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The identification of profiled cancer-related genes plays an essential role in cancer diagnosis and treatment. Based on literature
research, the classification of genetic mutations continues to be done manually nowadays. Manual classification of genetic
mutations is pathologist-dependent, subjective, and time-consuming. To improve the accuracy of clinical interpretation,
scientists have proposed computational-based approaches for automatic analysis of mutations with the advent of next-
generation sequencing technologies. Nevertheless, some challenges, such as multiple classifications, the complexity of texts,
redundant descriptions, and inconsistent interpretation, have limited the development of algorithms. To overcome these
difficulties, we have adapted a deep learning method named Bidirectional Encoder Representations from Transformers
(BERT) to classify genetic mutations based on text evidence from an annotated database. During the training, three
challenging features such as the extreme length of texts, biased data presentation, and high repeatability were addressed.
Finally, the BERT+abstract demonstrates satisfactory results with 0.80 logarithmic loss, 0.6837 recall, and 0.705 F-measure. It
is feasible for BERT to classify the genomic mutation text within literature-based datasets. Consequently, BERT is a practical
tool for facilitating and significantly speeding up cancer research towards tumor progression, diagnosis, and the design of
more precise and effective treatments.

1. Introduction

Nowadays, genomic, transcriptomic, and epigenomic stud-
ies have been benefited from the development of inexpen-
sive next-generation sequencing technologies, which play
essential roles in exploring tumor biology [1–3]. Tumors
usually possess heterogeneities, and the genomic profiling
of tumors normally contains various types of genetic
mutations [4–7]. However, only a small proportion of
mutation genes are involved in boosting tumor growth,
whereas most of them are neutral and irrelevant to tumor
progression [8, 9]. Characterization and identification of
cancer driver genes are important a in clinical trials to
reveal tumor pathogenesis and facilitate diagnosis, progno-
sis, and personalized therapy [10–13]. Despite the impor-

tance of gene classification, the following analysis is
challenging due to the significant amount of manual work
for interpretating genomics, which is time-consuming,
laborious, and subjective. With the increasing availability
of electronic unstructured and semistructured data sources,
automatically categorizing documents has emerged as a
potential tool for information organization. Machine learn-
ing (ML), as a promising optimization tool, has been
widely used in credit scoring, fraud detection, retailers,
market segmentation, manufacturing, education, and
healthcare [14–18]. Hence, using ML to analyze clinical
contextual data automatically is favorable [19–21]. For
example, in 1986, Swanson first discovered the undiscov-
ered links in a large number of scientific literature [22].
Also, Marcotte et al. used Naive Bayesian classification to
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classify the literature focusing on protein-protein interac-
tion [23].

Despite the achievements traditional ML methods have
made, potential drawbacks such as low accuracy exist when
they are applied on clinical text classification. In 2018, Google
proposed that the BERT method achieved state-of-the-art
results in 11 projects, including text classification [24].
Descriptions about clinical research acadamic papers show
high similarities , which blurs the classification boundary,
increases the inconsistancy, and lows the accuracy. Conse-
quently, the advanced ML methods, such as Light Gradi-
ent Boosting Machine (LightGBM), has been proposed to
enable gene multiclassification based on complex literature
[25]. Nevertheless, these methods are limited by complex
calculations when applied to large-scale datasets, particularly
for genomic-related literature datasets that contain millions,
or billions, of annotated training examples [26, 27]. In
addition, the performances of ML are dependent on feature
extraction that requires professional knowledge and long-
term processing [28–31].

To overcome these difficulties, deep learning (DL) has
emerged to handle large-scale and complex datasets since
its performance increases with the enlargement of datasets
[32–34]. For example, the convolutional neural networks
(CNN) [35], recurrent neural networks (RNN) [36], and
their combination [37] have been applied to the sentence
classification successfully. Also, In 2018, Google proposed
that the BERT method achieved state-of-the-art results in
11 projects, including text classification.

Hence, we fine-tune the BERT model to classify mutation
effects (9 classes) using an expert-annotated oncology
knowledge base. Our BERT method is developed based
on the original BERT model and is capable of obtaining
different syntactic and semantic information. Three main
characters of training datasets including extreme length
of text entry, data imbalance, and repetitive description
are engineered during training challenges. We propose
three truncation methods including abstract+head, head
only, and head+tail to deal with extreme length of text
entry and repetitive description. Besides, data imbalance
is relieved by negative sampling. Overall, we improve the
BERT method to classify complex clinical texts, and obtain
0.8074 logarithmic loss, 0.6837 recall, and 0.705 F-measure
scores.

2. Problem Statement

The treatment of cancer is closely related to the identification
of mutant genes [38]. At present, clinicians need review and
classify each mutant gene manually according to the evi-
dence in text-based clinical literature, which is a compli-
cated, time-consuming, and error-prone method [39–42].
To solve this problem, Memorial Sloan Kettering Cancer
Center (MSKCC) has provided an expert-annotated preci-
sion oncology knowledge base with thousands of mutations
manually annotated by world-class researchers and oncolo-
gists for studying gene classification using computer-based
method [43]. On top of that, we design an artificial intelli-
gence algorithm to automatically and accurately classify

mutations for avoiding mistakes caused by manual classifica-
tion, and provide further help for cancer treatments.

In recent years, with the rise of artificial intelligence, nat-
ural language processing, which uses linguistics, computers,
mathematics, and other scientific methods to communicate
between human beings and computers, has developed rap-
idly [44–46]. Among them, text classification is one of the
most basic and critical tasks in natural language processing
[47]. Text classification is the process of associating a given
text within one or more categories according to characteris-
tics of texts (content or attributes) under a predefined classi-
fication system [48–50]. The process of text classification
mainly includes three steps. Firstly, the text is preprocessed,
then the vector representation of the text is extracted. Finally,
the classifier is trained to classify the text [48]. Text classifica-
tion can be divided into single-label text classification and
multilabel text classification according to the number of
labels to which the text belongs. The single-label text refers
to each text belonging to only one category, while multilabel
text refers to each text belonging to one or more categories
[51–53]. The calculation formula for text classification can
be defined as follows:

F D, Cð Þ = True, Falsef g: ð1Þ

In the formula, the collection D = fd1, d2,⋯dng refers to
the set of texts classified, where the ith classified text is repre-
sented by di, and n is the number of classified texts. The col-
lection C = fc1, c2,⋯,cmg is a collection of predefined
classification categories, where the jth category is represented
by cj, and m is the number of predefined categories. F is a
function representing a mapping relationship.

Currently, the most common methods for text classifica-
tion are statistical ML and DL-based methods. Statistical ML
methods usually preprocess texts in the first place, then manu-
ally extract high-dimensional sparse features. Consequently,
they use statistical ML algorithms to obtain classification
results. In 1998, Joachims first employed support for vector
machine (SVM) in text classification and achieved favorable
results [54]. In the following research, many methods based
on statistical ML are used in text classification, including Naïve
Bayes classifier [55], K-nearest Neighbor method (KNN) [56],
decision tree [57], boosting [58], and LightGBM [59]. Among
them, LightGBM is widely used in classification problems due
to its fast speed, low memory consumption, and relatively high
accuracy [60]. Although LightGBM gets good classification
results in some scenes, research related to this approach runs
basically into bottleneck due to its strong dependence on the
effectiveness of features. Also, it is time-consuming and
labor-intensive during feature extraction process.

Although the traditional statistical ML models can clas-
sify texts faster than the manual method, they require manual
feature extraction, which leads to a large amount of labor cost
and is difficult to obtain effective features [61–63]. On the
other hand, the DL methods are superior to traditional statis-
tical ML methods in terms of text feature expression and
automatic acquisition of feature expression capabilities, thus
eliminating complex manual feature engineering processes and
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reducing possible application costs [64]. As we all know, large-
scale pretraining language models have become a new driving
force for various natural language processing tasks [65]. For
example, BERT models can significantly improve model per-
formance by fine-tuning downstream tasks. Google first pro-
posed the BERT model, and it completely subverted the logic
of training word vectors before training specific tasks in natural
language processing [24]. Methods of fine-tuning the BERT
model, such as extended text preprocessing and layer adjust-
ment, have been proved to improve the results substantially
[66]. Wu et al. proposed a conditional BERT method, which
can enhance the text classification ability of original BERT
method by predicting the conditions of masked words [67].
To sum up, it is feasible to employ the fine-tuned model based
on the original BERT to classify genetic mutations.

Hence, we propose an improved BERT model with high
classification accuracy after analyzing the MSKCC mutation
gene interpretation database thoroughly. We believe this
method can be successfully applied to genetic mutation
classification. The main contributions of our work are
summarized as follows:

(1) The text description of the individual sample shows
considered lengths. There are differences in text
lengths between different categories of samples. Some
categories contain shorter words, while others con-
tain miscellaneous descriptions. Generally, texts in a
dataset range from hundreds to thousands of words
in length. However, the lengths of the gene mutation
in this paper are much longer than usual. We use the
BERT method to truncate texts and extract valuable
information in the texts using different methods, thus
avoiding adverse impacts of excessive differences in
text lengths on the results.

(2) There is a deviation of total gene number in all cate-
gories. Individual genes are unevenly distributed in
different categories. Some genes belong to five or more
groups, while others only present in two categories. To
solve the vast differences in the number of samples
between different categories in the dataset, we choose
an undersampled data processing method to balance
the data deviations between different categories.

(3) The whole dataset has a high repeated description.
Different examples belong to different categories
share the same text entry. Some categories show a
high correlation, which may lead to low accuracy.
To solve this problem, we improve the BERT model
and splice the last three layers of the initial model,
which increases the accuracy of the model and
reduces the running time.

(4) To a certain extent, we illustrate the effectiveness of
using DL in the classification of genetic clinical
texts. As the data set increases, the DL model repre-
sented by BERT will learn the characteristics of the
sample better to achieve exceptional results. In the
future, DL models will have better performances
on similar tasks.

3. Materials and Methods

3.1. Description of Datasets. MSKCC sponsored the training
and test datasets in this study for method development and
validation. For the past several years, world-class experts
have created a clinical evidence annotated precision oncology
knowledge database. The annotations contain information
about which genes are oncology clinically actionable. We
sum up three characteristics of the MSKCC datasets
mentioned below:

(i) Textual descriptions of individual samples exhibit
considerable lengths. The text lengths among differ-
ent classes show variabilities. Some of the classes
contain shorter words while other classes contain
redundant descriptions.

(ii) The overall gene numbers presented among the
whole classes show biases. The distribution of indi-
vidual genes in different classes is unequal. Some
genes belong to five classes or more, and some of
the genes only fit in two classes.

(iii) High repetitive descriptions exist in the whole data-
sets. Different samples belong to different classes
that share the same text entry. Classes demonstrate
high correlations.

3.1.1. Length of Entry Text. It is reasonable to analyze the
length of the entry text as a prior task for textual-based clas-
sification. We find that extremely long descriptions with
massive irrelevant information are correlated with samples
(Figure 1). We plot the distribution of text lengths
(Figure 2), and our datasets contain more counted words
than the normal classification datasets in reviews [68]. Con-
sequently, we examine the distribution of text lengths among
different target classes to better understand the uniformity of
datasets. Variabilities are demonstrated among different clas-
ses (Figure 3). Comparing the density of the length distribu-
tions, we divide the classes into three groups. Classes 3, 5, and
6 contain the shortest counted words; classes 1, 2, 4, and 7
exhibite medium counted words; and classes 8 and 9 show
the most counts. Overall, two features that increase the task
difficulty are attracted: considerable lengths of words and
the unequal text length distribution among different classes.

3.1.2. Analysis of the Data Distribution. Analyzing the com-
position of datasets can help us construct algorithms at an
early stage. We sum up the frequency of genes among 9 clas-
ses (Figure 4). The 9 classes correspond to mutation effects
but are annotated using numbers instead of real textural
information to avoid artificial labeling, thus improving the
reliability of our algorithms during the training. The true
information of these labels is listed in Table 1. The distribu-
tion of genes among 9 classes exhibited bias. Genes in class
7 are significantly higher than genes in classes 3, 8, and 9.

We also examin the interactions among different features
within target classes. To reduce calculations, we select the top
20 gene types to illustrate the interrelations instead of the
whole gene types (Table 2). Selected genes are sorted by
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classes (Figure 5). The distribution of genes demonstrate
huge variabilities among different classes. We find that clas-
ses 8 and 9 contain almost none of these genes, and class 3
contain a few of these genes. These distribution biases are
in accordance with our previous gene frequency summary
based on the whole gene types. Similarly, the trends in classes
1, 2, 4, and 7 correspond to our previous results. These com-
parable results indicate that the whole datasets are highly
associated with selected genes. Consequently, discriminatory
differences among classes can impede the feature learning
performances of our algorithms and low the accuracy of the
text classification.

We further explore the distribution of individual genes
within classes, which demonstrates inequitable distributions.
For instance, genes such as CDKN2A, PTEN, and TSC2 only
present in a limited number of classes (lesser than three). In
contrast, BRCA1, ERBB2, FGFR2, and RET are possessed
in the majority of classes. Compared with genes only present
in a few groups, genes that spread among classes are generally
difficult to classify because elaborate texture descriptions can
blur the classification standard. Hence, the accuracy of classi-
fications is dependent on the gene compositions. Commonly,
genes distributed in lesser classes can show more satisfactory
results.

3.1.3. Characteristics of the Datasets. Using typical genes as
samples, we find that these typical genes presented in classes
demonstrated variabilities. To better recognize these biases
and complete potential influences behind them, we conduct
a statistical analysis of the whole datasets from the text entry
aspects. We find that different samples share the same text
entries after extracting common words. The highly repetitive
descriptions increase the difficulties of classification, espe-
cially when samples in different classes share the same
sketches. The worst scenario is the fact that samples belong
to different classes that have the same name, but other clue
information is missing. For example, five possible mutations
of gene BRCA1, the mutation P1749R, M1775R, Y1853X,
5382insC, and Δ1751, may belong to different classes, but
their descriptions are close, even in the same sentence. Simi-
larly, two mutations of EGFR, such as Del 19 and L858R, also
show in pairs (Figure 1). Hence, we can assume that it is
tough to categorize the samples into correct classes by relying
on the name of mutations with limited or without other
valuable information.

Also, class-dependent word similarities are evaluated
using full word lists (Figure 6). Correlation coefficients exhib-
ited high connections (higher than 60%) between classes.
Among them, classes 2 and 7 and classes 1 and 4 demonstrate
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Figure 2: Distribution of the text entry lengths.

BRCA1 || interestingly, BRCA1-associated cancers have an altered spectrum of p53

P1749R, M1775R, Y1853X, 
5382insC, and 1751) that contain single amino acid mutations or short deletions (including 
removal of only the last 11 amino acids in Y1853X) within the C-terminal tandem BRCT 
domains shifted BRCA1 from the nucleus to the cytoplasm (Figure 1).

EGFR || we have conducted an analysis of EGFR mutations in glioblastoma by sequencing 
cDNAs that represent the entire EGFR coding region for each member of a series of tumors 

tumors exhibited common mutations, i.e., Del 19 (40%) or L858R (47%).

KRAS || we note that, surprisingly, this method was able to detect impactful mutations in
oncogenes, including KRAS, despite the presence of an endogenous, activating KRAS 
mutation in A549 cells. KRAS (exon 2) was carried out by fragment analysis and Sanger 
sequencing.

Figure 1: The cut-off document views of the datasets.
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extremely high correlations with 97% and 93% coefficients,
respectively. Therefore, we think substantial work needs to
be done to clarify samples that share similar descriptions in
high correlative classes. Besides, we can not expect high
accuracy when classifying samples with these properties.

3.2. BERT. Compared with traditional ML methods, DL
demonstrates better performances in text feature expression
and automatically obtains feature expression capabilities,
thus removing the complicated manual feature engineering
process and decreasing its application cost. BERT is a new
language representation model based on DL, which was
released by the AI team of Google company in October
2018. The BERT model is divided into two parts: pretraining
and fine-tuning.

3.2.1. Pretraining of Modified BERTModel. In the pretraining
process, a large-scale unlabeled text corpus is used to com-
plete the deep vector representation of text content in the
deep bidirectional neural network through an unsupervised
training method, thus forming the corresponding text pre-
training model. Google has trained two pretrained models.
One is the BERT-base model, which includes 12 trans-
formers, 12 self-attention heads, and 768 hidden sizes. The
other is the BERT-large model, which contains 24 trans-
formers, 16 self-attention heads, and 1024 hidden sizes.

Parameters of BERT-base methods are loaded into the down-
stream BERT classification model so that our model param-
eters can be fine-tuned based on these pretrained models,
which significantly reduces the convergence time of the
model and increases the accuracy of the model. During the
pretraining process, BERT randomly masks out, replaces
some words, and predicts these missing or replaced words
through the remaining ones. The transformer must maintain
a distributed representation of each input token. The
transformer is likely to remember the word masked without
this masking and predicting procedure.

3.2.2. Fine-Tuning of Modified BERT Model. Since the gener-
alization ability of the pretrained model is powerful, the
BERT pretrained model can be applied to various down-
stream tasks after fine-tuning the parameters of the pre-
trained model. For example, it is possible to meet the needs
of a text classification task by adding pooling, full connect,
and Softmax function to the output layer sequence of fine-
tuned BERT model. The fine-tuning process requires much
lesser training resources compared to the pretraining pro-
cess. The method of fine-tuning BERTmodel, such as trunca-
tion and layer adjustment, has been proved to be capable of
improving the result [18]. It implements the process of
unsupervised learning through the mask, thereby predicting
the vocabulary that will appear in the sentence and
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Figure 3: Distribution of the text entry lengths among different classes.
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understanding the specific meaning of the sentence accord-
ing to the context.

3.3. Evaluation Equation. This paper evaluates the perfor-
mances of the model using several evaluation indicators:
Logloss, recall (REC), precision (PRE), F1 score, receiver
operating characteristic (ROC) curve, and confusion
matrix. True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN) can be used to calcu-
late some of the indicators mentioned above. TP is the
number of categories that are correctly predicted. TN is
the number of categories that are correctly predicted as
another class. FP is the number of categories that are
wrongly predicted. FN is the number of categories that
are wrongly predicted as another class.

In multiclassification tasks, Logloss is one of the most
common loss functions, where the predicted input is a
probability value distribution between 0 and 1, and it can
be defined as follows:

Logloss = −
1
Sn

〠
Sn

m=1
〠
N

n=1
ymn log p ymnð Þð Þ, ð2Þ

where M is the number of samples and N is the number of
classifications. ymn is the predicted result of classification,
such as 0 and 1. p ðymnÞ is the predicted probability of ymn.

PRE defines the proportion of genes identified correctly
belonging to this type of mutation:

PRE =
TP

TP + FP
: ð3Þ
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Figure 4: Distribution of the number of genes among 9 classes.

Table 1: Class information corresponds to the annotated number.

Annotated number Class information

1 Likely loss of function

2 Likely gain of function

3 Neutral

4 Loss of function

5 Likely neutral

6 Inconclusive

7 Gain of function

8 Likely switch of function

9 Switch of function

Table 2: List of top 20 genes in the datasets.

Rank Gene name Rank Gene name

1 EGFR 11 FLT3

2 TP53 12 MTOR

3 CDKN2A 13 MAP2K1

4 ERBB2 14 PTEN

5 PDGFRA 15 BRCA1

6 TSC2 16 BRAF

7 PIK3CA 17 BRCA2

8 FGFR2 18 KIT

9 ALK 19 KRAS

10 VHL 20 RET
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REC calculates the proportion of genes identified
correctly belonging to this type of mutation in all this type
of gene:

REC =
TP

TP + FN
: ð4Þ

F1 score takes into account the factors of PRE and
REC. F1 is the standard metric for this task. It combines
precision and recall. Macro-F1 is a parameter index that
can best reflect the effectiveness and stability of the model:

F1 =
2PRE ∗ REC
PRE + REC

: ð5Þ

The ROC curve is created by plotting the TP against
the FP at various threshold settings.

The confusion matrix is a specific table capable of visual-
izing the performance of an algorithm. Individual rows of the
matrix represent the predicted gene classses, while each
column represents the genes in the actual classes.

4. Experiments

For easier comparison with other methods, our training pro-
cess uses the GPU of the server in the lab for training. There
are 3136 training sets and 553 verification sets in total. The
Python language is selected as the programming language
in this experiment. The experiment is completed on Tensor-

flow’s open-source framework and BERT-base. We use the
parameters on BERT-base trained by Google through a large
number of corpus on Wikipedia as pretraining parameters to
accelerate the convergence speed and reduce the convergence
difficulty. Our experimental parameters are batch size 128,
learning rate 3e − 5, and warmup period 0.06; the whole
experiment runs for 30 cycles; the maximum sequence length
of BERT input is 512; and the optimizer is Adam optimizer,
while other model parameters remain unchanged.

4.1. Experiment Procedure. The BERT model can automati-
cally complete the process of converting each word in the text
into a one-dimensional vector by querying the word vector
table and inputting it in the model. The input of the model
contains three sections: the token embeddings, the segmenta-
tion embeddings, and position embeddings.

Because BERT is a pretraining model with high generali-
zation ability, the output layer of BERT can be externally
connected with corresponding layers to complete down-
stream tasks. For example, in this experiment, the processed
data is substituted into the BERT model for training, and the
output layer will connect Softmax function for classification
tasks (Figure 7).

BERT is an unsupervised model that uses whether the
sentences are related to each other as labels and masks some
words to make the masked words as labels, thus avoiding the
tedious process of manually labeling data. Generally, the data
in the dataset are not balanced. Take the samples in the 7th
and 8th categories of the dataset as an example. The

Training label

Pretrain model

Classifier

If achieve the epoch
of the model 

Yes

Final model

Transformer

Transformer

Transformer

Transformer

Transformer

12

11

10

Concat

BERT model

2

1

Load
BERT model

Truncation

Data

No

Figure 7: Scheme of the training.
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difference between their numbers even reaches more than 10
times. In this case, the default classification method makes
classifiers pay too much attention to the category with a
larger number of samples, thus making the generalization
ability of the model weak and unable to obtain satisfactory
results. Therefore, we use random sampling to eliminate the
imbalance between data and extract only a part of samples
from the category within a larger number of samples to
balance the sample number differences between classes.

Simultaneously, because the length of the gene text in the
dataset is greater than 512 tokens, which is the longest length
that can be retained by BERT, we need to use the truncation
method to intercept part of the information in the text. We
take three ways to solve this problem. The head only trunca-
tion method intercepts the first 512 tokens (at most) as input,
the head+tail method intercepts part of the head and part of
the tail to form 512 tokens (at most) as input, and the abstract
+head method sorts the gene text according to importance,
then select the most important 512 tokens (at most) as input.

Finally, the processed data are substituted into the BERT
model for training. Numerous previous works have shown
that fine-tuning a pretrained model which has been trained
with a large amount of corpus can significantly improve the
classification result. As BERT can learn different contents in
different layers, stitching some of the layers together can
make the model get richer information, thereby improving
the accuracy of the model, so the last three layers in the BERT
model are concatenated. Max pooling, fully connected, and
Softmax function are added after the concatenated output
layer to realize the classification of gene text to improve the
classification accuracy of the model.

4.2. Experiment Results and Discussions. It can be seen from
the figure that compared with the LightGBM method, the
BERT methods using three types of truncation have higher
ACC, REC, and F1 score. The confusion matrix shows our
classification situation in a visual way (Figure 6). The red
numbers are nonzero values. It can be observed that type 1
is easy to be confused with types 4 and 5. There are more

machine judgment errors of texts between type 7 and type
2. Overall, the classification of data-lacking types 8 and 9 is
more complicated than other types, possibly because there
are fewer samples of types 8 and 9, and these two types have
fewer intersections with other types of mutation. The lack of
intersection leads to difficulties in distinguishing types 8 and
9 from different types of mutations. The ROC curve can
evaluate the accuracy of the model prediction.

The performance and ranking of the entries for the pro-
posed four methods are shown in Figure 8. All methods share
the same setting of hyperparameters for an unbiased compar-
ison. Overall, deep learning-based algorithms (BERT) per-
form slightly better than machine learning-based methods
(LightGBM). Among the three models using BERT, the
BERT+abstract truncation method has the best performance

LightGBM BERT+head BERT+head+tail BERT+abstract

Logloss
Recall
F1_score

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
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Figure 8: Evaluation of four methods.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Macro-ROC curves
Tr

ue
 p

os
iti

ve
 ra

te

False positive rate

BERT+abstract+head (area = 0.83)
BERT+head (area = 0.82)
BERT+head+tail (area = 0.81)
LightBGM (area = 0.79)

Figure 9: ROC curves of the proposed methods.
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as a single model with 0.8074 logarithmic loss and 0.6837
recall. The 0.705 F-measure score is limited by the extreme
shortage of training data. Better performance should be
obtained when it is applied to large-scale datasets.

Besides, the ROC curves of the other three methods are
below the ROC curve of the BERT+abstract (Figure 9). The
ROC curves for the BERT+abstract, the BERT+head, the
BERT+head+tail, and the LightGBM with the highest and
lowest AUCs are also shown in Figure 9. Compared results
indicate better performance of the BERT+abstract since the
AUC assesses the algorithm’s inherent validity using an effec-
tive and combined measure of sensitivity and specificity. The
accuracy of predicted results is highly dependent on the data-
sets. The performances of our model are limited by the size of
available datasets in our case. However, the capabilities of
deep networks can be improved using expanded data. Our
proposed model is a proof-of-concept, and we believe it is
applicable when applied on large-scale datasets.

Moreover, we compare confusion matrix tables using
predict classes versus true classes among different methods

(Figure 10). The confusion matrix table is an error matrix
which can be used to evaluate the performance of the algo-
rithm. In summary, individual classes of genes are predicted
precisely using the BERT+abstract method, corresponding
with results of Logloss and F1 measurements.

It can be observed that class 1 is easy to be confused with
classes 4 and 5. Furthermore, there are more machine judg-
ment errors of texts between type 7 and type 2. These phe-
nomena can be easily attributed to the similarity of texts
among these classes as we previously described. Also, it is
apparent that classifying classes 8 and 9 is complicated. The
computer may misjudge mutation texts with real labels of 8
or 9 as other types but hardly underestimate other types of
mutation texts as type 8 or 9 since there are fewer samples in
classes 8 and 9. The shortage of samples in classes 8 and 9 also
fails to provide sufficient data to distinguish themselves from
other classes since there are no intersections. Contrastingly,
the classification of class 7 is easier due to the abundant sam-
ples. Therefore, the abundance of data plays essential roles in
improving the efficiency of classification.

82.00 1.00 24.00 3.00 5.00 5.00

22.004.001.002.00

2.00

2.00

2.00

2.00

2.002.00

2.00 2.00

47.001.00

1.00

1.00 1.00

1.00

1.00

1.00

32.00 3.00 5.00

5.00

6.00

17.001.0061.003.00

3.00

3.00

3.00

3.00

8.00

31.007.00 7.00

31.00 9.00

13.00 163.00

4.00 4.00

4.004.00

5.00 60.00

44.001.003.006.00

BERT+abstract+head BERT+head+tail

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

Tr
ue

 la
be

l

Tr
ue

 la
be

l

Predicted label Predicted label

85.00 2.00

2.00 2.00

2.00

2.002.00

2.00 2.00

14.00 10.00 3.00

3.00

6.00

16.001.001.001.0054.004.00

31.00 5.00 6.00

10.004.00

4.00

51.001.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.001.00

5.00

5.00 5.00

19.00

38.00

6.00

6.00

8.00 26.00 7.00

20.00 3.00 3.00

3.00

3.00

4.00

4.004.00

5.005.00

150.00

60.00

44.00

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Predicted label

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160

Tr
ue

 la
be

l

Predicted label

1 2 3 4 5 6 7 8 9

75.00 2.00

2.00

23.00 8.00 8.004.00

4.004.00 26.00 1.00 40.00

5.008.002.002.0023.00 9.00

10.00 3.00 63.00 1.00 13.00

6.006.00 35.005.00

5.00

1.00

1.00 1.00

1.00

1.003.00 8.0028.00

11.00 2.00 170.00

6.00 4.00 5.00 5.00 7.00 4.00 1.00 50.00

45.007.004.006.003.001.00

1

2

3

4

5

6

7

8

9
0

20

40

60

80

100

120

140

160

91.00 4.00 4.008.00 2.00

2.00

2.00 2.00

2.00

2.00

2.00

2.00

2.00 2.00

2.00

2.00

11.00

40.00 33.00

1.00 1.0031.00 6.00 6.00

16.00 4.00 43.00 1.00

1.00 1.00

1.00

1.00

24.00

6.00 3.00

3.00 3.00

3.00

3.00 3.00

3.00 29.00 12.00

29.00 10.00

11.00 168.00

4.00 4.00

4.00 4.00

6.00

5.00

60.00

43.00

Light GBM

Confusion matrix

BERT+head

Figure 10: Confusion matrix tables of proposed four methods.

10 BioMed Research International



5. Conclusion

In this study, we propose a deep learning algorithm to iden-
tify genomic information within texture-based literature
abstracts. Aiming to address the classification problem in
an extremely long, imbalanced, and repetitive dataset, we test
four methods, including LightGBM and three different trun-
cation BERT methods. By analyzing their Logloss, recall, F1
score, ROC curve, and AUC scores, we notice that the
abstract+head truncation BERT method has superior results
than other algorithms in all indicators.

In this study, our BERT method is limited due to the
shortage of datasets, and its performance can be improved
dramatically with the size of datasets increasing. Moreover,
our approach will be potentially applied on diagnosing and
treating more than 120,000 patients every year around the
world based on the announcement of the MSKCC, which will
provide our opportunity to enhance our methods further
when large-scale datasets are available. We believe BERT is
a promising tool for accelerating tumor genomic-related
research and facilitating tumor diagnosis and treatments.
Besides, this text-based classifier algorithm demonstrated
high universality, and it is applicable not only in tumor-
specific research but also in other types of diseases and in
other nonacademic areas.
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