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Abstract

In the brain, mitochondrial components are released into the extracellular space via several 

mechanisms, including a recently identified type of extracellular vesicles called mitovesicles. 

While vesiculation of neuronal mitochondria yields various intracellular types of vesicles, with 

either a single or a double membrane, mitovesicles secreted into the extracellular space are a 

unique subtype of these mitochondria-derived vesicles, with a double membrane and a specific 

set of mitochondrial DNA, RNA, proteins, and lipids. Based on the most relevant literature 

describing mitochondrial vesiculation and mitochondrial exocytosis, we propose a model for their 

secretion when the amphisome, a hybrid endosome–autophagosome organelle, fuses with the 

plasma membrane, releasing mitovesicles and exosomes into the extracellular space. In aging 

and neurodegenerative disorders, mitochondrial dysfunction, in association with endolysosomal 

abnormalities, alter mitovesicle number and content, with downstream effect on brain health.

Introduction

Extracellular vesicles (EVs) are membrane-bound vesicles that are released into the 

extracellular space [1,2], mediating physiological mechanisms that are critical for 
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maintaining cell homeostasis, including waste disposal, cell-to-cell communication, and 

exchange of trophic factors [3,4]. However, EVs also play a pathogenic role in disease 

propagation by spreading toxic molecules, including protein aggregates, from one cell to 

the other, both within the same organ [1] and in an inter-organ fashion [5]. Classically, 

EVs were divided into two main subgroups, the larger (100–1000 nm) plasma membrane–

derived ectosomes and the smaller (50–200 nm) late endosome/multivesicular body (LE/

MVB)–derived exosomes [2], although more recent works have demonstrated that their 

heterogeneity is higher than what originally anticipated, including subpopulations of 

EVs of mitochondrial origin [6]. Several research groups demonstrated the presence of 

mitochondrial components in the extracellular space [7,8], with differences in their nature, 

characteristics, functions, biogenesis, and secretion mechanisms. Some groups suggested 

that whole mitochondria are transferred between cells [9–11]. Others proposed either the 

encapsulation of mitochondria within large ectosomes [12,13] or the incorporation of 

undegraded mitochondrial molecules into exosomes [7,14,15]. We recently modified the 

method of isolation of EVs from brain tissue and identified a separate type of small 

(median diameter under cryogenic electron microscopy: ~110 nm; 25th to 75th percentiles: 

90–140 nm [6,16]) mitochondria-derived EVs that do not contain endosomal, exosomal 

(e.g. tetraspanins), or plasma membrane components and therefore cannot be classified 

as exosomes or ectosomes [6]. Using this method, fractions enriched in ectosomes and 

exosomes do not contain any mitochondrial components [6]. On the other hand, these EVs 

are also different from nude mitochondria, both in their morphology (mitovesicles are one 

order of magnitude smaller, bear a narrower intermembrane space, lack cristae, and are 

spherical; Figure 1), and cargo (e.g. mitovesicles do not contain TOMMs and ribosomes, 

unlike mitochondria [6,16]; see section ‘Characterization of mitovesicles’ for more details). 

To stress their uniqueness, we named them ‘mitovesicles’, a portmanteau of the words 

‘mitochondrion’ and ‘extracellular vesicles’.

The impact of mitochondria-derived EVs in physiology and disease is unclear. Once taken 

up by recipient cells, both proinflammatory [10,17,18] and anti-inflammatory [19,20] 

activities have been documented. Similarly, some studies supported the idea that EVs 

containing mitochondrial material promote cell metabolism [9], while others have shown 

an opposite effect [5,21]. We have recently shown that brain mitovesicles impair long-term 

potentiation in otherwise normal hippocampi when used at a concentration three times 

higher than what found in the physiological brain [16], suggesting that mitovesicles have a 

role in neurotransmitter metabolism and synaptic regulation. Molecular mechanisms driving 

mitochondria-derived EV production and secretion are controversial, as well. For instance, 

some groups reported that the overactivation of the PINK1/Parkin axis suppresses the release 

of mitochondria-derived EVs [11,20], whereas other studies showed the contrary [5,15].

A possible model to reconcile all these discrepancies postulates the existence of multiple 

subtypes of mitochondria-derived EVs. As there is no gold standard to date to purify 

mitochondria-derived EVs, this model implies that differences in the isolation protocol may 

lead to the enrichment of one or multiple subpopulations of mitochondria-derived EVs, 

potentially with different downstream effects. For example, in some studies, mitochondrial 

components were analyzed in samples containing both large and small EVs [20,22]; in 

other studies, an intermediate centrifugation speed (e.g. 60 000g) was used to pellet EVs 
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without prior removal of larger materials [11], whereas in other studies only small EVs 

(e.g. 100 000g pellets) were analyzed after discarding the 10 000g large EV pellet [6]. 

Thus, it is conceivable that divergences in purification steps likely cause the enrichment of 

EV pools with different characteristics. In addition, mitochondria-derived EV studies have 

been challenged by the absence of a clear method to separate these EVs from other types 

of EVs of similar size. In most studies, heterogeneous EV pools are generated using size-

based techniques, including differential centrifugation and size-exclusion chromatography. 

However, mitochondria-derived EVs comprise only a small fraction of the total EV 

populations (up to 1–2%, according to the source or the subtype analyzed [6,10,23]) and 

overlap in size and therefore co-isolate with other known EVs using these techniques 

[6,10,13]. Herein, we will focus exclusively on mitovesicles, the subpopulation of small EVs 

of mitochondrial origin with neither ectosome nor exosome proteins, given their relative 

novelty and potential functions in vivo in the brain [6,16]. Based upon published relevant 

data, we propose a model for mitovesicle biogenesis and secretion and discuss the potential 

role for these EVs in the brain during aging and in neurodegenerative diseases, focusing on 

Alzheimer’s disease (AD) and Down syndrome (DS).

Main text of the review

Characterization of mitovesicles

In 2019, Jeppesen et al. demonstrated that ectosomes can be separated from exosomes 

accurately after their release in vitro by exploiting the density differences among these 

EVs, rather than their size [24]. Using a similar strategy, we developed a novel density-

based technique to fractionate small EVs upon their isolation from brain tissue [6,16,23,25–

27], and we focused our attention on mitochondria-derived EVs. We showed that in 

the brain, mitochondrial components are not found in exosome- or ectosome-enriched 

fractions and that these newly identified EVs of mitochondrial origin (mitovesicles) do 

not carry endosomal, exosomal, cytosolic, or plasma membrane proteins [6]. In addition, 

these EVs have exclusive morphometrical features when compared with ectosomes and 

exosomes, including a double concentric membrane and an electron-dense core (Figure 

1). An independent study later found EVs with the same morphometrical features, likely 

mitovesicles, in small EVs isolated from the cell culture medium of mouse embryonic 

fibroblasts [20], suggesting the existence of mitovesicles outside of the brain. Moreover, 

mitovesicles contain mitochondrial DNA (mtDNA) and mitochondrial RNA (mtRNA), 

and their membranes carry a different set of lipids when compared with other brain 

EVs, including cardiolipin [6], further reinforcing mitovesicle uniqueness. Although 

mitochondrial proteins and components are exclusively associated with mitovesicles in small 

EVs isolated from the physiological brain [6], this may not be a universal trait. In other solid 

tissues, especially under disease conditions such as cancer, several types of mitochondria-

derived EVs may be present, including EVs that can be immunocaptured with antibodies for 

the mitochondrial proteins mt-CO2 and FACL4 and that contain both ectosome (Annexin 

A1, A2, V) and exosome (tetraspanins) proteins [22,28], suggesting multiple, complex, and 

possibly tissue-specific routes for mitochondrial exocytosis.
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Mitovesicle biogenesis and secretion

The presence of cardiolipin in mitovesicle membranes suggests a distinct mechanism for 

the biogenesis of these EVs when compared with exosomes and ectosomes. Cardiolipin 

is found almost exclusively in the inner mitochondrial membrane and in traces in the 

outer mitochondrial membrane [29], indicating that mitovesicles likely bud directly from 

these organelles. This speculation implies that mitochondria are able to vesiculate and 

generate intracellular vesicles with the same morphological features and size (50–300 nm) of 

mitovesicles, eventually released into the extracellular space (Figure 2). These intracellular 

mitochondria-derived vesicles (MDVs) were previously described, both in vitro and in vivo, 

including in the brain [30–36]. It was shown that MDVs traffic to the endolysosomal 

system, and it was suggested that this is an alternative route to mitophagy to deliver 

mitochondrial cargo to the lysosome for degradation [30–36]. However, most lysosomal 

markers, including LAMP1, RAB7, and Lysotracker (all used previously to mark lysosomes 

in MDV studies [32,35,37,38]), are not lysosome-specific and are also associated with 

LE/MVBs and amphisomes, organelles originating upon fusion of autophagosomes with 

LE/MVBs [39]. This discrepancy is further exacerbated in neurons, where only ~20% of 

LAMP1+ organelles are fully acidified and can be considered as mature lysosomes [39]. 

Thus, it is conceivable that MDVs reach the LE/MVB/amphisome and are either transported 

to the lysosome for degradation or released into the extracellular space as mitovesicles when 

these organelles fuse with the plasma membrane (Figure 2).

Intracellular MDVs are highly heterogeneous and include at least three subgroups 

conventionally named after their differential cargo. Among them, MAPL+ and 

TOMM20+/PDH− (hereafter TOMM20+) MDVs constitute approximately 90% of the 

total intracellular MDV population under physiological conditions, while a third type 

(TOMM20−/PDH+; hereafter PDH+) accounts for the remaining 10% [32]. Whether 

TOMM20+ MDVs are single or double membraned is unclear. Early reports suggested that 

TOMM20+ MDVs are single-membraned vesicles that bud from the outer mitochondrial 

membrane (lacking matricial components such as mtDNA or proteins such as PDH and the 

ectopically expressed matricial protein OCT-DsRed2 [35]), in a process that is reminiscent 

of the generation of vesicles from bacteria [30]. More recently, this conclusion was 

questioned by proteomic analyses of purified TOMM20+ MDVs, demonstrating the presence 

of some proteins from the inner mitochondrial membrane and from the matrix, although it 

is not clear whether these MDVs are organized with a structured double bilayer or whether 

these proteins are degradative cargo. Electron microscopy photomicrographs of TOMM20+ 

cytosolic small vesicles suggested that these MDVs are single membraned [32,35]. 

The authors also demonstrated that TOMM20+ MDVs are enriched in outer membrane 

components, including proteins involved in mitochondrial motility (such as MIRO1) and 

proteins of the BCL2 family (such as BAD), and carry intact TOM macrocomplexes 

formed by TOMM20, TOMM40, TOMM70, TOMM22, and TOMM7 multisubunits [32]. 

In addition, TOMM20+ MDVs are largely characterized by lack of a transmembrane H+ 

potential, inability to produce ATP, and absence of mtDNA [30,32,35,40].

Unlike TOMM20+ MDVs, the brain extracellular mitovesicle proteome does not include 

TOMMs (such as TOMM20), mitochondrial motility proteins, and BCL2 family members 
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with the exclusion of BAX [6], albeit it encompasses matricial proteins, such as PDH 

subunits and all the Krebs’ cycle components [6]. Lipidomic data confirm the different 

nature of the membranes that surround TOMM20+ MDVs and mitovesicles, with cardiolipin 

being enriched in mitovesicles [6] but not in TOMM20+ MDVs [32], again suggesting 

the presence of the inner mitochondrial membrane (where cardiolipin is enriched) within 

mitovesicles but not in TOMM20+ MDVs. Moreover, mitovesicles contain mtDNA [6], 

similar to intracellular PDH+ MDVs [40], and can produce a transmembrane H+ potential, 

as well as ATP in a cell-free system [6,23], similar to TOMM20-negative MDVs generated 

by Saccharomyces cerevisiae in vitro [41]. As TOMM20 cannot be detected in small brain 

EVs [6] and TOMM20+ MDVs do not share molecular and morphological characteristics 

with extracellular mitovesicles, we postulate that TOMM20+ MDVs are not secreted into the 

extracellular space in the brain. The absence of TOMM20 in small EVs may not be brain-

specific, as it was described in several studies analyzing small EVs isolated from cell culture 

media [42,43], albeit it is unclear how common this molecular trait is among different 

cell sources. On the other hand, PDH+ MDVs share with mitovesicles several molecular 

and morphological properties [30,35,37,38,44] and likely represent nascent intracellular 

mitovesicles. Moreover, signals and pathways stimulating PDH+ MDVs production and 

mitovesicle biogenesis are identical, supporting the conjecture that PDH+ MDVs and 

mitovesicles are the same entity prior to (PDH+ MDVs) and after (mitovesicles) the release 

from the cell. Among others, (1) mitochondrial reactive oxygen species (ROS) induce the 

generation of PDH+ MDVs [35,38] and positively correlate with mitovesicle and small 

mitochondria-derived EV production, both in vitro and in vivo [5,6,26,31,43,45]; (2) the 

number of both PDH+ MDVs and mitovesicles is dependent on mitochondrial fission 

proteins, such as DRP1 and MFF, which mediate the pinch-off event through which the 

tip of a mitochondrial protrusion is detached from the body of the mitochondrion to 

generate a vesicle [26,32]; (3) the biology of both PDH+ MDVs (but not TOMM20+ MDVs 

[32,35]) and small mitochondria-derived EVs, including mitovesicles, is similarly affected 

by autophagy and mitophagy initiation alterations, including a positive correlation with 

the PINK1/Parkin axis, both in vitro [5,15,30,38,46–48] and in vivo in a chronic cocaine 

exposure model [26]; (4) blocking the activity of the lysosome, either pharmacologically or 

genetically, causes the intracellular accumulation of PDH+ MDVs [30,32,34,35,37,38] and a 

higher extracellular release of small mitochondria-derived EVs [5,42,43].

As PDH+ MDVs are preferentially trafficked to the late endocytic pathway, it is conceivable 

that mitovesicles are secreted when fully mature LE/MVB/amphisomes fuse with the plasma 

membrane (Figure 2). This speculation is partially supported by studies showing that 

knocking down RAB27A, a protein responsible for the docking of LE/MVB/amphisomes 

to the plasma membrane [49], inhibits the release of small mitochondria-derived EVs 

[15,42]. The mechanism by which intact PDH+ MDVs reach the lumen of the LE/MVB/

amphisome without losing their properties remains elusive. A simple model where nude 

PDH+ MDVs fuse with the endosomal membrane to release the core vesicle into the 

lumen of LE/MVB/amphisomes is unlikely, as it implies the loss of the outer membrane 

of PDH+ MDVs during the process. Likewise, incorporation through invagination from the 

surface of LE/MVB/amphisomes is equally unlikely as it would generate triple-membraned 

EVs. Therefore, we propose the involvement of the autophagy machinery as the shuttle 
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system to deliver PDH+ MDVs to the endocytic pathway (Figure 2). Although no direct 

evidence is available to confirm this model, several indirect observations support it. For 

instance, LC3+CD81+ LE/MVB/amphisomes incorporate more mitochondrial proteins when 

lysosome acidification is blocked [42], a stimulus that was shown to promote mitochondria-

derived EV secretion [5,42,43]. Moreover, autophagy-deficient mouse embryonic fibroblasts 

secrete less mitochondria-derived EVs when compared with autophagy-competent cells 

[50] while they produce the same number of PDH+ MDVs [35], implying that the 

phagophore may play a role in secretion, not biogenesis, of mitovesicles. Accordingly, the 

trafficking of PDH+ MDVs (but not TOMM20+ MDVs) to the endocytic system depends 

on the core machinery that mediates the fusion of autophagosomes with the endolysosome 

[37,51], suggesting that nascent mitovesicles are delivered to the endocytic pathway via 

autophagosomes.

Thus, we hypothesize that mitovesicles are generated as the PDH+ subtype of MDVs, 

incorporated into LE/MVB/amphisomes, and eventually released into the extracellular 

space, similar to the fate of intraluminal vesicles (ILVs) within LE/MVB/amphisomes, 

which are released as exosomes. Although we cannot rule out unknown alternative 

mechanisms, we also propose a role for the autophagosome as a shuttle system to deliver 

intact PDH+ MDVs into the lumen of LE/MVB/amphisomes before secretion (Figure 2).

Mitovesicle roles in brain homeostasis and neurodegenerative disorders

The endocytic pathway plays a central role in the elimination of toxic molecules, 

including protein aggregates and cleavage products, that are key molecular players in the 

pathogenesis of neurodegenerative diseases [4,52–54], including in AD where endosomal 

abnormalities were described, preceding the onset of dementia [4,52–54]. Additionally, a 

faulty autolysosome acidification is typically found in AD brains and in mouse models of 

β-amyloidosis, as well as in DS [55], causing ILV accumulation and LE/MVB/amphisome 

enlargement (Figure 3) [4,56] and leading to a concomitant higher release of ILVs as 

exosomes (Figure 2, right) [4,57].

Mitochondrial dysfunction and oxidative stress are also hallmarks of AD [58]. Consistent 

with what described above, mitochondrial ROS and endosomal changes co-operatively 

support the generation and the release of a higher number of mitovesicles in AD and 

DS brains (Figure 2, right) [6]. How these changes affect the progression of the disease 

is far less clear. In vitro data show that the downregulation of RAB27A (and consequent 

depression of EV secretion) causes mitochondrial impairment [15], suggesting a cross-talk 

between EV secretion, endosomal function, and mitochondrial quality control mechanisms 

alternative to mitophagy. In our model, the higher mitovesicle secretion in AD may 

serve as a homeostatic attempt of the source cell to support metabolism by eliminating 

unwanted mitochondrial components that are not digested by defective lysosomes. This 

potential prosurvival mechanism leads over time to the accumulation of mitovesicles in the 

extracellular space, leading to a roughly threefold increase in their number in the brain of 

older people with DS when compared with age-matched controls [6]. Unlike other types of 

EVs, intact mitovesicles retain a metabolic activity in the extracellular space, at least in an 

artificially reconstructed extracellular environment [6], and the extracellular accumulation 
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of mitovesicles in AD and DS may enhance this cell-free catabolic activity. Accordingly, 

we speculate that mitovesicles in AD acquire toxic enzymatic activities once released into 

the brain extracellular fluids, partially due to their larger number, and partially due to 

AD-specific differences in their content, as was shown for DS [6]. In this perspective, the 

monoamine oxidases type A and B (MAO-A and MAO-B) are two potential candidates 

that can participate in pathogenic challenges in AD [59]. MAOs catalyze the degradation 

of monoamines generating ROS as a byproduct of the reaction [60] and are found on the 

mitovesicle outer membrane, where they retain their enzymatic activity [6]. Thus, higher 

diffusion of mitovesicles throughout the brain in AD may cause increased extracellular 

MAO activity, leading to alterations in monoamine levels and enhanced ROS production, 

ultimately causing neurotransmitter imbalance and spread of oxidative damage [16].

Sex differentially affects mitovesicles during aging

Mitochondrial dysfunction is a hallmark of aging [61], including impairment of the electron 

transport chain [62], changes in mitochondrial dynamics [63], and defective mitophagy [64], 

leading to age-dependent abnormalities in mitochondrial quality control. Thus, consistent 

with the observation that mitochondrial dysfunction promotes the secretion of mitovesicles 

[6], aging interferes with mitovesicle biology. In vitro, the secretion of small EVs from 

senescent cells is increased when compared with controls [65–67], and in vivo the overall 

secretion of brain mitovesicles increases during aging in a sex-independent fashion [45]. 

However, sex-specific changes were found when the cell types responsible for these changes 

were examined. Whereas the release of astrocytic mitovesicles (SFXN5+) increases in the 

brain of both males and females, the number of neuronal mitovesicles (OCIAD2+) increases 

with age exclusively in the brain of female mice [45].

As discussed above, we speculate that mitovesicle secretion has a role in mitochondrial 

quality control to protect against the accumulation of potentially harmful damaged 

mitochondria and to maintain a healthy pool of these organelles in the cell, particularly 

when lysosome activity is impaired. The observed increase in mitovesicle secretion in the 

aging brain may thus indicate age-related changes in mitochondrial function in both male 

and female brains, with a more pronounced effect in females. In addition, the observation 

that aging neurons in female mouse brains release a greater quantity of mitovesicles into 

the brain extracellular space, compared with male counterparts, highlights the ability of 

female brains to uphold the quality control system of mitochondria in neurons, ultimately 

contributing to brain homeostasis.

Conclusions

In addition to the existence of large ectosomes containing parts or whole mitochondria, the 

integration of data from several independent groups indicates that mitochondrial material in 

small EVs in the brain is mostly, if not exclusively, encapsulated by a specialized subtype 

of EVs originating directly from mitochondria: mitovesicles. In our model, mitovesicles are 

generated intracellularly as double-membraned PDH+ MDVs and eventually secreted into 

the extracellular space together with exosomes when the LE/MVB/amphisomes fuse with 

the plasma membrane (Figure 2). In aging and neurodegenerative disorders, mitochondrial 
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stress co-operates with concomitant changes in the endosomal pathway, causing profound 

alterations in mitovesicle biology and potentially contributing to phenotypic manifestations.
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Figure 1. 
Mitovesicles morphological properties. Representative cryogenic electron microscopy 

photomicrograph of a mitovesicle isolated from the brain of a C57BL/6 male mouse at 

12 months of age. Note the double membrane and the electron-dense core. Scale bar = 100 

nm.
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Figure 2. 
A unified model for the secretion of exosomes and mitovesicles in the brain via 

the endocytic pathway. Under physiological conditions (left), upon endocytosis, early 

endosomes undergo a process of maturation through which they invaginate cytosolic 

material into the lumen and generate ILVs. Fully mature endosomes, also known as LE/

MVBs (see Figure 3), eventually fuse with the plasma membrane (to release ILVs into the 

extracellular space), the lysosomes (for degradation of the same vesicles and other endocytic 

material), or the autophagosomes (to generate hybrid organelles called amphisomes). 

Double-membraned vesicles known as PDH+ MDVs bud from the surface of mitochondria 

and are delivered to the endocytic pathway with a yet unidentified mechanism. We propose 

a role for the autophagosomes as shuttle systems to deliver intact PDH+ MDVs into the 

lumen of the LE/MVB/amphisomes. During neurodegeneration (right), a higher endocytic 

flux drives the accumulation of enlarged early endosomes, while lysosomal dysfunctions 

hinder the degradation of ILVs, causing MVB enlargement and ILV accumulation, as well as 

higher exosome secretion. In parallel, higher production of mitochondrial ROS promotes 

the biogenesis of PDH+ MDVs and their trafficking into the endocytic system. Given 

the defective functionality of lysosomes, PDH+ MDVs will preferentially be released as 

mitovesicles into the brain extracellular space together with exosomes instead of being 

digested. Created with BioRender.com.
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Figure 3. 
LE/MVB enlargement and ILV accumulation in the brain of a mouse model of DS. 

Representative transmission electron microscopy photomicrographs of LE/MVBs in cortical 

neurons of a mouse model of DS (right) compared with a littermate diploid control (left) 

at 12 months of age. Scale bar: 500 nm. Quantifications and analyses are available in 

D’Acunzo et al., 2019 [56].
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