Thus, as either Kb or Ks

increases, weakening the blocking- or the sequestration-type
repression, the rhythms are expected to become weaker
(figure 4e, orange solid lines). Indeed, when Kb was increased
due to the BMAL1 619X mutation reducing the binding affi-
nity between BMAL1 and CRY1 (figure 4a, top left), the
amplitude of PER2-LUC rhythms from the fibroblasts of
mutant mice was reduced to 0.4 compared to WT
(figure 4f ) [35]. When Kb was further increased by a
BMAL1 L606A L607A mutation, the amplitude was further
reduced (figure 4f ) [35]. Moreover, when Ks was increased
by the CLOCK mutant lacking the exon 19 region
(CLOCKΔ19), which is required for the binding of PER
(figure 4a, bottom right) [47], the amplitude of PER2-LUC
rhythms in the SCN of mutant mice was reduced compared
to that in WT mice (figure 4g) [34]. Note that such reduction
of the amplitude by CLOCKΔ19 could be due to other factors
such as the low transcriptional activity of CLOCKΔ19 [48]
and the impaired binding with the E-box [49].
3. Discussion
Transcriptional repression plays a central role in precisely
regulating gene expression [2]. Various mechanisms for the
repression have been identified [2–4]. In particular, the tran-
scriptional activators can be inhibited in various ways by
repressors such as blocking, sequestration and displacement
(figure 1a). Interestingly, these repression mechanisms
are used together to inhibit a transcriptional activator in
many biological systems [3]. In this study, we found that
multiple repression mechanisms can synergistically generate
a sharply ultrasensitive transcriptional response (figure 2)
and thus strong rhythms in the transcriptional NFL
(figure 3). Consistently, the mutations disrupting any of the
blocking, sequestration or displacement in the transcriptional
NFL of the mammalian circadian clock weaken the circadian
rhythms (figure 4). Our work identifies a benefit of using
multiple repression mechanisms together, the emergence of
ultrasensitive responses, which are critical for cellular regu-
lation such as epigenetic switches, the cell cycle and
circadian clocks [22].

Recently, detailed transcriptional repression mechanisms
underlying various biological systems have been identified.
For instance, while MDM2 was known to inhibit p53 by
promoting its degradation [50], recent studies have suggested
that MDM2 can also inhibit p53 through displacement
and blocking [51,52]. In the Rb-E2F bistable switch, the
suppressor Rb protein and the E2F family of transcrip-
tion factors inhibit mutually with multiple repression
mechanisms such as blocking and chromatin structure
modification, which are critical to generate ultrasensitivity
and thus the bistable switch of cell cycle [6,7,53]. However,
such repression mechanisms have not yet been incorpora-
ted into the mathematical models [54–57]. Similarly, the
recent discoveries of multiple repression mechanisms under-
lying biological oscillators such as the circadian clock [14–17]
and the NF-kB oscillator [12,13] have not been fully incor-
porated even in recent mathematical models [24,58–63].
In particular, the majority of the mathematical models for
various systems have used the simple Michaelis–Menten- or
Hill-type functions to describe the transcriptional repres-
sion regardless of its underlying repression mechanisms,
which can distort the dynamics of the system [21,43].
Our work highlights the importance of careful modelling
of the transcriptional repression depending on blocking,
sequestration or displacement to accurately capture the
underlying dynamics.

Interestingly, to fully use the three repression mechan-
isms, energy expenditure is required. Without the energy
expenditure, the detailed balance condition needs to be
satisfied (s ¼ KsKd=KbKa ¼ 1). Under this restriction, the tran-
scriptions regulated by the three repression mechanisms
and any two of these become equivalent (see electronic
supplementary material for details). As a result, the ultrasen-
sitivity is generated under a limited condition compared to
when the detailed balance condition is broken via dissipation
of energy (s . 1) (figure 2i; electronic supplementary
material, table S1 and figures S1 and S2). Similarly, the limit-
ation for generating the sensitivity of transcription under the
detailed balance condition was also identified when DNA is
directly regulated by its transcriptional factors [41]. Specifi-
cally, Estrada et al. found that when the energy expenditure
breaks the detailed balance condition, the cooperative
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bindings of the transcriptional factors to multiple binding
sites of DNA are more likely to generate ultrasensitivity.

The advantages of using multiple repression mechanisms
for biological oscillators have just begun to be investigated.
For instance, in the NF-kB oscillator, IkBa inhibits its
own transcriptional activator NF-kB via sequestration and
displacement. Wang et al. found that the displacement can
enhance NF-kB oscillation by dissociating the NF-kB from
decoy sites and promoting its nuclear export (i.e. facilitating
the sequestration), and compensating for the heterogeneous
binding affinity of NF-kB to the promoter of IkBa [64].
Furthermore, a recent study of the transcriptional NFL of
the mammalian circadian clock found that the displace-
ment of the transcriptional activator (BMAL1:CLOCK) by
its repressor (PER:CRY) can facilitate the mobility of the
BMAL1:CLOCK to its various target sites, pointing out the
hidden role of PER:CRY [65]. While PER:CRY dissociates
and sequesters CLOCK:BAML1 from E-box (i.e. sequestration
and displacement type), CRY blocks the transcriptional
activity of CLOCK:BMAL1 (i.e. blocking type) [15–17].
Because Cry1 displays a delayed expression phase compared
to Per, the blocking repression occurs at the late phase, which
turns out to be critical for rhythm generation [66–68]. It
would be interesting in future work to extend the model to
include multiple repressors (e.g. PER and CRY) to investigate
their distinct roles.

While we focused on transcriptional repression mechan-
isms, other mechanisms leading to ultrasensitivity [69], and
thus generating rhythms, have been identified. For instance,
phosphorylation of the repressor [24,70,71] and saturated
degradation of the repressor [25,32,72] can be additional
sources of ultrasensitivity for strong rhythms. Furthermore,
an additional transcriptional positive feedback loop has been
known to enhance the robustness of rhythms [18,21,71,73] in
the presence of Hill-type transcriptional repression, which
can be induced by phosphorylation-based transcriptional
repression [74,75]. On the other hand, when the transcription
is regulated by sequestration-type repression, an additional
NFL rather than the positive feedback loop can enhance the
robustness of rhythms [21,28,32]. It would be important in
future work to investigate the role of additional feedback
loops depending on the transcriptional repression mechanisms
identified in this study.

A transcriptional NFL, where a single repressor inhibits
its own transcription by binding to its own promoter, is the
simplest design of the synthetic genetic oscillator [76,77]. To
generate the ultrasensitivity with this simple design, Stricker
et al. used a repressor that forms a tetramer to bind with its
own promoter [78]. Nonetheless, the degree of the ultrasensi-
tivity was not enough for the synthetic oscillator to generate
strong oscillations with high amplitude. Thus, more complex
designs of synthetic oscillators have been constructed [76,77]:
the modified repressilators [79,80], the combination of the
negative and positive feedback loops [78,81], and the coup-
ling of synthetic microbial consortia [82–85]. Our study
proposes that a strong synthetic oscillator with a simple
design (i.e. a single NFL) could be constructed by modifying
the previously used repression mechanisms. That is, by using
the combining blocking-, sequestration- and displacement-
type repressions, although this might be challenging to
implement, ultrasensitivity to achieve strong rhythms could
be obtained, providing a new strategy for the design of
synthetic oscillators.
4. Methods
4.1. The equation for the transcriptional activity

regulated by the sole blocking-type repression
The transcription regulated by sole blocking-type repression
(figure 2a) can be described by the following system of
ordinary differential equations (ODEs) based on the mass
action law:

dR
dt

¼� kfbREA þ kbER,

dA
dt

¼� kfaAEF þ kaEA,

dEF

dt
¼� kfaAEF þ kaEA,

dEA

dt
¼ kfaAEF � kaEA � kfbREA þ kbER

and
dER

dt
¼ kfbREA � kbER,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð4:1Þ

where R, A, EF, EA and ER represent the concentration of the
repressor, the activator, DNA, the activator-bound DNA and
the activator and repressor complex-bound DNA, respectively.
Here, kfb (kb) and kfa (ka) are the association (dissociation) rate
constants between EA and R and between A and EF, respectively.

Note that as
dR
dt

þ dER

dt
¼ 0,

dA
dt

þ dEA

dt
þ dER

dt
¼ 0 and

dEF

dt
þ dEA

dt
þ dER

dt
¼ 0, the total concentrations of the repressor

(RT ; Rþ ER), the activator (AT ; Aþ EA þ ER), and DNA
(ET ; EF þ EA þ ER) are conserved. The steady states of the
system satisfy the following equations:

REA ¼ KbER, AEF ¼ KaEA, ð4:2Þ

where Kb ¼ kb=kfb and Ka ¼ ka=kfa: This yields EF: EA: ER = 1:
A/Ka: ðR=KbÞðA=KaÞ, and thus the steady state for EA=ET :

EA

ET
¼ EA

EF þ EA þ ER
¼ EA=EF

1þ ðEA=EFÞ þ ðER=EFÞ

¼ A=Ka

1þ ðA=KaÞ þ ðR=KbÞðA=KaÞ , ð4:3Þ

where A and R in equation (4.3) are the steady states of the free
activator and the free repressor, respectively.

Equation (4.3) can be simplified if the total concentration of
DNA (ET) is much lower than the concentrations of the activator
(AT) and repressor (RT) and thus AT ¼ Aþ EA þ ER � A and
RT ¼ Rþ ER � R. That is, by replacing A and R in equation
(4.3) with conserved AT and RT, respectively, we get the following
approximation for equation (4.3):

EA

ET
� AT=Ka

1þ ðAT=KaÞ þ ðRT=KbÞðAT=KaÞ , ð4:4Þ

which is accurate as long as ET=AT is small (electronic sup-
plementary material, figure S4a). This assumption is likely to
hold in the mammalian circadian clock as the number of
BMAL1:CLOCK in the mammalian cells is about 104–105 [38].
On the other hand, it might not be acceptable in E. coli or
S. cerevisiae cells, which contain much lower numbers of
transcription factors (101–102) [38].
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4.2. The equation for the transcriptional activity regulated
by the blocking- and sequestration-type repressions

The transcription regulated by both blocking and sequestration
(figure 2d ) can be described by the following ODEs:

dR
dt

¼ �kfbREA þ kbER � kfsRAþ ksRA,

dA
dt

¼ �kfaAEF þ kaEA � kfsRAþ ksRA,

dRA

dt
¼ kfsRA� ksRA,

dEF

dt
¼ �kfaAEF þ kaEA,

dEA

dt
¼ kfaAEF � kaEA � kfbREA þ kbER

and
dER

dt
¼ kfbREA � kbER:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð4:5Þ

The reversible binding between R and A to form the complex
(RA) with the association rate constant kfs and the dissociation rate
constant ks are added to equation (4.1). Thus, the conservation
laws for the activator and the repressor are changed to
AT ¼ Aþ RA þ EA þ ER and RT ¼ Rþ RA þ ER, respectively.
Because the steady states of equation (4.5) also satisfy equation
(4.2), the steady state of EA=ET in this system also satisfies
equation (4.3). However, even if ET is much lower than AT and
RT , equation (4.3) cannot be simplified by replacing A and R
with AT and RT because AT ¼ Aþ RA þ EA þ ER � Aþ RA and
RT ¼ Rþ RA þ ER � Rþ RA. Thus, we also need to use another
steady state equation, AR ¼ KsRA, where Ks ¼ ks=kfs, to derive
the steady state of RA in terms of AT and RT . Specifically, by repla-
cing A and R with AT � RA and RT � RA, respectively, in
AR ¼ KsRA, we get R2

A � (AT þ RT þ Ks)RA þ ATRT � 0, yielding
the approximate steady state for RA:

RA � AT þ RT þ Ks �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(AT � RT � Ks)

2 þ 4ATKs

p
2

: ð4:6Þ

Then by substituting equation (4.6) to A � AT � RA and
R � RT � RA, we can get the following approximate steady
state for the free activator and repressor:

A �AT � RT � Ks þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(AT � RT � Ks)

2 þ 4ATKs

p
2

,

R �RT � AT � Ks þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(AT � RT � Ks)

2 þ 4ATKs

p
2

: ð4:7Þ
By substituting equation (4.7) to equation (4.3), the approxi-
mate EA=ET can be derived (equation (2.4)), which is accurate as
long as ET=AT is small (electronic supplementary material,
figure S4b).
4.3. The equation for the transcriptional activity
regulated by all the blocking-, sequestration- and
displacement-type repressions

The transcription regulated by all blocking, sequestration, and
displacement (figure 2g) can be described by the following
ODEs:

dR
dt

¼ �kfbREA þ kbER � kfsRAþ ksRA,

dA
dt

¼ �kfaAEF þ kaEA � kfsRAþ ksRA,

dRA

dt
¼ kfsRA� ksRA � kfdRAEF þ kdER,

dEF

dt
¼ �kfaAEF þ kaEA � kfdRAEF þ kdER,

dEA

dt
¼ kfaAEF � kaEA � kfbREA þ kbER

and
dER

dt
¼ kfbREA � kbER þ kfdRAEF � kdER,

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð4:8Þ

which have the same conservation laws as equation (4.5).
Because the reversible binding between RA and EF to form ER

with the association rate constant kfd and the dissociation rate
constant kd are added to equation (4.5), the steady states are chan-
ged to the following equations:

RA� KsRA � g(RAEF � KdER) ¼0,
AEF � KaEA � d(REA � KbER) ¼0

and REA � KbER þ u(RAEF � KdER) ¼0,

9>=
>; ð4:9Þ

where Kd ¼ kd=kfd, g ¼ kfd=kfs, d ¼ kfb=kfa, and u ¼ kfd=kfb. If ET is
much lower than AT and RT , and thus AT ¼ Aþ RAþ
EA þ ER � Aþ RA and RT ¼ Rþ RA þ ER � Rþ RA, the last
two equations of (4.9) can be simplified as follows:

(AT � RA)ðET � EA � ERÞ � KaEA � d(RT � RA)EA þ dKbER � 0,
(RT � RA)EA � KbER þ uRAðET � EA � ERÞ � uKdER � 0:

�

ð4:10Þ

Their solution yields the steady state approximation for
EA=ET as
(uRA þ Kb þ uKd)(RA � AT)� u(RA � AT þ dKb)RA

((1þ d)RA � AT � dRT � Ka)(uRA þ Kb þ uKd)� (RA � AT þ dKb)((uþ 1)RA � RT)
: ð4:11Þ
Furthermore, by using the approximation AT � Aþ RA and
RT � Rþ RA, we can simplify the first equation of equation
(4.9) as follows:

R2
A � (AT þ RT þ Ks � gEF)RA þ ATRT � gKdER � 0: ð4:12Þ

Because ET is much lower than AT and RT , equation (4.12) can
be further simplified to R2

A � (AT þ RT þ Ks)RA þ ATRT � 0,
leading to the approximation for the steady state of RA described
in equation (4.6). Then, by substituting equation (4.6) to
equation (4.11), the approximated EA=ET in terms of conserved
AT and RT can be derived. The approximation of EA=ET can be
further simplified as follows if we assume d ¼ 1 and u ¼ 1 (i.e.
the binding rates are the same):
EA

ET
� (RA þ Kb þ Kd)(RA � AT)� (RA � AT þ Kb)RA

(2RA � AT � RT � Ka)(RA þ Kb þ Kd)� (RA � AT þ Kb)(2RA � RT)

¼ (Kb þ Kd)AT � KdRA

[(Kb þ Kd)Ka þ Kd(RT � RA)]þ [(Kb þ Kd)AT � KdRA]þ [ðRT � RAÞAT þ KaRA]
: ð4:13Þ



roy

11
Each term of equation (4.13) can be transformed by using
A � AT � RA, R � RT � RA, and AR � KsRA as follows:
alsocietypublishing.org/journa
(Kb þ Kd)Ka þ Kd(RT � RA) � KbKa þ KdKa þ KdR ¼ m(Ks þ sKa þ sR),

(Kb þ Kd)AT � KdRA � (Kb þ Kd)(Aþ RA)� KdRA � KbAþ KdAþ Kb

Ks
RA ¼ m(Ks þ sKa þ R)

A
Ka

,

ðRT � RAÞAT þ KaRA � R Aþ RA
Ks

� �
þ Ka

RA
Ks

¼ m(Ks þ Ka þ R)
R
Kb

A
Ka

,

9>>>>>=
>>>>>;

ð4:14Þ
l/rsfs
In
where s ¼ KsKd=KbKa and m ¼ KbKa=Ks. By substituting equation
(4.14) to equation (4.13), we can derive equation (2.5) as follows:
terface
Focus

12:202100
EA

ET
� (Ks þ sKa þ R)A=Ka

(Ks þ sKa þ sR)þ (Ks þ sKa þ R)A=Ka þ (Ks þ Ka þ R)ðR=KbÞðA=KaÞ
¼ I(R)A=Ka

1þ I(R)ðA=KaÞ þ J(R)ðR=KbÞðA=KaÞ , ð4:15Þ
84
where I(R) ¼ ðKs þ sKa þ RÞ=ðKs þ sKa þ sRÞ and J(R) ¼
ðKs þ Ka þ RÞ=ðKs þ sKa þ sRÞ. By substituting equation (4.7)
into A and R and then normalizing the variables and parameters
with AT, we can derive the approximated equation (2.5) for EA/ET
in terms of the molar ratio ~RT . This approximation is accurate as
long as ET=AT is small (electronic supplementary material, figure
S4c). Importantly, it accurately captures the cases when d and u

are not one if the displacement effectively occurs (Kd . Ka;
electronic supplementary material, figure S5).
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