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Abstract

How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular
mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial
cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 R M
transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips
and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1
concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of
Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic
model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast
growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast
exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream
action of Cdr2 on Wee1 phosphorylation, is proposed.
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Introduction

Dividing cells maintain a stable size from one generation to the

next. This suggests that they contain homeostatic mechanisms in

which the division cycle is triggered when a particular size is

attained. However, the biochemical mechanisms for this have

remained unknown puzzles for decades. Sensing mechanisms

appear restricted to monitoring concentration changes, so how can

such changes reflect cell volume? Volume and concentration are

different types of quantities; the former is sensitive to changes in

scale while the latter is not. This issue has been discussed [1] and

possibilities have been proposed. Most of these involve measuring

the time required for a cellular component to reach a critical

concentration beyond which mitosis is triggered [1,2].

Because their cell-length phenotypes are directly linked to the

time spent in specific cell cycle stages, fission yeast Schizosacchar-

omyces pombe are especially useful in understanding the relationship

between cell size and cell cycle [3]. These 7 mm long rod-shaped

newborn cells grow lengthwise to ,14 mm at which point they

divide. A mechanistic model of how these cells might sense size,

involving Pom1 and Cdr2 proteins as major players, was recently

proposed [4,5]. Pom1 is a kinase involved in cell polarization and

in establishing the cell division plane [6,7,8]. Cdr2 is a serine-

threonine protein kinase that promotes the G2/M transition by

inactivating Wee1, an inhibitor of Cdc2 [3,9,10]. In the proposed

mechanism, Pom1 inhibits Cdr2. The size-dependent relief of this

inhibition indirectly activates Cdc2, which promotes entry into

mitosis (Figure 1A) [4,5].

The cell-size-dependence of Pom1 and Cdr2 are proposed to

originate from the relative spatial distributions of the two proteins. Pom1

forms a spatial gradient that peaks at the cell tips and decreases

towards the middle of the cell (midcell) (Figure 1B). This gradient

arises from an indirect interaction with microtubules (MTs),

mediated through the Tea1 protein [6,7,11]. During interphase,

Tea1 is transported from the nuclear region of the cell to the tips

by both ‘‘walking’’ along microtubules and by ‘‘riding’’ on

microtubules’ growing ends [11,12,13]. Microtubules occasionally

undergo catastrophic collapse, releasing Tea1 in the process.

Catastrophe occurs with higher frequency at the tips, causing

Tea1 to be delivered preferentially to these regions [14,15]. Tea1

anchors to the membrane in a complex positive-feedback process

[16,17]. Anchored Tea1 recruits Pom1 from the cytosol,

sequestering it to the membrane and giving rise to the Pom1

spatial gradient. Conversely, Cdr2 is found in cortical node-like

structures on the cell membrane in the midcell region during

interphase. Midcell localization appears to be Pom1-dependent,

because in cells lacking Pom1, Cdr2 spreads broadly from midcell

to the non-growing end [4,5].

The Pom1 gradient is present throughout interphase, but the

concentration of Pom1 at midcell is length- (and thus size-)

sensitive. During early interphase, the Pom1 concentration at

midcell is sufficiently high to inhibit Cdr2 from advancing the cell

from G2- to M-phase. When the cell reaches a particular length,

the Pom1 midcell concentration declines enough for this inhibition

to be relieved. This allows Cdr2 to trigger a cascade (Figure 1A)

that ultimately advances the cell to the M-phase of mitosis.

Previous mathematical models have described the control of the

G2/M transition [18,19,20,21]. Although some describe the main

cell cycle proteins in detail, none includes a specific mechanism for

measuring cell size. Here we propose a simple 1D reaction-

diffusion-convection mathematical model for a cell-size checkpoint
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based on the recently proposed Pom1:Cdr2 mechanism. We have

attempted to make the model minimal in terms of the assumptions,

reactions and components required to exhibit checkpoint behavior

as arising from the spatial cellular dynamics of Pom1 and Cdr2

during interphase. The framework combines known chemical

features of Pom1 and Cdr2 with the known dynamics of

microtubules. The model reproduces phenotypes of a mutant

fission yeast strain as well as the effects of two drugs. Our

simulations demonstrate that the proposed checkpoint mechanism

is feasible from a quantitative perspective.

Model

The model was designed as three interacting subsystems,

including a) Pom1:Cdr2 spatial gradients, b) the microtubule

subsystem, and c) the triggering of mitosis. Details of each

subsystem and how they interact within the context of a growing

cell are included below, and reactions are given in Table 1. In

general, the desired growth rate a was used to calculate how the

volume (and thus length) of a cylindrically shaped cell changes

with time. This information was used by the microtubule

subsystem to generate a time-dependent distribution of microtu-

bules of all different lengths. This distribution was inputted into

the Pom1:Cdr2 subsystem, affording length-dependent spatial

gradients for Pom1. These gradients, in turn, were used to obtain

the associated Cdr2 spatial gradients. The averaged concentration

of Cdr2 in the midcell region was used as a trigger for mitosis.

Pom1:Cdr2 Subsystem
The Pom1:Cdr2 reaction-diffusion-convection model assumes

diffusion along a 1D mesh (Figure 2A). This subsystem involves

Pom1 and Cdr2 in cytosolic and membrane-bound forms (Pc, Pm,

Cc, Cm). Membrane diffusion is significantly slower than cytosolic

diffusion. Pom1 can partition between cytosolic and membrane-

bound forms through an uncatalyzed reversible reaction. Cc

inserts into the membrane where it is multiphosphorylated by

Pom1. Once fully phosphorylated, Cdr2 is expelled from the

membrane and simultaneously dephosphorylated. This mecha-

nism assumes an ordered distributive chain of enzymatic reactions

[22]. For simplicity, dephosphorylations are catalyzed by an

unspecified and implicit phosphatase whose concentration is

assumed to be constant throughout the cell cycle.

To model cell growth, equations were derived within a growing

domain framework [23,24]. Here, we fixed the 1D mesh length by

normalizing the x-axis coordinate to cell length (L(t))

�xx~
x

L tð Þ ð1Þ

Thus, one can ensure that a system described in this new

coordinate �xx, is bounded within the interval 0,1½ � given that its

domain is expressed in the old coordinate x by the function L(t). In

this fixed domain, the number of mesh points does not change

with time such that standard numerical methods can be applied

[23]. The interpretation is that the real cellular region represented

by a given discretization point is growing. However, because of

this fixed domain, the discretized interval D�xx and the number of

intervals used in the numerical calculations, namely 100, are

invariant with time. This method reduces resolution but not

precision (Figure 2B).

Given this fixed domain strategy and corresponding rates

assigned for the reactions of the chemical model, the system can be

described as

Author Summary

Cells delay division into two daughter cells until they reach
a particular size. However, the molecular-level mechanisms
by which they do this have remained unknown until
recently. A cell-size checkpoint mechanism in rod-shaped
fission yeast cells has recently been shown to involve two
proteins, Pom1 and Cdr2. The concentrations of these
proteins in the middle of the cell differ from that at the
poles. The changing nature of these spatial gradients as
the cell grows is size-sensitive. Pom1 inhibits Cdr2 while
Cdr2 stimulates the cell to enter into mitosis. In short cells,
the Pom1 concentration in the middle of the cell is so
great that Cdr2 is inhibited. As cells grow, the Pom1
concentration in the middle of the cell declines; at some
particular size, Cdr2 activates. In this study, we developed
a mathematical model that mimics this checkpoint
behavior.

Figure 1. Mechanism of a cell-size checkpoint involving Pom1
and Cdr2. (A) Reaction network leading to the activation of mitosis in
fission yeast. (B) Observed spatial distributions of Pom1 and Cdr2 in
short and long cells [4,5]. Pom1 concentration (red) is highest at the
poles and lowest in the midcell region where Cdr2 concentrates in
cortical nodes (green). In early interphase (short cells), Pom1 at the
midcell is present at a sufficient concentration to inhibit Cdr2 and the
G2/M transition via the cascade in (A). As cells grow, the midcell Pom1
concentration decreases until it crosses a threshold that relieves Cdr2
inhibition thereby promoting the G2/M transition.
doi:10.1371/journal.pcbi.1001036.g001

Checkpoint Model
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subject to no-flux boundary conditions for all components and

non-negative initial data. Subscript n refers to the total number of

phosphorylation sites on Cdr2 and j refers to those that are

phosphorylated. The denominator for each diffusion and convec-

tion term of system (2) arises from the spatial normalization of the

growing domain. We assume exponential uniform growth at a

time-invariant rate a (3). Because of the unidimensional mode of

growth in fission yeast, only cell length L(t) was required to be

modeled. Interfacial reactions (between cytosol and membrane)

were normalized by the ratio of the surface area to cytosol volume.

But because cell volume was approximated by a cylinder, this ratio

remained constant, with growth exclusively along the long axis.

This allowed us to embed this interfacial normalization ratio into

reaction rate constants. The spatial system was numerically solved

using the Crank-Nicolson method implemented in Fortran.

Table 1. Details of the chemical model.

Name Reaction Rate Expression Kinetic Parameters

Pom1:Cdr2 Subsystem

Pom1 production kpprod

Pc
Rpprod ~kpprod kpprod~2:9pM s{1

Pom1 partitioning
Pc

k1

k2

Pm

R1~k1 Pc½ �
R2~k2 Pm½ �

k1~0:1 s{1

k2~0:008 s{1

Cdr2 production kcprod

Cc
Rcprod~kcprod kcprod ~0:16pM s{1

Cdr2 membrane insertion
Cc

k3
C0

m
R3~k3 Cc½ � k3~5 s{1

Cdr2 phosphorylation
Ci

m

kp Pm½ �

kd

Ciz1
m i~ 0 . . . 8½ �

Rp~kp Pm½ � Ci
m

� �
Rd~kd Ciz1

m

� � kp~0:11 pM{1s{1

kd~31 s{1

Cdr2 membrane expulsion
C9

m

kp Pm½ �
Cc

Rcmx~kp Pm½ � C9
m

� �
kp~0:11 pM{1s{1

Microtubule Subsystem

Tubulin production kprod

TD
Rprod~kprod kprod ~0:17mMs{1

Tubulin Nucleotide exchange
TDzGTP

kex
TT zGDP

Rex~kex TD½ � GTP½ � kex~0:08 mM{1s{1

Tubulin Nucleation
TT

knuc1

knuc2

T
g
1

Rnuc1~knuc1 TT½ �
Rnuc2~knuc2 T

g
1

� � knuc1~3:427|10-5 s{1

knuc2~6:21 s{1

Microtubule Elongation
T

g
i z Ns

:Ddð Þ:TT

kel
T

g
iz1

i~1 . . . ,N{1

Ri
el~kel T

g
i

� �
TT½ � kel~4:57 mM{1s{1

Microtubule Catastrophe
T

g
i

kcat
Ts

i i~2 . . . ,N Ri
cat~kcat T

g
i

� �
kcat~0:0096e3:82xp z0:125

xp~fraction of half of the cell length

Microtubule Depolymerization
Ts

i

kdep

Ts
i{1z Ns

:Ddð Þ:TD

i~2 . . . ,N

Ri
dep~kdep Ts

i

� �
kdep~124:28 s{1

Trigger Subsystem

Cdr2 trigger

Cdc2in

�CCm½ �

ktrr

Cdc2act

Goldbeter-Koshland

equation �CCm

� �
~
P9
i~0

Ci
m

See [34]

doi:10.1371/journal.pcbi.1001036.t001
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Microtubule Subsystem
This subsystem involves microtubule reaction dynamics, which

are required for generating the Pom1 and Crd2 spatial gradients.

All assumed reactions are given in Table 1. Although microtubules

actually consist of two tubulin isoforms (a and b), only one

‘‘lumped’’ isoform (T) was used in the model. Two forms of T were

specified, including a GDP-bound form (TD) that exchanges

irreversibly with GTP to generate a GTP-bound form (TT). An

implicit nucleation site reversibly transforms non-growing TT

monomers into a growing form (T
g
1) to which TT units can add.

Modeling the addition of each subunit would be impractical, as

the real number of subunits per mm, Ns = 1625 [25], and

microtubules in newborn cells can be as long as 3.5 mm. We

reduced this complexity by discretizing microtubules into N

increments each Dd = 0.07 mm long. One polymerized MT

subunit corresponded to Ns?Dd number of monomers, with the

reaction designated as

T
g
i z Ns

:Ddð Þ:TT

kel
T

g
iz1 ð4Þ

In the rate expression for this reaction, the concentration

dependence of TT was not raised to the power NS
:Dd to avoid

numerical instability. This simplification is reasonable because

polymers with different lengths have the same velocity of

elongation [15].

Growing polymers T
g
i convert into shrinking ones (Ts

i ) through

an irreversible uncatalyzed reaction. The concentration of a

microtubule of length i is the sum of growing and shrinking forms,

MTi~T
g
i zTS

i ð5Þ

The rate of this conversion reaction depends on the length of the

microtubule relative to cell length, with faster rates occurring with

longer polymers [26]. This length-dependence was included in

rate constant kcat(i) (Table 1). The reaction for the depolymeriza-

tion of shrinking polymers was treated analogously. Given the

assumptions and reactions described above, the microtubule

subsystem is represented by the set of ODEs

dTD

dt
~kprodz Ns

:Ddð Þ
XN

i~2

Ri
dep{Rex{aTD

dTT

dt
~Rex{ Ns

:Ddð Þ
XN

i~1

Ri
el{Rnuc1zRnuc2{aTT

dT1

dt
~Rnuc1{Rnuc2{R1

elzR2
dep{aT1

dT
g
i

dt
~Ri{1

el {Ri
el{Ri

cat{aT
g
i , i~2, . . . ,N

dTs
i

dt
~Ri

cat{Ri
depzRiz1

dep {aTs
i , i~2, . . . ,N{1

dTs
N

dt
~RN

cat{RN
dep{aTs

N

ð6Þ

subject to non-negative initial data. In the dTD/dt and dTT/dt

equations, the factor NS
:Dd weights the depolymerization and

elongation reaction rates according to the number of TD subunits

released or TT subunits consumed per reaction event, respectively.

The a-dependent terms in (6) represent dilution due to cell growth.

The microtubule and Pom1:Cdr2 subsystems interact through

reactions involving Pom1 and microtubules. In fission yeast, the

spatial distribution of Pom1 depends on the cellular movement of

Tea1 [6,11,12]. In our model, Tea1 was not modeled explicitly;

rather, it was lumped with Pom1. Tea1 is transported to the cell

tips by ‘‘riding’’ on the microtubules’ ‘‘plus’’ ends [27]. It also

‘‘walks’’ along microtubules, as cargo of the motor protein Tea2

[11,12,28]. Both processes impose a directional velocity to

cytosolic Tea1. In our model, the physical transport of Tea1 is

described by a Pom1 convection velocity which depends on

microtubule concentrations, as calculated from the MT subsystem.

This term serves to transport Pom1 to the cell tips to create the

spatial gradient. Without this term, there would be no spatial

gradients.

The convection velocity was composed of two terms, utip and

umotor, corresponding to riding and walking transport modes,

Figure 2. Modeling assumptions. (A) Pom1 moves toward the poles
along microtubules; it attaches to and detaches from the membrane in
a first-order process. Cdr2 attaches to the membrane by a first-order
reaction but detaches only after being multiphosphorylated. The cell
was discretized in a 1D mesh where the reaction-diffusion-convection
system was solved. (B) Cells of all lengths were divided into 100 mesh
points along the cell poles. Each mesh point represents a region of the
cell that increases exponentially with time.
doi:10.1371/journal.pcbi.1001036.g002
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respectively. These terms have the form

utip �xxð Þ~T
g

q �xx
D�xx

r
uel

umotor �xxð Þ~
X

niwq �xx
D�xx

r

MTni

0
B@

1
CAutea2

ð7Þ

In equation (7), utip depends on the number of growing

microtubules T
g
ni at a specific spatial point x, while umotor depends

on the total number of microtubules passing through that point.

Both are calculated from the microtubule concentrations given by

system (6). uel and utea2 represent experimentally estimated [29]

average velocities of elongating microtubules and of Tea2 moving

along a MT polymer, respectively. The symbol q:r represents the

ceiling function and it is used to calculate the number of

normalized discrete MT subunits ni corresponding to a continuous

length of x mm. Subunit normalization is described below.

Kinetic Parameters
From the average velocity of polymer elongation uel mm=minð Þ

and number of tubulin subunits per micrometer (NS), it is possible

to calculate the average number of tubulin subunits added to a

given growing polymer per unit of time. An average polymer

elongates at the rate

Rel~
NS
:uel

VC
:NA

ð8Þ

where NA is Avogadro’s number and Vc is cell volume. Because the

velocity of polymer elongation was estimated from different

polymers at different cell volumes, we used an average fission

yeast volume (74 mm3 assuming a cell radius of 1.5 mm) to

calculate the reaction rate. This rate was equated to the rate-law

expression for the elongation of a given polymer T
g
i in our model.

The rate was also normalized by the number of tubulin monomers

included in one polymerized MT subunit. Using known values for

tubulin allowed the rate-constant kel to be calculated as

kel~
Rel

TT½ �: T
g
i

� �
: Dd:Nsð Þ

ð9Þ

The depolymerization rate constant was calculated analogously,

using the average velocity of shrinkage (udp). In this case, the rate of

depolymerization (Rdep) was equated to (9) which allowed kdep to be

calculated as

kdep~
Rdep

Dd:Nsð Þ Ts
i

� � ð10Þ

Tischer et al. determined the frequency of catastrophe for MTs

of different lengths by analyzing GFP-tubulin dynamics obtained

from fluorescence experiments in fission yeast [15,30]. They

measured the number of catastrophe events and the MT growth

time within defined cellular regions of a statistically significant

number of cells of different lengths. We used these data to

calculate the catastrophe rate-constant kcat ið Þ associated with the

reaction used in the MT subsystem (Figure 3). An empirical

exponential function (solid line in Figure 3) was fitted to the

number of microtubule catastrophes per unit of normalized cell

length per unit time. Because catastrophe reactions are first-order

(Table 1), the catastrophe frequency estimated from the exponen-

tial regression was defined to be kcat ið Þ.
Nucleation rate-constants knuc1 and knuc2 were set such that

simulations yielded an average of 3.6 ‘‘full length’’ (touching the

cell tips) microtubules per cell, based on the observed number of

MTs in 73 cells (see supplementary material of [31]). The rate

constant for GTP exchange, kex, was set such that an apparent

steady-state was reached within 10 min, as reported [32].

Translation of the MT Subsystem into the Spatial
Framework

The microtubule subsystem was created to provide ‘‘tracks’’ for

Pom1 transport within the context of a 1D discretization of the

growing cell [33]. The mathematical MT subsystem developed

above is not spatially dependent even though it includes

components that possess a spatial dimension. To use the time-

dependent MT model in the growing cell framework, we assumed

that all MTs are nucleated at the 2 central nodes (nodes i = 50 and

i = 51 in Figure 4C) and that they grow in an antiparallel manner

along the axis towards the mesh ends (i = 1 and i = 100).

Cell growth was incorporated into the MT model in the

following manner. As cellular volume increased, microtubules

were allowed to increase their length until they reached the cell

tips. Cell growth (allowing MTs to grow longer) was included in

the model by increasing the number of microtubules subunits i for

the longest polymer accordingly to the incremental growth of the

cell length. During simulations, a new ODE associated with a

newly added polymer was added each time the cell length

increased by Dd mm. The concentration of the new polymer was

assumed to be zero at the moment it was introduced. Therefore,

the time point representing the longest cells (where volume had

doubled) contained , twice as many equations as at the beginning

of a simulation (Figure 4). MT lengths were normalized before

being positioned into the spatial framework. Microtubule MTi was

normalized into a fixed domain, MTni, where the new number of

polymerized subunits ni in this domain was given as

ni~qi � Dd

Dx tð Þr ð11Þ

In equation 11, Dx tð Þ is the length of the real cellular region

represented by a discretized point in the fixed domain used to

Figure 3. Catastrophe reaction rate. The solid line is an exponential
regression (defined in Table 1) fit to the frequency of microtubule
catastrophes as a function of cellular position [15].
doi:10.1371/journal.pcbi.1001036.g003

Checkpoint Model
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solve the spatial model (Figure 2B). In this way, the results of the

MT subsystem were included in the fixed mesh where the

Pom1:Cdr2 subsystem was solved.

Triggering Subsystem
In fission yeast, Cdr2 is part of a complex regulatory signaling

cascade that ultimately triggers mitosis [4]. In our model, this

cascade was simplified to a zeroth-order ultrasensitive switch

modeled as a standard Goldbeter-Koshland function [34]. The

switch is only a function of Cdr2 in the midcell region, which we

presume correlates to Cdr2 in cortical nodes. The switch is

indirectly affected by Pom1. Since the Pom1 concentration at the

midcell region decreases with cell growth, the total Cdr2

membrane form �CCm at midcell increases, triggering mitosis when

the cell reaches a specific length. This presumption is supported by

the co-localization of Wee1 and Cdr2 in medial cortical nodes [35]

(diffusely located in the midcell region) and by the localization of

Wee1 to the nuclear envelope which is also in the midcell region

[4]. Wee1 inhibits mitotic entry when it is not phosphorylated,

which may be controlled by cellular localization of the two

proteins. Cdr2 may effectively inhibit Wee1 only when both

proteins are localized to the cortical nodes.

Results

MT Subsystem Behavior
We matched the spatial dimension of the MT subsystem to the

spatial discretization interval of the Pom1:Cdr2 subsystem by

making Dd~Dx 0ð Þ~0:07mm. We set the maximum length of

microtubules to 3.5 mm (maximum number of subunits N = 50) at

the beginning of a simulation, representing a newborn cell. At the

end of a simulation (with cell volume doubled), N = 100. Figure 5

shows the change in concentration of MTs as the cell grows. As the

volume increased, the overall MT concentration declined

exponentially with time. However, the average number of

polymers touching the cell tips (3.6) was kept constant between

10 min and the end of the simulation [31]. The experimental data

used to build the MT subsystem were associated only with the

microtubule bundle tip - the longest MT in the bundle [15]. Thus,

the associated parameters used in simulations may slightly

overestimate the concentration of the longest MTs and underes-

timate the concentrations of shorter polymers.

Pom1:Cdr2 Subsystem Behavior
The growing domain framework was assigned a doubling-

volume time of 100 min. The cellular concentrations of Pom1 and

Cdr2 were assumed to be directly proportional to the published

fluorescence intensities of their spatial distributions [5]. The

overall Pom1 fluorescence was normalized to 2000 copies of Pom1

Figure 4. Microtubules in the growing domain framework. (A)
Time dependent lengthening of microtubules within a growing cell. (B)
Same as in A, after normalization. (C) Same as B, after placement in the
fixed domain and mirrored.
doi:10.1371/journal.pcbi.1001036.g004

Figure 5. Microtubule concentrations of different lengths
during cell growth. At the initial time, simulations involved 50
discretized microtubule subunits (N = 50) whereas at t = 100 min, 100
such subunits were involved. At all times, the longest microtubule in
the cell had the highest concentration. The rate of subunit incorpora-
tion was not linear with time due to the exponential growth rate. The
initial concentrations of TT, TD, and GTP were 7.5 mM, 0.5 mM, and
340 mM respectively.
doi:10.1371/journal.pcbi.1001036.g005
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at the beginning of the simulation [7]. This normalization factor

was also used to estimate the number of Cdr2 copies to be 1855 in

short cells. In long cells, the areas under the Pom1 and Cdr2

fluorescence curves were greater by ,62% and 20%, respectively.

These copy-number changes were used to calibrate the constant

feed terms for Cc and Pc in system (2). Diffusion coefficients were

estimated from literature values [7]. All other rate constants for the

reaction-diffusion-convection system (2) were empirically adjusted

to fit simulations to the normalized fluorescence data with greatest

fidelity.

Numerical simulations began with a short cell (7 mm); initial

Pom1 concentrations declined from the poles toward midcell while

Cdr2 concentrations were maximal at midcell (Figure 6B, t = 0).

Final concentrations in long cells (at t = 100 min) reproduced the

fluorescence data with reasonable fidelity (Figure 6A). The

convection term reflecting Pom1 transport, as defined by the

microtubule dynamics, was more influential than diffusion,

affording higher Pom1 concentrations at the cell tips. As the cell

lengthened, the limited amount of Pom1 in the cell was

predominantly delivered to the tips, leaving a deficiency of

Pom1 at midcell. This allowed Cdr2 to accumulate at the cell

cortex.

Simulations with different initial Pom1 and Cdr2 distributions

afforded nearly identical final spatial profiles, demonstrating

model robustness (see Figure 7 for one case). These simulations

also show the ability of the system to focus Cdr2 to the midcell

region as part of the positioning mechanism of the eventual

actomyosin ring [36,37]. The model was sensitive to parameters

related to Pom1 behavior such that formation of the Pom1

gradient dictated the general model behavior. However, different

combinations of Pom1 diffusion, Pom1 transport velocities and

rate constant for Pom1 detachment from the membrane produced

similar overall dynamics. Thus, it is unlikely that the set of

parameters used here are unique in their ability to elicit the desired

dynamical behavior.

In Silico Experiments
Simulations reflecting different experimental conditions were

performed to assess the degree to which the model reproduced the

cell-size checkpoint behavior of fission yeast. Reducing the growth

rate a such that the time of volume-doubling was slowed from 100

to 120 min mimicked the effect of latrunculin-A on a wild-type cell

culture. This drug disrupts actin patches and delays entry into

mitosis because it increases the time required to reach the size

threshold [38]. As required for size checkpoint behavior, mitotic

entry in our simulations was delayed at the reduced growth rate but it was

triggered at exactly the same volume (Figure 8A).

Next we examined the effect of reducing the microtubule

concentration; this mimics the effect of methyl benzimidazol-2-yl

carbamate (MBC), a microtubule-depolymerizing drug that delays

the entry of WT cells into mitosis [39]. Our simulations showed a

similar delay (Figure 8B). They suggest that the G2 arrest caused

by microtubule depolymerization is, at least in part, a consequence

of Pom1 mislocalization rather than sensing microtubule damage,

as has been proposed [39]. Cells lacking microtubule interphase

bundles are unable to transport Tea1 to the cell tips and

consequently fail to retain Pom1 to this region. As a result, the

higher Pom1 level at midcell inhibits Cdr2 more effectively, which

prevents Wee1 phosphorylation and the cell remains in G2. Unlike

experiments where most of the microtubules were disrupted [35],

our simulations used a reduced MT concentration, which should

have a similar effect. In our model, total disruption of microtubules

would result in permanent Cdc2 inactivation (in contrast to the

observed delay in Cdc2 activation). This difference in behavior

probably arises because fission yeast contain other regulators of

Cdc2 activation [18].

Finally, we increased the Pom1 concentration in simulations 2-

fold, representing Pom1 overexpression mutants which exhibit a

dose-dependent cell cycle delay (3-4). Mitotic entry was again

delayed (Figure 8C). Further increases in the Pom1 concentration

delayed the triggering time further.

Discussion

Entering mitosis commits a cell to complete the division process.

The attainment of various cell characteristics, including size, is

‘‘checked’’ to ensure that the cell can complete the process once

started. The physico-chemical mechanisms driving such ‘‘check-

point’’ behavior have remained an enigma for decades [40,41].

However, recent experiments have suggested a possible cell-size

checkpoint mechanism in fission yeast involving microtubule

dynamics and the spatial gradients associated with Pom1 and

Figure 6. Simulation of the spatial distributions of Pom1 and
Cdr2 in a growing cell during interphase. (A) The final distribution
of Pom1 (red dots) and Cdr2 (green dots) in long cells ready for mitosis
(data digitized from [5]). Solid lines are corresponding simulations at
t = 100 min. (B) Simulations showing the time-dependent spatial
profiles of total Pom1 (red) and Cdr2 (green) concentrations (both
membrane and cytosolic forms). Data for the initial Pom1 and Cdr2
distributions used (for short cells at t = 0) were taken from fluorescence
experiments. Simulations for this wild-type (WT) condition used the
parameter values listed in Table 1 and the initial Pom1 and Cdr2
concentrations given in Supporting Information (Text S1). Other
parameters include Dc

p~4mm=s, Dm
p ~2:10{4mm=s, Dc

c~10mm=s; Cj
m, j~

0 . . . 9, Dm
c ~7:10{4mm=s, a= ln(2)/100 min21, initial cell length, 7 mm, cell

radius, 1.5 mm.
doi:10.1371/journal.pcbi.1001036.g006
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Cdr2. In this study, we have developed a mathematical model of

this checkpoint mechanism and have demonstrated its feasibility.

To the best of our knowledge, it is the first mathematical model of

a biochemically-based cell-size checkpoint mechanism in a living

system. The model mimics checkpoint characteristics, replicates

the spatial gradients of Pom1 and Cdr2 in growing cells, and

simulates essential aspects of microtubule dynamics. It also

predicts the effects of three distinct experimental conditions,

including a decline of growth rate, microtubule depolymerization

and Pom1 overexpression. The microtubule depolymerization

simulations also suggest a possible explanation for the G2 arrest

observed when cells are treated with MBC – namely that the

Pom1 spatial gradient is diminished.

Multisite Cdr2 Phosphorylation
An earlier version of the model did not include the Pm-catalyzed

multiphosphylation of Cm; rather, Pm was modeled to catalyze the

expulsion of unphosphorylated Cm from the membrane in a single

step. This mechanism was unable to restrict Cdr2 to the midcell

region such that the Cdr2 peak was broadened relative to the data

(Figure 9A, dashed green line). Including the multisite phosphor-

ylation reactions sharpened this peak (solid green line), with 10

such reactions required to match the data. Each additional

assumed phosphorylation reaction sharpened the peak incremen-

tally. We suspect that there might be other factors controlling the

Cdr2 spatial linewidth in yeast cells, and do not regard the

absolute number of phosphorylation sites required here as being

quantitatively accurate.

This chain of reactions sets a threshold ratio of kinase/

phosphatase below which the fully phosphorylated form of Cdr2

is almost absent. In our case, it sets the ratio of Cc

�
�CCm as a

function of the spatial Pm concentration. Reactions rates were set

such that the Cm forms dominated at Pm concentrations observed

at midcell (Figure 9B, solid purple line). As the Pom1

concentration increased towards the cell tips, Cc became the

dominant form in these regions. Cdr2 mostly resides on the

membrane at the middle cell region because it is constantly ejected

from the membrane at the tip regions by Pom1. Although a single-

step reaction can achieve similar Cdr2 ratios at the cell tips, it

cannot afford a sharp Cdr2 midcell peak. When different

parameter values were used with the single-step reaction to afford

midcell ratios similar to those of the multisite mechanism, Cdr2

was not expelled efficiently from the membrane at the cell tips,

again yielding a broad Cdr2 peak.

It is clear that Pom1 phosphorylates Cdr2 in vitro [4,5] but the

number of phosphorylation events involved is uncertain. Ten

phosphorylation events were required to sufficiently sharpen the

Cdr2 peak at midcell, but other processes may contribute to the

sharpness of the Cdr2 gradient in real cells such that the actual

number of phosphorylation reactions may be fewer than this. An

additional unidentified Cdr2 inhibitor may be involved in Cdr2

localization, the effect of which is observed in the phenotype of

Pom1 mutants [4,5]. Sterol membrane domains may also be

involved in Cdr2 cellular localization [35].

In our model, Cdr2 is active as a kinase only when membrane-

bound, which we interpret as being when it resides in cortical

nodes. Our model also assumes that Pom1 inhibits Cdr2, not by

inhibiting its kinase activity, but by detaching it from these nodes

(Figure 10). This mode of activation/deactivation has some

experimental support. First, Cdr2 is essential in forming cortical

nodes [4]. Wee1 and Cdr1 (a direct inhibitor of Wee1) localize to

these nodes only in the presence of Cdr2 [4]. Cdr1 might only

efficiently phosphorylate Wee1 once both proteins are in the

nodes, as their local concentrations would be far greater than

when they are in the cytosol [42]. Rate enhancement could be as

high as the ratio of the cytosol volume to the cortical node volume

[42], assuming first-order dependences. Importantly, Pom1

phosphorylates the non-catalytic terminus of Cdr2 which is

Figure 7. Simulation assuming an initial newborn cell distribution of Pom1 and Cdr2. Cdr2 and Pom1 were initially distributed towards
one side of a short newborn cell (green and red circles at t = 0), mimicking the distribution immediately after cell division. In this distribution, the
Pom1 concentration was significantly higher at the new end (cell tip created after division) than the old end. Because of this, Cdr2 rapidly shifted to
the opposite cell extreme (old cell end). Gradually, the Pom1 concentration at both ends equalized, confining Cdr2 to the midcell region. Parameters
were the same as in Figure 6 except for the initial distribution of Pom1 and Cdr2; values are given in Supporting Information (Text S1).
doi:10.1371/journal.pcbi.1001036.g007
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responsible for attaching Cdr2 to the membrane [4,5,35]; this

suggests that Pom1 is not affecting the kinase activity of Cdr2.

Also, cortical nodes are disrupted and entry into mitosis is delayed

when a mutant Pom1 binds to the cortex at the midcell region

[4,5]. Cells with defective Cdr2 membrane localization but intact

kinase activity respond differently to nutrient starvation relative to

wild-type cells [35], suggesting that Cdr2 localization is closely

related to its function.

Cdr2 midcell fluorescence increases modestly by the end of G2

phase [5], but this has not been considered previously as being

associated with the mechanism that links cell size to cell cycle

events. If there was no increase of the membrane-bound form of

Cdr2 at midcell, the Cdc2 triggering mechanism used here could

not function appropriately. Whether the mitotic trigger would be

sufficiently robust with only the modest observed increase of Cdr2

fluorescence at the midcell region [5] is uncertain. If a switch-like

mechanism is responsive to such small concentration changes, one

would expect a large variability of cell lengths due to genetic noise

[43], which is not observed. However, other mechanisms may

enhance stability and buffer the system against such noise. Positive

and double-negative feedback loops can add bistability robustness

to the cell size checkpoint [44], and there are other unidentified

components involved in cell-size sensing [4,5,45]. In any event,

our reaction-diffusion-convection system provides a reliable

framework for Pom1 and Cdr2 spatial localization where different

hypotheses for the link between cell size and cell cycle can be

explored.

Finally, we have considered whether the Pom1-dependent cell

size checkpoint mechanism could be more generally used in

eukaryotic cells. Pom1 is a member of the DYRK (dual-specificity

tyrosine-regulated kinase) family. These proteins are involved in

cell cycle regulation and control of cell proliferation and

differentiation [46]. Although it is unclear that other Pom1

homologs are used in cell-size checkpoint mechanisms, this

possibility is intriguing. Such mechanisms would likely involve

size-dependent shifts in protein spatial gradients. Cell size and

shape are reportedly involved in controlling the phosphorylation

states of cellular components [47] which may be involved in size

sensing. Efforts should be made to identify new size-related

proteins that are connected to the cell cycle machinery and that

exhibit spatial concentration gradients. Such proteins may play

key roles in cell-size checkpoint mechanisms.

Supporting Information

Text S1 Initial Pom1 and Cdr2 data.

Found at: doi:10.1371/journal.pcbi.1001036.s001 (0.01 MB

TXT)

Figure 8. Checkpoint behavior. Cdc2 activation (solid sigmoidal
curves) indicates entry into mitosis when a threshold length (dashed
lines) is attained. Horizontal arrows designate the associated ordinate
axis. Panels compare wild-type behavior (green) with three different
experimental conditions, including actin disruption (A), microtubule
depolymerization (B), and Pom1 overexpression (C). In A, the
parameters used to generate the blue lines were identical to wild-
type (WT) conditions (Table 1 and Figure 6) except that a was ln(2)/
120 min21. The red lines of B were generated using WT parameters
except that the rate constant for microtubule catastrophe was
increased 5-fold. The purple lines in C were generated using WT
parameters except that the initial Pom1 concentration was 2-fold
higher.
doi:10.1371/journal.pcbi.1001036.g008

Figure 9. Requirement for multi-site phosphorylation. (A) Spatial
concentrations of Pom1 and Cdr2 in long cells assuming Cdr2
multiphosphorylations (green solid line) and a first-order expulsion of
Cdr2 from the membrane (green dashed line). The Pom1 distribution
was essentially the same in both simulations. (B) Spatial distributions of
Cdr2 in cytosol (blue) and membrane-bound (purple) forms correspond
to the multiphosphorylation mechanism (solid lines) and the first-order
expulsion mechanism (dashed lines). All other conditions used were as
in Table 1 and Figure 6.
doi:10.1371/journal.pcbi.1001036.g009
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