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Abstract: Cutaneous wound healing is a vital biological process that aids skin regeneration upon
injury. Wound healing failure results from persistent inflammatory conditions observed in diabetes,
or autoimmune diseases like psoriasis. Chronic wounds are incurable due to factors like poor
oxygenation, aberrant function of peripheral sensory nervature, inadequate nutrients and blood
tissue supply. The most significant hallmark of chronic wounds is heavily aberrant immune skin
function. The immune response in humans relies on a large network of signalling molecules and their
interactions. Research studies have reported on the dual role of host defence peptides (HDPs), which
are also often called antimicrobial peptides (AMPs). Their duality reflects their potential for acting as
antibacterial peptides, and as immunodulators that assist in modulating several biological signalling
pathways related to processes such as wound healing, autoimmune disease, and others. HDPs may
differentially control gene regulation and alter the behaviour of epithelial and immune cells, resulting
in modulation of immune responses. In this review, we shed light on the understanding and most
recent advances related to molecular mechanisms and immune modulatory features of host defence
peptides in human skin wound healing. Understanding their functional role in skin immunity may
further inspire topical treatments for chronic wounds.

Keywords: antimicrobial peptides; host defence peptides; chronic wounds; skin wound healing;
inflammation; skin immune response

1. Introduction

Acute wounds in diabetic patients can adopt and portray the chronicity of the non-
healing wounds due to bottom-line complications like the duration of diabetes or vascular
disease paired with peripheral neuropathies [1]. Wounds that do not heal naturally within
three months are defined as chronic wounds, and often require treatment to heal. Wounds
that have healing difficulties are subcategorised into four aetiology categories: venous,
pressure, diabetic and arterial insufficient ulcers. Non-healing wounds share a lack of
oxygen and nutrient supply and microbial contagion, delaying the wound from healing [2].
Diabetic foot ulcerations occur in about 20% of the diabetic population, being prevalent
among the chronic wound aetiologies, like venous and pressure ulcers [3].

Other inflammatory skin conditions like psoriasis [4,5] and atopic dermatitis [6] are
also characterised by dysregulation of the immune response, attacking healthy skin cells.

Host defence peptides are polycationic peptides exhibiting various antimicrobial
activities or prompting the host’s immune responses. These agents are naturally produced
by a wide variety of species, ranging from marine organisms to humans. Recent studies
propose the dual importance of host defence peptides (HDPs) in the different phases of
wound healing [7,8]. As the first line of defence against pathogenic bacterial infection,
HDPs are a critical element in preventing biofilm-associated infections [9,10]. A decline
in sufficiently effective antibiotic treatments due to growing problems with antibiotic
resistance may be ameliorated with alternatives to conventional antibiotics like peptides
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with antimicrobial properties [11]. Aside from bacterial pathogen inactivation by disrupting
their cell membranes, host defence peptides also have immunomodulatory properties, due
to their ability to stimulate the cross-talk between immune cells promoting cutaneous
wound healing in a healthier manner [12].

Different HDPs share some similarities like the number of amino acid residues be-
ing between 10 and 60, a cationic charge of 2–9 and depending on the sequence length,
HDPs are classified as long (50–100 amino acids), intermediate (25–50 amino acids) or
short (9–24 amino acids) [13,14]. The diverse structure yet positive net charge that they
have in common is an important prerequisite for the design of the more stable, synthetic
analogues that interact with anionic prokaryotic membranes: lipopolysaccharides (LPS; in
Gram-negative bacteria) and teichoic acids (in Gram-positive bacteria) [11]. Host defence
peptides and their synthetic analogues called peptidomimetics, which contain sequences
built by natural and unnatural amino acids [15]. These building blocks determine the
signature physiochemical properties, which are the charge (neutral or positive) and the
hydrophobicity/hydrophilicity. These in turn contribute to the other level of structural com-
plexity that plays a significant role in the activity: the secondary structures of HDPs [16,17].
Aside from their known potential for evading infections, an increasing body of evidence has
demonstrated that HDPs are able to exert intracellular inhibitory activities as the primary
or supportive mechanisms to achieve efficient killing [18]. The latter activity is referred
to as immunomodulatory activity, and multiple studies have presented evidence on this
important role in innate and adaptive immune response [19]. Most of the HDP deriva-
tives include a combination of microbicidal action and immunomodulatory functions [20].
The challenges associated with creating a non-immunogenic peptide without the poten-
tially adverse effects observed in natural HDPs may be defeated by the modification of
internal sequences or single amino acid substitutions [21,22]. An example of such peptides
is innate defence regulator peptides (IDR peptides) [23,24]. Specific signature structure
properties that allow synthetic peptides to exert immunomodulatory properties are yet not
well defined in the literature and are quite diverse.

2. Host Defence Peptides in Wound Healing

Cationic peptides play a primarily role in maintaining the skin barrier’s integrity
and cutaneous tissue restoration during injury [25]. Due to expanding the effects of
antimicrobial peptides on bacteria, HDP have been assigned the fundamental biological
role in innate immunity [26]. Due to their lack of adaptive immune systems, arthropods
and plants rely on their HDPs’ primary defence response [27,28]. In higher eukaryotes, the
levels of the host’s defence peptides patrolling through signalling networks of the immune
response are significantly more abundant, as their multifaceted role is more complex [29].

Skin resident HDPs are crucial participants of each step of the wound healing process:
inflammation (neutrophil and macrophage infiltration), wound site regeneration (angio-
genesis and re-epithelialization) and remodelling (restoration of tensile strength) [25,30].

In humans, two main classes of host defence peptides have been identified: defensins
and cathelicidins (Figure 1). However, there are also a variety of other small peptides
expressed by epithelial cells like Substance P [31], neurotensin [32], granulysin [33], calpro-
tectin [34], adrenomedullin [35], MRP8/MRP-14 [36] and RNase A superfamily [37], which
are also important wound inflammatory biomarkers.
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Figure 1. Host defence peptides expressed by skin cells are induced by immune response, and act 
via signalling proteins belonging to growth factors like Vascular Endothelial Growth Factor 
(VEGF), Transforming Growth Factor beta (TGFβ), Epidermal Growth Factor (EGF) and cytokines 
like Tumor Necrosis factor alpha (TNFα). Immune cells produce LL-37 from the cathelicidin family 
(Pdb code: 2K6O) [10] and defensin family: Human defensin 1 (Pdb code: 1IJU) [38], Human de-
fensin 2 (Pdb code: 1FD4) [39], Human defensin 3 (Pdb code: 1KJ6) [40]. 

2.1. Defensins 
Peptides from the defensin family are small peptides that are widely distributed 

across species, including humans. Human defensins (HDs) are produced in leukocytes 
and are also secreted by different epithelial cells and mucosal tissues [38]. The mature 
defensins are described as short (28–42 amino acids length), cationic (net charge +1 to 
+11), amphipathic peptides with a highly conserved tertiary structure of a triple antipar-
allel β-sheet fold arrangement accommodating the six cysteine residues connected with 
three disulphide bridges [39]. 

Moreover, depending on the size, location, spatial conformation, and spot where the 
cysteines lay within the peptide chains, they are categorised as α-defensins, β-defensins 
and θ-defensins [39,40]. In humans, only α and β-defensins are present, while structur-
ally different, cyclic θ-defensins have been identified in rhesus macaques [39,41]. 

Additionally, the HDs have antimicrobial activity against various strains of 
Gram-positive and negative bacteria [42], fungi [43] and viruses such as the herpes sim-
plex virus [44]. 

In humans, there are 6 α-defensins: HNPs1–4 and human α-defensins 5 and 6 (HD5 
and HD6) [42,45]. HNPs 1–3 (human neutrophil peptides) differ by single amino acid 
substitutions and are predominantly produced by neutrophils. 

Moreover, β-defensins abundance is tightly governed by transcriptional controls 
assigned to epithelial and epidermal cells [46]. One representative of the β-defensin fam-

Figure 1. Host defence peptides expressed by skin cells are induced by immune response, and act
via signalling proteins belonging to growth factors like Vascular Endothelial Growth Factor (VEGF),
Transforming Growth Factor beta (TGFβ), Epidermal Growth Factor (EGF) and cytokines like Tumor
Necrosis factor alpha (TNFα). Immune cells produce LL-37 from the cathelicidin family (Pdb code:
2K6O) [10] and defensin family: Human defensin 1 (Pdb code: 1IJU) [38], Human defensin 2 (Pdb
code: 1FD4) [39], Human defensin 3 (Pdb code: 1KJ6) [40].

2.1. Defensins

Peptides from the defensin family are small peptides that are widely distributed
across species, including humans. Human defensins (HDs) are produced in leukocytes
and are also secreted by different epithelial cells and mucosal tissues [38]. The mature
defensins are described as short (28–42 amino acids length), cationic (net charge +1 to +11),
amphipathic peptides with a highly conserved tertiary structure of a triple antiparallel
β-sheet fold arrangement accommodating the six cysteine residues connected with three
disulphide bridges [39].

Moreover, depending on the size, location, spatial conformation, and spot where the
cysteines lay within the peptide chains, they are categorised as α-defensins, β-defensins
and θ-defensins [39,40]. In humans, only α and β-defensins are present, while structurally
different, cyclic θ-defensins have been identified in rhesus macaques [39,41].

Additionally, the HDs have antimicrobial activity against various strains of Gram-positive
and negative bacteria [42], fungi [43] and viruses such as the herpes simplex virus [44].

In humans, there are 6 α-defensins: HNPs1–4 and human α-defensins 5 and 6 (HD5
and HD6) [42,45]. HNPs 1–3 (human neutrophil peptides) differ by single amino acid
substitutions and are predominantly produced by neutrophils.

Moreover, β-defensins abundance is tightly governed by transcriptional controls
assigned to epithelial and epidermal cells [46]. One representative of the β-defensin family
such as human β-defensin 1 (HBD1) is continuously transcribed in skin cells, while the
transcription of human β-defensin 2 (HBD2) and human β-defensin 3 (HBD3) as the others
is triggered in response to a microbial or pro-inflammatory cytokines presence [47].
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2.2. Cathelicidins

Endogenous cathelicidins are stored at high concentrations as inactive precursors in
granules of mammalian neutrophils and mast cells. In contrast to defensins, cathelicidins
are predominantly α-helical, amphipathic, cationic (possessing a net positive charge of 2–9)
and consist of 23–37 amino acids [48].

Cathelicidins are named after the conserved cathelin-like domain, and are produced
as protein precursors, containing a conserved amino-terminal (N-terminal) signal peptide
domain, an antimicrobial C-terminal domain mature peptide and cathelin-like domain [49].

The active form of peptide is formed once the cathelin domain is cleaved by serine
proteases upon neutrophils degranulation and secretion of peptides [50].

The gene for hCAP-18, named CAMP, encodes the human cathelicidin. LL-37, the only
member of the cathelicidin family identified so far in humans, is present in the secondary
(specific) granules of neutrophils, macrophages, and epithelial cells [51]. Human catheli-
cidin hCAP-18, is processed by proteinases into several extracellular cleavage products,
with LL-37 being one of them [52]. Cathelicidins play an important regulatory role in the
inflammatory response [53]. Many studies support immunomodulatory actions over the
antimicrobial actions of cathelicidins [26,48]. However, the constitutive generation of the
cathelicidins across the various species provides them with strong antimicrobial protection
from bacteria [54], viruses [55] or fungi [56].

3. Wound Healing Phases

The skin is a multifunctional organ whose outermost position provides protective a
barrier [57]. In addition to providing mechanical protection and support to internal organs,
the subtle cutaneous microenvironment has the capacity to actively mediate immune re-
sponse [58]. The intact skin is composed of three layers: epidermis, dermis and hypodermis,
with the epidermis being the outermost layer and the hypodermis the innermost layer.

When a wound occurs in the skin, healing is essential for the skin to restore the
integrity. The wound healing is a perplexed process consisting of three sophistically
coordinated phases: inflammation, proliferation, and remodelling [59]. However, this
classification is arbitrary, as those phases are overlapping, and even distant areas of wounds
can be in different phases of healing [60] (Figure 2).

3.1. Inflammation

The inflammatory phase begins with hemostasis. Hemostasis involves various pro-
tease cascades leading to the formation of a fibrin cloth to prevent blood loss and seal the
wound [61]. The inflammatory phase is characterised by infiltration of immune cells, such
as neutrophils, macrophages, and lymphocytes, which aim to eliminate pathogens and
cellular debris from the wound site [62].

Neutrophils as the first responders engulf the pro-inflammatory cytokines, with DNA,
RNA and other cellular components often referred to as damage-associated molecule
patterns [63]. Phagocytic products trigger the release of cytokines, growth factors, pro-
duction of reactive oxygen species (ROS) and proteolytic enzymes, which in turn attract
more immune cells to the wounded site [64]. Another highly abundant subpopulation of
immune cells are macrophages. During wound healing, two subgroups of macrophages
populate the wound depending on the cytokine secretion profile: pro-inflammatory or
M1 and anti-inflammatory or M2 [65]. The macrophage polarisation to either the pro- or
anti-inflammatory phenotype is tightly controlled by signalling pathways, transcriptional
and posttranscriptional regulatory networks [66].
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3.2. Proliferation

The proliferative phase is characterised by re-epithelialization, angiogenesis and
formation of granulation tissue that leads to closure of the epithelial layer, revascularization
in the damaged area and tissue regeneration [67].

Epidermal growth factor (EGF) release initiates the re-epithelialization of the epi-
dermis. This stimulates the keratinocytes, as the predominant cell type in the epidermis,
to protrude, adhere, contract, and detach, migrating this way under the fibrin clot [68].
Angiogenesis is the formation of new blood capillaries existing from vessels. This is crucial,
as healing requires energy for cell proliferation, migration, and production of collagen.
Angiogenesis is stimulated by vascular endothelial growth factor (VEGF) [69]. The granu-
lation tissue restoration formation is necessary for the connective tissue restoration, and it
is performed by fibroblasts that synthesize the extracellular matrix (ECM) and collagen to
strengthen the new tissue [70].

3.3. Remodelling

The remodelling phase can span for several years [71]. The remodelling or matura-
tion phase involves degradation of the ECM and collagen III to collagen I replacement,
resulting in increased tensile strength of the newly formed tissue [72,73]. The fibroblasts
differentiation into myofibroblasts aids reduction of the wound size. Once the contraction
of the wound is completed, the number of immune cells [74], the vessels [75] and the
myofibroblasts undergo apoptosis [76]. The newly formed fibres and collagen structures
are disorganised and can take years before they are properly reorganised to form fully
healed tissue [77].

4. Cellular Regulation and Immunomodulatory Actions of Host Defence Peptides
during Wound Healing

Factors affecting wound healing can be categorised into systemic and local factors. Sys-
temic factors are present at all times in the individual, as seen in diseases such as diabetes,
stress, obesity and age, while local factors include factors, such as infection, oxygenation
and foreign bodies, which directly influence the wound locally [78]. The local factors lead
to high levels of pro-inflammatory cytokines and ROS, impaired cell and protease function
and a lack of growth factors [79]. HDPs have been demonstrated to influence many local
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factors, such as regulating expression of cytokines [80], chemokines [81], proteases [82],
growth factors [83] and immune cell activity [84–86] (Table 1).

Table 1. Host defence peptides immunomodulatory actions in wound healing phases.

Human Host Defence
Peptide Immunomodulatory Action Reference

Inflammatory phase

LL-37

Cell migration mediated by
EGFR and ERK1/2 [87]

Recruitment of leukocytes [88]
Secretion of anti-inflammatory

cytokines like IL-1RA [89]

Enhanced SMAD2/3 and
STAT3 phosphorylation [90]

LL-37, hBD-2, hBD-3, hBD-4 Activation of the p38 and
ERK1/2 MAPK pathways [91]

hBD-2, hBD-3 Activate plasmacytoid
dendritic cells (pDCs) [92]

S100A7

Increased
NFκB/p38MAPK/Caspase-

1/IL-1a
signalling

[93]

Proliferative phase

LL-37
Induction of growth factors

such as EGF and VEGF [87]

Neovascularization [94]

hBD-2, hBD-3 Keratinocyte migration and
proliferation [95]

Remodelling phase

LL-37 Polarisation to M1
macrophages [53]

Cathelicidin-WA (CWA)

Suppressed phosphorylation
of STAT1 and NF-κB,

repressed phosphorylation of
STAT6

[96]

S100A7
Aberrant response of

fibroblasts and endothelial
cells

[97]

4.1. Host Defense Peptides Triggered by Inflammation

Many acute and chronic inflammatory disorders have been correlated with dysregula-
tion of the natural HDP response [26,98]. Although the reciprocity of either deficiency or
overproduction of HDPs in the presence of inflammation and thus balance between pro- or
anti-inflammatory effects is not so easy to define directly, this can lead to a pathological
inflammatory response [99,100]. Endogenous host defence peptides, stored intracellularly
at high concentrations as inactive precursors in granules, are released locally at infec-
tion and inflammation sites, whereas the expression of others is induced in response to
pathogen-associated molecules [101].

The role of the immune cells in the inflammatory phase is intended to eliminate
intracellular pathogens, and this is achieved by producing host defence peptides, which
in turn promote the robust recruitment of immune cells such as neutrophils, mono-
cytes/macrophages, dendritic cells, and T cells [26]. Altered levels of either pro- [102,103]
or anti-inflammatory [81,104,105] cytokines have been reported in inflammatory condi-
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tions. A persistent inflammatory environment has been demonstrated to affect not only
the function of immune cells [106], but also the composition of the host defence peptides
detected at the wound site [107] (Figure 3).

Defensins and cathelicidins family members have distinct roles in various disease
states, and many studies support the potential synergistic roles of defensins and catheli-
cidins in cytokines chemoattraction in skin immune responses [91]. Tightly coordinated
actions of hBD-2, -3 and -4 along with LL-37 induce secretion of IL-18 by keratinocytes
through activation of the p38 and ERK1/2 MAPK pathways [91]. Under inflammatory skin
conditions, high expression levels of keratinocyte hBD-2 induced by IL-17A and TNFα
indicate that it may be considered as a marker for disease severity [108].

Inflammatory skin conditions like psoriasis are linked to elevated levels of both IL-1a
and S100A7 (also known as psoriasin) and an increased signalling axis composed of NF-
κB/p38MAPK/Caspase-1/IL-1a, which regulates S100A7 [93]. Moreover, the increased
expression of LL-37 is associated with overproduction of IFNγ in psoriatic lesions, while
hBD-2, hBD-3 and lysozyme can activate plasmacytoid dendritic cells (pDCs) in co-action
with LL-37 [92]. LL-37 evokes pro-inflammatory chemotaxis through binding to the formyl
peptide-like receptor-2 (Fpr-2), a cell sensing element for microbial products [88]. The
human host defence peptide LL-37 binds to these G protein–coupled receptors and activates
mucosal immune response through recruitment of leukocytes [88]. In contrast, LL-37 can
mediate anti-inflammatory responses such as secretion of anti-inflammatory cytokines
like IL-1RA [89]. Another prominent feature of the neutrophil released cathelicidins is
enhanced SMAD2/3 and STAT3 phosphorylation in the presence of transforming growth
factor-β (TGFβ), shifting the T-cells subset towards Th17 rather than the Th1 phenotype,
resulting in Th17 but not Th1 cells protection from apoptosis [90].

Atopic dermatitis (eczema) is another pathological skin condition [109]. Unlike the
psoriasis which is characterised by elevated levels of innate immunity peptides, in atopic
dermatitis, host defence peptide levels are not abundant and together with skin dryness
make affected areas prone to infections [110].

4.2. Host Defense Peptides Involved in Proliferative Phase of Wound Healing

It has been shown that LL-37 peptide induces growth factors, such as EGF and VEGF,
but also binds their receptors [87,111]. Aberrant vascularization during wound restoration
in mice lacking the CRAMP (the murine homologue of LL-37/hCAP-18), shows that the
peptide can stimulate endothelial cells, increasing the proliferation rate and thus enhancing
the dermal neovascularization [94].

Furthermore, high levels of hBD-2 and hBD-3 detected at wound sites promote ker-
atinocyte migration and proliferation, indicating their involvement in the re-epithelialization
of the healing epithelium [95,112]. A relatively recent study demonstrated that topical
insulin delivery to the wound enhanced the levels of extracellular-signal regulated kinase
(ERK) and protein kinase B (Akt) [113]. ERK is a part of a phosphorylation pathway
that activates gene transcription leading to cell [114,115] and increased Akt stimulated
angiogenesis through activation VEGF signalling [116,117] (Figure 4).

4.3. Host Defense Peptides in Tissue Remodelling Phase

The direction of macrophages polarisation into relevant phenotypes during differ-
ent phases of wound healing (i.e., polarisation to a pro-inflammatory phenotype during
the inflammatory phase and anti-inflammatory phenotype during the subsequent prolif-
eration and remodelling phase) [118,119] is controlled by many factors, while different
HDPs (like LL-37) promote polarisation to M1 macrophages [53]. Similarly, elevated levels
of interleukin-6 (IL-6), IL-1β, tumour necrosis factor-α (TNFα) and chemokine CCL3 in
RAW264.7 cells can be dampened by Cathelicidin-WA (CWA) [96]. CWA peptide sup-
presses the expression of TLR-4 and the phosphorylation of STAT1 and NF-κB, downregu-
lating the activity of pro-inflammatory macrophages while stimulating the phosphorylation
of STAT6 and activating E. coli K88-induced anti-inflammatory macrophages [96].
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Figure 4. Host defence peptides involved in later stages of wound healing to assist skin regeneration.

An aberrant response described as overgrowth of fibroblasts and endothelial cells
may be due to high concentrations of psoriasin in wound fluid and granulation tissue [97].
Psoriasin stimulates the tissue remodelling by inhibiting the excessive production of
collagen, fibronectin and TGFβ formation in fibroblasts. In keloid-derived fibroblasts,
psoriasin production is decreased [97] (Figure 4).

5. Immunomodulatory Host Defence-Inspired Peptide Wound Treatments

Many host defence-inspired peptides are used as topical dermal treatments for wound
healing [25], and the list of experimentally verified alternatives peptides is long [24,120–
124]. One of the most widely used peptides for wounds with healing impairments and in-
fections is LL-37 [125–130]. Transdermal delivery of peptides may be enhanced using novel
3D nanofiber scaffolds, to overcome previously reported poor cellular penetration [125].
The CO2 expanded nanofiber scaffolds can greatly promote cellular infiltration, neovas-
cularization, and positive host response after subcutaneous implantation of coated LL-37
peptide [125]. Nanoparticles lipid carriers (NLCs) encapsulating LL-37 and administered
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through the topical route, have demonstrated to accelerated wound closure along with
re-epithelization and decreased the inflammation in vitro and in vivo [126]. Moreover, the
topical administration of LL-37 encapsulated in PLGA nanoparticles accelerated the wound
closure along with re-epithelialization and improved the structure of the granulation tissue
at the wound bed [127]. In addition to this, significantly up-regulated IL-6 and VEGF
expression modulated the inflammatory wound response, leading to neovascularization
improvements [127].

LL-37-conjugated gold nanoparticles exhibited enhanced in vivo wound healing activ-
ity compared to LL-37 alone by improving cell migration mediated by EGFR and ERK1/2
phosphorylation [131]. Wounds treated with LL-37-conjugated gold nanoparticles exhib-
ited a better structure of collagen fibres IL-6 and VEGF [131]. Chronic diabetic wounds
treated with antimicrobial peptide (LL-37) and fused with ultra-small gold nanoparticles
(AuNPs) as a gene delivery system supported accelerated wound closure, as the wounds
were permeated with newly formed blood vessels and the bacterial load was reduced [128].
In addition to, faster re-epithelization, granulation tissue improved, and VEGF expression
increased [128]. LL-37 inspired wound drugs offer efficiency but require delivery stability
through artificially synthesized carriers like calcium phosphate CaP nanoparticles [129].
Coating the LL-37 on CaP offers protection against enzymatic degradation, while the biolog-
ical functionality and antimicrobial activity against both Gram-positive and Gram-negative
bacteria remains intact [129].

Another wound healing therapeutics inspired by human α-defensin 5 (HD5) is nan-
odefensin (ND) with dual antimicrobial/immunomodulatory action [130]. The coating
with upgraded pharmacological stability, a nanodefensin-encased hydrogel (NDEFgel)
locally applied to the wounded surface, accelerated wound regeneration, and increased
the expression of myofibroblasts and GTP-binding protein Rac1 [130].

Neuropeptides released from peripheral nerves like neurotensin display ameliora-
tion of wound healing impairments when loaded on collagen dressings by reducing the
inflammation in diabetic mice wounds [132]. Exogenous delivery of the neurotensin does
not translate into functional modifications on keratinocytes, particularly in terms of mi-
gration [117,133]. Another peptide with relevance to wound healing is Substance P, an
undecapeptide (11 amino acids long) member of the tachykinin neuropeptide family [134].
Its effects are exerted via a high-affinity neurokinin-1 receptor (NK1R), and NK1RKO
mice show higher Substance P expression [135]. The local treatment with Substance P or
analogues has the potential not only to promote diabetic foot ulceration healing but also
to modulate inflammation and macrophage phenotype [117,135]. An injectable Laponite
nanodiscs-based hydrogel loaded with Substance P promoted wound healing by deliver-
ing the Substance P to a tissue-engineered skin model to stimulate the reepithelialization
process [136].

6. Conclusions and Perspectives

HDPs are a vital component of the innate immune system of all eukaryotic organisms.
In addition to their ability to kill microbial pathogens directly, HDPs can indirectly modu-
late the host defence systems. Dysregulation of their expression not only in the skin, but
also in other body sites, can contribute to various pathological states. There are increasing
efforts to further characterize peptide interactions with the immune system of various
novel human HDPs as well as synthetic analogues and increase our knowledge of their role
in wound healing. Their immunomodulation activity is promising for the development of
effective drug adjuvants and antimicrobial therapeutics.
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