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Background
Virtual environments (VE) have been received significant attention when prepared for diag-
noses and treatments, for example, of motor and speech e-rehabilitation in patients [1].

Systems intended for e-rehabilitation through the use of VE can be used to monitor 
and store patient performance data. These data can be used by professionals to assess 
the progress of patients and to compare them with conventional therapies. Besides, a 
large number of scenarios and activities can be implemented with different objectives 
applied in the treatment of the most different difficulties in the area of healthcare [2].

For instance, Horváth et al. [3] propose a VE application for the treatment of patients. 
In this work, a VE called Virtual Everyday Life Activities (ELA) is presented as a tool for 
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the use in the treatment of patients with cognitive, speech and neuropsychological dis-
orders. Aphasia is an example.

Aphasia is defined as a communication difficulty caused by a focal or degenerative 
lesion in the areas of the brain responsible for the language, creating problems of expres-
sion, comprehension, reading, and writing [4]. Aphasia is caused, for instance, by stroke, 
head trauma, tumors of the central nervous system, intoxications or infectious and neu-
rodegenerative diseases [5].

The severity of this disorder is related to the extent of the affected area of the brain. 
The patient may improve rapidly if the damage has not been extensive. However, if there 
is significant brain damage, the problem can result in severe and lasting disability.

Different patterns of aphasia are related to the location of the brain injury: global apha-
sia [6], Broca’s aphasia [7], mixed non-fluent aphasia [8], Wernicke’s aphasia [9], primary 
progressive aphasia [10], and anomic aphasia [11], the patient has difficulty finding 
words, mainly nouns, and verbs, making continuous discourse difficult. It reaches both 
spoken and written communication.

Others studies based on the use of technology applied to the treatment of aphasia are 
shown in Table 1.

Inspired by those approaches to the use of technology in e-rehabilitation and e-train-
ing and, in particular, for the aphasia problem, the use of an online collaborative rehabil-
itation environment, an instrumented glove, and also integrating an artificial intelligence 
algorithm has been considered.

The present work results from studies within this context.
CORe, the Collaborative Online Rehabilitation environment, was developed with the 

main goal of providing an environment to collect and store data from multiple instru-
mented systems within the field of e-Health, in particular for rehabilitation and occupa-
tional therapy also, allowing multi-user interaction [17].

CORe has been developed based on a system architecture with three main elements, 
as shown in Fig. 1:

•	 Database: a remote database is used to store all the data collected from the different 
applications;

•	 Applications: dedicated application for each instrumented device, providing a user 
interface and a therapist interface;

Table 1  Examples of studies based on the use of technology applied in aphasia

Authors Work

University of London 
and Stroke Associa-
tion

Development of a multi-user online virtual world for practicing speech and communi-
cation [12]

Macoir et al. Review of technology-based aphasia treatments and highlight the critical determinants 
for the success of treatments [13]

Marshal et al. Feasibility study of e-rehabilitation systems used in the treatment of patients with 
aphasia [14]

Roper et al. Analysis of the benefits and limitations of using a system based on gesture therapy for 
people with severe aphasia [15]

Lanyi et al. Software package for an interactive virtual world to assist the speech therapy and the 
capacity of orientation for aphasic patients [16]
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•	 Virtual Network Lobby: management of the online collaborative multi-user inter-
action.

An application of an instrumented glove based on the use of CORe as VE, for the 
treatment of aphasia, was developed using a commercial instrumented 5DT Glove 
from 5DT Technologies. The application aims to identify a set of objects commonly 
used for a person through grasping.

In this paper, machine learning (ML) techniques are tested with the objective of ver-
ifying the performance of different classifiers applied to the identification of grasped 
objects based on data generated by 5DT instrumented glove and collected through 
CORe. Therefore, this work becomes relevant because it can be a building block for 
e-rehabilitation and e-training exercises used for aphasia recovering.

A set of supervised learning multiclass classifiers from scikit-learn, a ML library for 
Python, was tested. Each classifier was analyzed using eight different objects. Three 
users (one male under 30 years old, one male between 30 and 50 years old and one 
female over 50 years old) grasped a set of objects using the instrumented glove, fol-
lowing a defined procedure, generating data for training and testing purposes. This 
study was carried out in an engineering lab environment.

This paper is organized as follows: “CORe implementation” section describes the 
VE used to integrate the instrumented glove for data acquisition and storage. The 
set of objects used and the procedures to collect data are shown in “Data collection” 
section. “Classification techniques” section explores the ML techniques tested in 
this work. “Methods, results and discussion” describes the methodology used in this 

Fig. 1  System architecture
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work, the results obtained using the metrics adopted and discussions about the struc-
tures and scenarios used. “Conclusions” section presents the conclusion.

CORe implementation
The CORe implementation, using the Unity engine, presents a set of features including:

•	 Integration of different health monitoring devices: allows patients to use devices in 
order to carry out e-rehabilitation exercises represented on a virtual environment, 
promoting e-rehabilitation exercises at home;

•	 Local and remote storage of data collected by health monitoring devices during 
activities for later analysis and reproduction;

•	 Real-time and remote view of e-rehabilitation activities: allows a single therapist to 
connect with many users in a virtual lobby;

•	 Gamification in e-rehabilitation: offers game-like activities that take advantage of 
engagement and motivation for matching the task demands with appropriate feed-
back and interactive elements;

•	 Multiplatform: the software environment supports Windows, Android and also 
WebGL making the stored data remotely accessible anytime, everywhere and for eve-
ryone (CORe has not been developed to run on Unix OS).

The software implementation that follows the three main elements of the system archi-
tecture are further described.

Database

The database is running on a main server for storing the data from the three users and 
their e-rehabilitation activities. This database runs an open source MariaDB [18] (data-
base servers) implementation. Hypertext Preprocessor (PHP) was used as an interface in 
order to access the database data, as shown in Fig. 2.

Queries to the database are triggered from a WWWForm (helper class to generate 
form data to post to web servers) element in Unity’s C# script that sends the variables 
and values of the query through a GET method into the PHP script. The PHP is called 
by the C# script and connects to the database, executes the Structured Query Language 
(SQL) and fetches its result which is encoded in Javascript Object Notation (JSON). 
Therefore, it sends the JSON encoded string back to the C# script where a parse JSON 

Fig. 2  Diagram of the communication between the e-rehabilitation software application and the database
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reconstructs the data. Uploading datafiles into the server or streaming data for replaying 
a e-rehabilitation activity directly from the server also use a PHP script as an interface.

When there is an inability to connect into the remote database, the data can be stored 
on a local database. This local database is implemented on each machine running any of 
the different applications.

Applications

The software applications were built using the Unity engine, allowing support for dif-
ferent platforms, such as Windows, Android or iOS, enabling the development of a 
platform independent software. Different applications were developed for each instru-
mented device. These developments took into consideration the feedback given from 
specialists in the different fields of health and therapy to ensure the effectiveness of their 
use. Each application provides a set of activities, an user and a therapist graphical inter-
face, the communication protocols for the specific instrumented device and the connec-
tion with the database and the virtual network lobby.

Software libraries were developed that use common communication protocols and 
were integrated into the software application as pre-compiled libraries. The following 
communication protocols were implemented:

•	 Universal Serial Bus (USB) communication: assured by a C++ precompiled 
dynamic-link library (DLL) were the commands for transferring data can be speci-
fied for each instrumented device;

•	 Bluetooth Low Energy (BLE) characteristic: Java precompiled Android Archive 
Resource (AAR) implements services to scan for BLE devices and to establish a con-
nection and read data from predefined Generic Attributes (GATT) characteristics;

•	 Microchip Wireless protocol MiWi (via USB dongle): an alternative for wireless com-
munication protocol designed by Microchip Technology based on the IEEE 802.15.4 
standard. It is designed for low data transmission rates and short distances, offering 
lower latency and higher bandwidth when compared with BLE. This method requires 
a USB dongle in order to receive the MiWi encrypted packages from the instru-
mented devices.

Currently, the developed applications support the use of instrumented gloves, handle 
devices and inertial devices for e-rehabilitation and e-training.

Data collection
The aphasia problem can be helped with the development of an application for the iden-
tification of grasped objects to be used either as an evaluation or e-training tool. For 
this, it was envisage a procedure where the patient has to grasp common objects using 
an instrumented glove, and the system automatically identifies the object using a given 
classification technique.

The conducted study involves data collected from an instrumented glove and the use 
of classification techniques for the identification of object in this grasping task, based on 
Heumer’s classification method [19]. CORe was used as VE to collect the data. The 5DT 
Glove provides data from its five sensors.
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A set of eight objects used is shown in Fig. 3.
The set of objects were split into four groups according to their shape as shown in 

Table 2. These objects were chosen so that different weight, size, and shape were consid-
ered and, with this, different forms of grasping.

The procedure to collect data involves grasping and lifting the objects from the table 
having the arm in a neutral position. Three users were involved. The grasp period was 
set to 5 s for data collection. The object was then released and placed back on the desk. 
This procedure was repeated 100 times for each object, resulting in a total of 800 sets of 
sensor inputs for each user (totalizing, for three users, 2400 sets of sensors inputs). The 
data were splited into two sets, one for training (70%) and another for test (30%).

Classification techniques
ML techniques were used to identify objects, manipulated by an instrumented glove. 
Within the data analytics field, ML is an area with a growing recognition that can play 
a critical role in a wide range of applications such as data mining, natural language pro-
cessing, and image recognition, offering potential solutions in all these domains [20].

In the rehabilitation field, ML techniques can be used to create classification models 
with data collected from different instrumented devices to identify features and param-
eters to be used on the evaluation of patient condition [21]. The classification models are 
created by classifiers that can be divided into three types: supervised, semi-supervised 
and unsupervised.

The supervised classifier uses a set of labeled data that has its known output. Thus, the 
classification is based on the existence of a relation between the input and output. The 
unsupervised classifier allows deriving a structure of data for which the effect of vari-
ables is not necessarily known. Thus, during training, the outputs for each entry are not 
known. Semi-supervised classifiers are a mixture of supervised and unsupervised classi-
fiers. Therefore, output labels are known, but not in entirety.

Fig. 3  Set of objects

Table 2  Division of shape group

Shape groups Objects

Spherical Ball and small ball

Cylindrical Bottle and cup

Rectangular Box and phone

Others Mouse and tool
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Python [22] was used as software to implement multiclass classifiers, and scikit-learn 
[23] was used as a library. The scikit-learn library provides ML functions that are eas-
ily implemented. These functions perform complex tasks that are inherent in ML tech-
niques, for instance: cost function calculation, gradient descent, confusion matrix, etc. 
The scikit-learn, also, was used to dataset splitting into training and test sets.

In this work, all the supervised and semi-supervised classifiers from scikit-learn were 
used: Bagging [24], Decision Tree (Gini Index and Entropy Function as metric) [25], 
k-Nearest Neighbors (kNN) [26], Linear [27] and Quadratic Discriminant Analysis [28], 
SVM (Linear Support Vector Classification—SVC) [29], Logistic Regression (with and 
without Cross Validation—CV) [30], Multi-Layer Perceptron (MLP) [31], Naive Bayes 
(Bernoulli and Gaussian metrics) [32], Nearest Centroid [33], Radius Neighbors [34], 
Random Forest [35], Ridge (with and without CV) [36], Label Propagation [37], and 
Label Spreading [38]. Despite Label Propagation and Label Spreading are semi-super-
vised classifiers, they were used as supervised classification techniques according to the 
characteristic of the dataset.

Methods, results and discussion
The multiclass classification techniques were tested in two scenarios and with two clas-
sifier structures, using three models. The first scenario (universal use) uses data from all 
users (three users) for training and testing. The second scenario (personalised use) uses 
data collected from each user to define a personalised training model, to be used with 
each user.

The training and test data were chosen randomly. The choice of training and test data 
and classification process occurred 100 times. The reported values (Tables 3 and 4) of 
training and test time and accuracy are average values. These values considered using 
the first scenario (universal use).

The first classifier structure (Fig. 4) uses the model M0. This model uses the data from 
the five sensors glove as features to classify the objects.

The results using the first classifier structure (based on model M0) are presented in 
Table 3.

Three of the selected classifiers revealed better performance compared with the oth-
ers, regarding accuracy. However, for any of these three, the accuracy value was under 
95%. In order to get better classification results, it was decided to introduce an addi-
tional feature based on the object shape (as suggested by [19]). This suggested introduc-
ing a new classifier structure using two models M1 and M2 (Fig. 5).

The model M1 uses the same features of model M0 to classify the objects’ shape into 
four classes (spherical, cylindrical, rectangular, and others). Model M2 uses six features 
(the shape feature from the model M1 output and the data from five sensors of the glove) 
to classify the object.

Table 4 shows training time for models M1 and M2 and the test time and accuracy of 
second classifier structure.

As shown in Tables 3 and 4, the classifiers structures, Random Forest, Label Propaga-
tion and Label Spreading were the best classification techniques in terms of accuracy. 
However, the second classifier structure had higher accuracy than the first classifier 
structure.
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Table 3  Training and test time of model M0, and accuracy of the first classifier structure

Classification technique with better results are in italic

Classification technique First classifier structure scenario 1 (universal use)

Training time (ms) Test time (ms) Accuracy (%)

Bagging 411.62 15.68 91.9

Decision tree (entropy) 7.2 0.40 55.7

Decision tree (Gini) 5.8 0.30 86.6

kNN 1.36 4.75 91.5

Linear discriminant analysis 10.43 0.24 66.8

SVM (linear SVC) 144.81 0.53 66.1

Logistic regression 41.49 0.42 67.8

Logistic regression CV 915.77 0.48 67.8

MLP 3113.93 0.72 83.5

Naive Bayes (Bernoulli) 1.57 0.35 52.2

Naive Bayes (Gaussian) 1.62 0.86 74.0

NearestCentroid 1.19 0.49 67.9

Quadratic discriminant analysis 3.09 0.76 87.0

Radius neighbors 1.17 146.89 47.5

Random forest 208.87 14.38 93.2

Ridge 2.9 0.22 64.2

Ridge CV 3.05 0.33 64.4

Label propagation 56.31 16.38 93.2

Label spreading 99.53 16.90 93.2

Table 4  Training time of  models M1 and  M2 and  test time and  accuracy of  the  second 
classifier structure

Classification technique with better results are in italic

Classification technique Training time (ms) Second classifier structure 
scenario 1 (universal use)

Model M1 Model M2 Test time (ms) Accuracy

Bagging 392.18 276.36 39.74 95.9

Decision tree (entropy) 5.16 6.82 10.96 82.8

Decision tree (Gini) 5.04 5.14 10.49 92.0

kNN 0.84 0.78 19.72 94.7

Linear discriminant analysis 5.62 6.96 11.35 67.1

SVM (linear SVC) 146.66 202.21 12.47 69.1

Logistic regression 16.21 59.15 11.58 73.6

Logistic regression CV 314.46 1320.23 11.81 74.0

MLP 2478.57 2886.71 12.07 90.5

Naive Bayes (Bernoulli) 1.46 1.04 11.73 56.0

Naive Bayes (Gaussian) 1.5 1.04 12.09 85.3

NearestCentroid 1.02 0.6 11.49 64.3

Quadratic discriminant analysis 1.52 1.4 11.87 82.5

Radius neighbors 1.14 0.82 247.42 54.7

Random forest 199.41 158.87 36.58 96.6

Ridge 1.79 1.28 11.76 60.9

Ridge CV 2.64 2.38 11.42 61.0

Label propagation 56.54 57.31 46.22 96.7

Label spreading 97.28 99.82 45.64 96.3
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Comparing the performance of the two classifier structures (M0 and M1 + M2), the 
average of Random Forest training time was 3.3 times higher than Label Propagation 
and 1.9 times than Label Spreading. However, the test time using Random Forest was 
shorter than using Label Propagation (14% in model M0 and 26% in the M1 + M2) and 
using Label Spreading (17% in model M0 and 25% in the M1 + M2).

The three best classification techniques obtained using the first scenario (universal 
use) were chosen to be tested and compared with the second scenario (personalised 
use). In this scenario, data from each user were, also, randomly divided into training and 
test datasets. Table 5 compares the test time and accuracies of both scenarios using the 
two classifier structures.

The accuracy obtained with the second scenario (personalised use) was better than 
with the first scenario (universal use) independently of the considered classifier struc-
ture. On average, the accuracies increased 1.2% for the first classifier structure (M0) and 
2.1% for the second classifier structure (M1 + M2).

Looking at the proposed classifier structured (M0 and M1 + M2) the second one 
allows to achieve better accuracies, independently of the considered scenarios. This is 
due to the more complex structure that uses more features implying a slight increase in 
test time.

The test time was shorter for the second scenario (personalised use), in both classifier 
structures. Although the test time under Scenario 2 within second classifier structure 

Fig. 4  First structure for object classification

Fig. 5  Second classifier structure of objects classification using M1 and M2 models

Table 5  Testing times and accuracies—both scenarios

Classification 
technique

First classifier structure (M0) Second classifier structure (M1 + M2)

Scenario 1 (universal 
use)

Scenario 2 
(personalised use)

Scenario 1 (universal 
use)

Scenario 2 
(personalised use)

Test time 
(ms)

Acc. (%) Test time 
(ms)

Acc. (%) Test time 
(ms)

Acc. (%) Test time 
(ms)

Acc. (%)

Label propaga-
tion

16.38 93.2 2.14 94.2 46.22 96.7 4.13 99.0

Label spread-
ing

16.90 93.2 2.28 94.0 45.64 96.3 4.33 98.0

Random forest 14.38 93.2 8.26 95.0 36.58 96.6 4.45 99.0
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for Label Propagation (4.13 ms) and Label Spreading (4.33 ms) were almost twice to the 
respective ones within the first classifier structure (2.14/2.28 ms), the time values are in 
the range of 5 ms.

Confusion matrices

The confusion matrices of the three best classification techniques in both classifier 
structures used within both scenarios are presented and analyzed. The confusion matrix 
is used to identify the behaviour of a classifier on a given set of data for which the true 
values are known. It shows for each tested object the results of the predicted class. Fig-
ure 6 presents the average normalized overall confusion matrices for the first classifier 
structure (M0) using the first scenario (universal use).

The average normalized overall confusion matrices for the first classifier structure 
(M0) using the second scenario (personalised use) is shown in Fig. 7.

The average normalized overall confusion matrices for the second classifier structure 
(M1 + M2) using the first scenario (universal use) is shown in Fig. 8.

Figure 9 shows the average normalized overall confusion matrices for the second clas-
sifier structure (M1 + M2) using the second scenario (personalised use).

Observing all the confusion matrices for the second classifier structure (M1 + M2), 
large errors occur within the classification of objects of the same shape when compared 
with the first classifier structure (M0). However, in the case of M0, the confusion matri-
ces spread errors among a higher number of different objects.

The confusion matrices show that considering the data from the second scenario (per-
sonalised use) the classification errors occur with a small number of objects indepen-
dently of the considered classifier structure. The second classifier structure (M1 + M2) 
presents better accuracy, with null classification errors for some objects, independently 
of classification techniques. Also, the second scenario (personalised use) presents the 
best results.

Fig. 6  Normalized confusion matrices: first classifier structure (M0) using the first scenario (universal use)
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Conclusion
This paper explores and compares different classification techniques for identification 
of grasped objects. The implementation of ML techniques (from the scikit-learn library) 
envisages the use of an application to carry out e-rehabilitation and e-training exercises 
for different pathologies, as in aphasic patients. A commercial instrumented glove (5DT) 
was used within a developed VE (CORe) that supports data acquisition and storage.

Fig. 7  Normalized confusion matrices: first classifier structure (M0) using the second scenario (personalised 
use)

Fig. 8  Normalized confusion matrices: second classifier structure (M1 + M2) using the first scenario (universal 
use)
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For the data analyzed and the tested classification techniques, the following conclu-
sions were shown:

•	 the Label Propagation, Label Spreading, and Random Forest classification tech-
niques present the best accuracies (99%, 98% and 99%, respectively);

•	 for the two considered classifier structures (M0 and M1 + M2), the second 
(M1 + M2) presents the best accuracies (98% to Label Spreading and 99% to Label 
Propagation and Random Forest);

•	 for the two analyzed scenarios (universal and personalised use), the use of per-
sonalised approach shows higher accuracies. The average accuracy of the three 
selected classification techniques using the first classifier structure is 94.4%. For 
the same personalised scenario the average accuracy of the same selected classifi-
cation techniques using the second c1assifier structure is 98.6%;

•	 for the second scenario (personalised use), classification errors mainly occurs in 
objects of the same shape.

As future work, the following aspects were identified:

•	 To increase the set of objects to be identified (since up to now eight different 
objects divided into four type of shapes were considered);

•	 To include the use of other instrumented gloves with higher number of sensors for 
comparison studies (5DT Glove used has only five sensors);

•	 To extend the work for clinical trials following our contacts with experts in apha-
sia area (as the expected follow up for an engineering laboratory prototype devel-
opment process).

Fig. 9  Normalized confusion matrices: second classifier structure (M1 + M2) using the second scenario 
(personalised use)
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