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Abstract

Objective

The gut microbiota is known to be related to type 2 diabetes (T2D), psychiatric conditions,

and opioid use. In this study, we tested the hypothesis that variability in gut microbiota in

T2D is associated with psycho-metabolic health.

Methods

A cross-sectional study was conducted among African American men (AAM) (n = 99) that

were outpatients at a Chicago VA Medical Center. The main outcome measures included

fecal microbiota ecology (by 16S rRNA gene sequencing), psychiatric disorders including

opioid use, and circulating leptin and oxytocin as representative hormone biomarkers for

obesity and psychological pro-social behavior.

Results

The study subjects had prevalent overweight/obesity (78%), T2D (50%) and co-morbid psy-

chiatric (65%) and opioid use (45%) disorders. In the analysis of microbiota, the data

showed interactions of opioids, T2D and metformin with Bifidobacterium and Prevotella gen-

era. The differential analysis of Bifidobacterium stratified by opioids, T2D and metformin,

showed significant interactions among these factors indicating that the effect of one factor

was changed by the other (FDR-adjusted p [q] < 0.01). In addition, the pair-wise comparison

showed that participants with T2D not taking metformin had a significant 6.74 log2 fold

increase in Bifidobacterium in opioid users as compared to non-users (q = 2.2 x 10−8). Since

metformin was not included in this pair-wise comparison, the significant ‘q’ suggested
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association of opioid use with Bifidobacterium abundance. The differences in Bifidobacter-

ium abundance could possibly be explained by opioids acting as organic cation transporter

1 (OCT1) inhibitors. Analysis stratified by lower and higher leptin and oxytocin (divided by

the 50th percentile) in the subgroup without T2D showed lower Dialister in High-Leptin vs.

Low-Leptin (p = 0.03). Contrary, the opposite was shown for oxytocin, higher Dialister in

High-Oxytocin vs. Low-Oxytocin (p = 0.04).

Conclusions

The study demonstrated for the first time that Bifidobacterium and Prevotella abundance

was affected by interactions of T2D, metformin and opioid use. Also, in subjects without

T2D Dialister abundance varied according to circulating leptin and oxytocin.

Introduction

A role for the gut microbiota in human health is increasingly recognized. A healthy and diverse

gut microbiota appears critical for normal growth while alteration (“dysbiosis”) can result in

obesity and type 2 diabetes (T2D), or malnutrition [1–4]. Similarly, microbiota appears impor-

tant for social functioning whereas dysbiosis is implicated in maladaptive behaviors [5,6]. Gut

microbiota is suggested as a potential mechanistic link between many psycho-metabolic condi-

tions including obesity, T2D, anorexia, depression, and drug addiction [1–4,7,8]. The bifido-

bacteria and lactobacilli, particularly, have been singled out as beneficial for psycho-metabolic

health [9–11]. Although not yet indicated or approved for the management of any specific dis-

ease, bifidobacteria and lactobacilli are suggested as major producers of gamma-aminobutyric

acid (GABA), an important neuromodulator [12]. The GABA analogs, including pregabalin,

gabapentin, baclofen, and valproic acid are FDA-approved drugs for treatment of psychiatric,

gastro-intestinal, and diabetes-related disorders [13].

Type 2 diabetes and obesity are major causes of morbidity and mortality and are reaching

epidemic proportions through the world [13]. Psychiatric co-morbidities contribute to com-

plexity of the pathogenesis and management of both T2D and obesity [13]. Similar to T2D,

opioid use and addiction are reaching epidemic proportions and are evolving as important

causes of morbidity and mortality. Opioid addiction co-morbidity complicates diabetes man-

agement and increases mortality [13,14]. Mortality rates of dependent opioid users are approx-

imately 15-fold higher than age- and sex-matched controls [14]. Moreover, opioid use and

addiction appear particularly pertinent to T2D and obesity as similar pathophysiologic path-

ways are implicated in drug and food addiction, likely involving the gut-brain axis [15]. The

neuropeptide hormone oxytocin (OXT) is emerging as an important part of the gut-brain axis

and as a promising treatment of obesity, T2D, and addiction [2,16–20]. OXT synthesis in the

brain hypothalamus is regulated by leptin, insulin, and dopaminergic pathways, which are par-

ticularly relevant to obesity, glucose metabolism, and addiction [16,17]. In addition, OXT sig-

naling may be connected to gut microbiota. For example, feeding mice with Lactobacillus
reuteri resulted in a significant up-regulation of plasma levels of oxytocin and associated surge

in grooming behavior [2,18].

Information on gut-brain axis linking T2D and obesity with food and drug addiction is

exponentially increasing, yet multiple questions remain. Majority of the data are coming from

animal studies with few data available from human cohorts or trials [15–20]. Difficulties of
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observing any associations are logical in real world cohorts in patients with multiple condi-

tions and confounding factors including use of metformin in diabetes [1–3]. It is important,

however, to attempt establishing associations of gut microbiota with psycho-metabolic health

in complex cohorts to test the applicability of data emerging from rodent studies, for providing

mechanistic insight and for planning randomized trials. The present study tested the hypothe-

sis that gut-brain axis is involved in associations of gut microbiota with psycho-metabolic

health in men with high burden of chronic conditions. Specifically, this analysis tested the

hypothesis of whether bifidobacteria and lactobacilli were 1) linked to T2D and opioid use,

and 2) linked to circulating leptin and oxytocin representing obesity-T2D and pro-social psy-

chological hormone markers, respectively [16–18]. To make the data representative of real

world population, patients with T2D drug-naïve and T2D treated with metformin were

included since metformin had been recognized as the first line and most widely used treatment

for T2D [13].

Materials and methods

Design and subjects

This study was a cross-sectional study of African American men (AAM) (n = 99), that received

their care from an urban Veteran Health Administration Medical Center. This study was a

part of the Glucose tolerance and vitamin D in African American Male veterans (GluDAAM)

cohort study that evaluated glucose metabolism biomarkers in AAM. The inclusion criteria

were glycohemoglobin A1c (HbA1c) < 5.7% without T2D or 6.5–7.4% with T2D, age 35–70

years, body mass index (BMI) 22–39.9 kg/m2, and 25OH-vitamin D (25OHD) < 30 ng/ml.

Exclusion criteria were chronic kidney disease (stages 3b, 4, and 5), chronic glucocorticoid use

(3 months or longer), taking non-metformin antihyperglycemics, and presence or history of

significant health conditions requiring recent (within 6 months) hospitalization.

The subjects came for a single study visit where biometric and biochemical measures were

done. The past medical history (PMH) and opioid use (“No” or “Yes”) was confirmed by the

review of the electronic medical records as previously described [21]. Opioid use was defined

as “Yes” if during review of medical record two parameters were present: 1) the participant

was under care of psychiatric care professional, and 2) psychiatric care professional established

the diagnosis of opioid use disorder as official diagnosis in medical record. The DSM-4 diag-

nostic criteria for Opioid Use Disorder were used by psychiatric care professionals: “A prob-

lematic pattern of opioid use leading to clinically significant impairment or distress.” The

biometric measurements and calculations (age-adjusted Charlson index) were performed as

previously [21]. The study was approved by the Jesse Brown VA Medical Center Institutional

Review Board and each subject signed the informed consent. The recruitment dates were from

December 01, 2013 to April 15, 2016.

Analytical methods and glycemic indice calculations

Biochemistry and hormonal assays were performed in the clinical laboratory and the core

research laboratory applying laboratory standards of care and references and indices calculated

as previously described [7,21]. Metabolites and hormones included HbA1c, fasting plasma glu-

cose (FPG), insulin, C-peptide, proinsulin, lipid panel (total cholesterol, triglycerides, HDL,

LDL), hormones (testosterone, leptin, oxytocin), C-reactive protein, and 25-hydroxyvitamin

D. Calculations for glycemic indices were based on oral glucose tolerance test (OGTT) under

dynamic, i.e. postprandial conditions. Insulin sensitivity was assessed by Oral Glucose Insulin

Sensitivity (OGIS) based on modeling provided online http://webmet.pd.cnr.it/ogis/ in

ml×min-1×m-2. Insulin secretion was assessed by Insulinogenic index-30 [(insulin at 30 min
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—fasting insulin)/(glucose at 30 min—fasting glucose)]. In addition, OGTT was used to calcu-

late area-under-the-curve (AUC) glucose and AUC insulin. The formulas and methods had

been validated previously against the ‘gold-standard’ method of glucose clamp with and with-

out tracers and are commonly used in research related to diabetes. Oxytocin was measured in

a clean catch urine sample at the University of Wisconsin-Madison’s Wisconsin National Pri-

mate Research Center (WNPRC) with Assay Design ELISA kits (Enzo Life Sciences, Ann

Arbor, MI) [22].

Microbial community evaluation

Participants were provided with a plastic device to collect stool samples, which were stored at

-80˚C until extraction. Genomic DNA was extracted, processed for microbial community

analysis using PCR amplification, followed by high-throughput sequencing on an Illumina

MiSeq sequencer as described previously [7,23]. Briefly, the widely used primer sets 341F/

806R, targeting the V3-V4 variable regions of the 16S rRNA gene of Bacteria, was used. A two-

stage PCR or “targeted amplicon sequencing (TAS)” approach was performed to generate

amplicon libraries. In the first stage PCRs were performed in 10 μl reaction volumes using 2X

MyTaq HS Mix (Bioline, Taunton, MA). Subsequently, a second PCR reaction was established,

with one μl of amplification product from the first stage used as input to the second reaction.

The primers for the second stage amplifications were the AccessArray barcoding system prim-

ers (Fluidigm, South San Francisco, CA), containing Illumina sequencing adapters, sample-

specific barcodes, and CS1 and CS2 linkers[7,23]. Final PCR products were purified and equal-

ized using SequalPrep Normalization Plate Kit (Thermo Fisher Scientific), according to the

manufacturer’s instructions. Samples were pooled in equimolar ratio and quantified using a

Qubit 2.0 fluorometer. Sequencing was performed on an Illumina MiSeq sequencer using stan-

dard V3 chemistry with paired-end, 300 base reads. Fluidigm sequencing primers, targeting

the CS1 and CS2 linker regions, were used to initiate sequencing. Library preparation and

sequencing was performed at the DNA Services Facility at the University of Illinois at Chicago

[7,23].

Basic sequence processing. Forward and reverse reads were merged using the software

package PEAR [24]. Primer sequences were identified using Smith-Watermann alignment.

Reads that lacked either primer sequence were discarded. Sequences were then trimmed based

on quality scores using a modified Mott algorithm with PHRED quality threshold of p = 0.01.

After trimming any sequences less than 275 bp were discarded. Chimeric sequences were iden-

tified using the USEARCH61 algorithm with the GreenGenes 13_8 reference sequences [7].

QIIME v1.8 was used to generate OTU tables and taxonomic summaries [7]. Briefly, the result-

ing sequence files were merged with sample information. Operational taxonomic unit (OTU)

clusters were generated in a de novo manner using the UCLUST algorithm with a 97% similar-

ity threshold. Taxonomic annotations for each OTU were determined using the UCLUST

algorithm and GreenGenes 13_8 reference with a minimum similarity threshold of 90% [7].

Taxonomic and OTU abundance data were merged into a single OTU table. Prior to any anal-

yses the OTU table was filtered to remove any sequences from mitochondria or chloroplasts

and then rarified to a depth of 5600 counts per sample. The filtered and rarified OTU table was

then used to generate summaries of absolute abundances of taxa for all phyla, classes, orders,

families, genera, and species [7].

Statistical analysis

Metabolic indicators. Statistical analysis of metabolic indicators was performed as

described previously [7,21]. The groups were specified a priori. Descriptive statistics were

Gut microbiota and psycho-metabolic health
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done for the whole group and for subjects without T2D (DM-) and with (DM+). This analysis

was dedicated to interactions and/or associations of microbiota with psycho-metabolic health.

Therefore, the groups were stratified by use of opioids (No/Yes as Op-/Op+), T2D (DM-/DM+),

and use of metformin (MF-/MF+). Six identified groups were as follows: Gr1 = Op-/DM-/MF-,

Gr2 = Op-/DM+/MF-, Gr3 = Op-/DM+/MF+, Gr4 = Op+/DM-/MF-, Gr5 = Op+/DM+/MF-,

Gr6 = Op+/DM+/MF+. Data were described as mean ± standard deviation (SD) for continuous

variables or number (percent) for categorical variables. For categorical variables data were num-

ber (%) for “yes” answer, and the Fisher’s exact test and logistic regression, were used to denote

statistical significance. For continuous variables ANOVA with Bonferroni adjustment, and linear

regression were used. For the logistic and linear regressions; the reference category was Op-/

DM-/MF-, and p<0.05 was considered statistically significant. All metabolic analyses were per-

formed in STATA v.14 (College Station, TX, USA).

Microbiota analysis. For each microbiota sample and taxon, raw sequence counts from

the rarefied dataset were used for analysis. The values for the taxa were reported as the total

sequence counts. Prior to group testing and correlation analyses, all taxonomic summaries

were filtered to remove any taxon with an abundance of less than 1% of the total abundance in

the dataset.

Shannon and Bray-Curtis indices were calculated in R using the vegan library. The rare-

fied genus data, taxonomic level 6, were used to calculate both indices. For Bray-Curtis indi-

ces, the rarefied genus data were filtered to remove any taxon with an abundance of less

than 1% of the total abundance in the dataset and sequence counts from the filtered data

were transformed using a log10(x+1) transformation. Comparisons of similarities among

groups were performed using ANOSIM. The Krukal-Wallis one-way analysis of variance

was used to compare Shannon’s diversity indices. Comparisons of relative sequence abun-

dance among groups were performed using Kruskal-Wallis one-way analysis of variance

using the group_significance.py script within the QIIME v1.8 package. The differences in

microbiota taxonomic relative abundance were compared using Mann-Whitney nonpara-

metric test. For group significance testing, summaries for all taxonomic levels were used

except for ambiguous taxa, i.e. “Other” or unnamed. False discovery rate (FDR)-corrected P

values were estimated with the significance set at P < 0.05 for Mann-Whitney test [7]. Cor-

relations were tested between marker levels determined via biochemical and hormonal

assays and all taxonomic units using Kendall Tau (τ) test of correlation. All statistical analy-

ses were performed using R 3.2.3 statistical software.

In addition, to assess interaction between factors that appear to significantly influence

microbiota (opioid and metformin use), differential analysis was performed. Prior to differ-

ential analysis, unrarefied taxonomic summaries were filtered to remove any samples with

less than 5000 total sequence counts and any taxon with an abundance of less than 1% of the

total abundance in the dataset. Differential analyses of taxa as compared with factors were

performed using edgeR [25]. Briefly, data were normalized using a trimmed mean of M-val-

ues (TMM). Microbiota abundance was expressed as the log count per million (logCPM)

number, which was the base or average normalized abundance across all samples tested

showing if that particular taxon was a relatively high or low abundance taxon. Normalized

data were then fit using a negative binomial generalized linear model and statistical tests

were performed using a likelihood ratio test. FDR-adjusted p values were calculated using

the Benjamini-Hochberg false discovery rate (FDR) correction [26]. All FDR-adjusted p val-

ues were designated q values.

Data access. The amplicon sequence data from this study have been submitted to the NCBI

Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under the BioPro-

ject PRJNA389481.
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Results

Bio-clinical subject characteristics

Assessment of all subjects showed high rate of smoking (35%), opioid use (45%), and over-

weight/obesity (78%). There was high rate of chronic (95%), including psychiatric (65%) disor-

ders and use of medications (85%) showing high burden of chronic disease. Of 49 subjects

with T2D, 30 used metformin. All subjects with T2D were overweight or obese. Comparison

of six subgroups based on opioid use, diagnosis of T2D, and use of metformin showed some

differences (Table 1). Particularly, indices related to obesity (body weight, BMI, WHR, and fat

percent), T2D (HbA1c and glycemic indices), hormones (testosterone, leptin), and T2D-

related co-morbidities (obesity, hypertension, hyperlipidemia, and any psychiatric disorders,

and PTSD) were different among the groups.

Sequencing coverage and estimation of fecal bacterial diversity

In this study, the bacterial composition of the fecal samples was examined using an Illumina

high-throughput sequencing technique. We generated a dataset consisting of 2,639,754 total

sequence read counts, and the average number of sequences obtained was 27,497. A diversity

analysis based on Shannon index revealed that there was a trend for the higher diversity in the

fecal samples of DM+/MF+ subjects compared with all other subjects (p = 0.05) (Fig 1). There

were no differences in Shannon index between DM- vs. DM+ (2.32 vs. 2.53, p = 0.19) or within

T2D subgroup between those not taking and taking metformin (2.47 vs. 2.68, p = 0.07). To

compare the composition of the microbiota based on diabetes and metformin use, non-metric

multi-dimensional scaling (NMDS) of a Bray-Curtis distance matrix based on the abun-

dance of genera was employed using ANOSIM analysis. The NMDS showed a trend but did

not reach statistical significance for comparison of DM- vs. DM+ groups (p = 0.09) as well

as DM+/MF- vs. DM+/MF+ (p = 0.07) (Fig 2) suggesting that both groups were similar in

their bacterial ecology. There were no differences for beta (between-samples) diversity for

any group comparisons.

Taxonomic composition of fecal bacterial communities

In the entire group, the four dominant phyla were Bacteroidetes (47.6%), Firmicutes (39.6%),

Proteobacteria (7.7%), and Actinobacteria (2.2%). At the family level, across groups, the pre-

dominant taxa were Bacteroidaceae (30.7), Ruminococcaceae (16.2), and Lachnospiraceae

(7.0%). At the genera level, 75.2% were able to be classified, of them 14 genera had abundance

1% or higher (Table 2). The most common genus when considering all groups, groups with

T2D only, or groups without T2D, was Bacteroides then Prevotella. The same genera were the

most common in T2D and in the entire group.

Comparison of the gut microbiota between groups without and with

diabetes

Gut microbial abundance varied depending on the existence of T2D and metformin use. In

subjects with DM+ vs. DM-, increased abundance was observed at the genera level for Dialister
and Lachnospira, both from phylum Firmicutes, with taxon relative sequence abundance DM+

vs. DM- 73 vs. 105 (p<0.01) for Dialister and 61 vs. 64 (p<0.05) for Lachnospira, respectively.

Since it was expected that metformin use could change gut microbiota, T2D group was com-

pared by use of metformin. At the genera level, specific trends for differences were observed

between DM+/MF- vs. DM+/MF+ for Catenibacterium (phylum Firmicutes) and Parabacter-
oides (phylum Bacteroidetes) with taxon relative sequence abundance DM+/MF- vs. DM+/MF

Gut microbiota and psycho-metabolic health
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Table 1. Subject characteristics.

Characteristics Op-/DM- Op-/DM+/MF- Op-/DM+/MF+ Op+/DM- Op+/DM+/MF- Op+/DM+/MF+ Overall p

N = 24 N = 11 N = 19 N = 28 N = 5 N = 6

General

Age, yr 54.6 ± 7.3 57.5 ± 6.6 58.2 ± 4.5 56.1 ± 4.3 58.4 ± 3.7 56.6 ± 4.7 0.473

SBP, mmHg 130.8 ± 13.8 136.1 ± 23.4 134.5 ± 15.8 127.8 ± 15.7 134.9 ± 8.1 142.2 ± 12.6 0.243

DBP, mmHg 76.1 ± 10.6 77.1 ± 10.1 75.7 ± 838 79.3 ± 11.9 80.1 ± 7.6 77.9 ± 10.3 0.794

Body weight, kg 83.1 ± 14.1 107.3 ± 9.7�� 111.4 ± 15.4 81.3 ± 13.7 112.8 ± 14.6�� 102.6 ± 15.7� <0.0001

BMI, kg/m2 26.3 ± 4.0 35.6 ± 2.4�� 35.3 ± 3.4�� 27.1 ± 3.8 36.2 ± 2.9�� 34.6 ± 2.9�� <0.0001

WHR 0.92 ± 0.06 1.01 ± 0.04�� 1.05 ± 0.08�� 0.94 ± 0.06 1.03 ± 0.04�� 1.04 ± 0.09�� <0.0001

Total Fat, % 24.8 ± 7.8 35.6 ± 4.6�� 36.1 ± 5.7�� 25.3 ± 7.6 35.6 ± 3.4�� 32.8 ± 5.8�� <0.0001

Android Fat, % 30.4 ± 12.3 47.3 ± 6.2�� 47.6 ± 7.9�� 30.5 ± 11.9 47.2 ± 4.8�� 43.5 ± 7.5�� <0.0001

Gynoid Fat, % 26.1 ± 7.1 34.5 ± 4.6�� 35.4 ± 5.5�� 26.5 ± 7.4 34.7 ± 4.3� 32.5 ± 5.5�� <0.0001

A/G fat ratio 1.1 ± 0.2 1.4 ± 0.1�� 1.3 ± 0.1�� 1.1 ± 0.2 1.4 ± 0.2�� 1.3 ± 0.1� 0.001

Charlson index 1.5 ± 1.2 1.9 ± 1.4 2.2 ± 1.3 2.0 ± 1.6 2.7 ± 2.6 2.4 ± 1.7 0.39

N of all meds 7.7 ± 6.8 7.5 ± 4.3 10.3 ± 6.6 9.5 ± 8.4 9.8 ± 5.1 9.1 ± 7.0 0.808

Glycemic

HbA1c, % 5.2 ± 0.3 6.7 ± 0.3�� 6.9 ± 0.4�� 5.3 ± 0.6 6.7 ± 0.3�� 6.7 ± 0.2�� <0.0001

FPG, mg/dL 94.0 ± 16.7 112.5 ± 14.7�� 126.2 ± 20.0�� 94.8 ± 11.1 137.7 ± 34.4�� 115.6 ± 17.1�� <0.0001

F Insulin, mIU/L 10.7 ± 8.0 28.0 ± 14.0� 20.1 ± 10.4 9.8 ± 10.4 61.2 ± 81.1�� 19.5 ± 9.4 0.0001

F C-peptide, pmol/L 385.1 ± 377.2 1209.2 ± 575.0�� 998.3 ± 355.9�� 400.3 ± 393.1 1549.5 ± 731.3�� 752.4 ± 244.3� <0.0001

F proinsulin, pmol/L 16.6 ± 5.8 31.8 ± 11.6 37.8 ± 16.4�� 21.9 ± 24.9 53.8 ± 35.3�� 28.9 ± 13.8 0.0005

OGIS 451.1 ± 73.1 343.1 ± 81.5�� 330.8 ± 65.8�� 438.2 ± 86.8 279.7 ± 54.4�� 298.6 ± 114.5�� <0.0001

Insulinogenic index 1.0 ± 0.7 1.1 ± 1.0 0.5 ± 0.4 1.5 ± 1.5 2.0 ± 2.0� 0.7 ± 0.4 0.012

AUC glucose x1000 21.7 ± 6.1 28.7 ± 5.7�� 34.0 ± 8.1�� 20.0 ± 4.5 38.6 ± 12.1�� 32.3 ± 10.9�� <0.0001

AUC insulin x1000 9.1 ± 5.6 15.6 ± 7.6� 11.0 ± 4.8 9.3 ± 7.9 25.8 ± 18.6�� 12.4 ± 5.5 <0.0001

Lipids, chemistry

TC, mg/dL 179.4 ± 34.9 161.7 ± 45.3 159.9 ± 45.3 166.1 ± 34.7 167.6 ± 39.6 150.3 ± 49.6 0.534

Triglyceride, mg/dL 110.4 ± 89.6 120.6 ± 61.5 171.2 ± 105.0� 94.8 ± 49.8 193.1 ± 118.6� 109.6 ± 25.5 0.011

HDL, mg/dL 62.8 ± 19.4 46.3 ± 9.9�� 44.0 ± 9.9�� 56.6 ± 19.0 42.9 ± 8.3�� 44.9 ± 11.0�� 0.0006

LDL, mg/dL 96.4 ± 25.8 91.5 ± 37.1 90.6 ± 28.0 90.6 ± 34.2 95.3 ± 35.7 83.7 ± 41.6 0.948

Creatinine, mg/dL 1.0 ± 0.2 1.1 ± 0.2 1.1 ± 0.2 1.0 ± 0.1 1.2 ± 0.2 1.0 ± 0.2 0.093

AST/ALT ratio 0.9 ± 0.3 0.7 ± 0.4 0.7 ± 0.5 0.9 ± 0.4 0.7 ± 0.5 0.7 ± 0.2 0.38

Hormones

Testosterone, ng/dl 404.6 ± 171.5 262.2 ± 115.7�� 229.5 ± 120.2�� 344.1 ± 125.4 266.8 ± 90.9� 293.4 ± 165.1� 0.002

Leptin, ng/ml 10.5 ± 11.9 27.6 ± 14.8�� 30.4 ± 20.0�� 10.7 ± 8.9 37.1 ± 13.2�� 26.3 ± 18.6�� <0.0001

Oxytocin, pg/mg 8.1 ± 7.2 5.7 ± 5.3 6.4 ± 7.9 10.0 ± 7.0 5.8 ± 5.1 9.3 ± 4.7 0.219

25OHD, ng/mL 17.1 ± 6.1 12.1 ± 7.4 17.1 ± 7.8 15.4 ± 6.3 12.4 ± 6.9 18.2 ± 7.1 0.167

CRP, mg/L 6.0 ± 10.0 9.9 ± 13.0 4.6 ± 2.9 4.9 ± 5.6 3.9 ± 4.2 3.8 ± 5.0 0.415

Medical, N [%]

Current smoking 4 [16.7] 4 [36.4] 8 [44.4] 15 [53.5]� 2 [25] 2 [22.2] 0.114

Overweight 9 [33.3] 0 [0.0] 1 [5.3]� 13 [46.4] 0 [0.0] 0 [0.0] <0.001

Obesity 4 [16.7] 11 [100.0] 18 [94.7]�� 5 [17.9] 8 [100.0] 9 [100.0] <0.001

Hypertension 11 [50.0] 8 [72.7] 18 [94.7]�� 13 [54.2] 5 [71.4] 7 [77.8] 0.02

Hyperlipidemia 9 [37.5] 6 [54.6] 15 [79.0]�� 11 [39.9] 6 [75.0] 8 [89.0]� 0.007

CVD 3 [12.5] 1 [9.1] 5 [26.3] 4 [14.3] 3 [37.5] 2 [22.2] 0.495

OSA 6 [25.0] 3 [27.3] 11 [57.9] 6 [35.3] 3 [37.5] 3 [33.3] 0.168

Any psych disorder 15 [62.5] 4 [36.4] 10 [52.6] 26 [92.9]� 4 [50.0] 6 [66.7] 0.003

Depression 11 [45.8] 3 [27.7] 3 [15.8]� 13 [46.4] 0 [0.0] 4 [44.4] 0.041

(Continued)
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+ 52 vs. 136 for Catenibacterium and 128 vs. 197 for Parabacteroides (p<0.05 for both), respec-

tively. Changes in specific genera associated with T2D, without metformin (e.g., Dialister and

Lachnospira), were clearly distinct from those of metformin use (e.g., Catenibacterium, and

Parabacteroides).

Table 1. (Continued)

Characteristics Op-/DM- Op-/DM+/MF- Op-/DM+/MF+ Op+/DM- Op+/DM+/MF- Op+/DM+/MF+ Overall p

N = 24 N = 11 N = 19 N = 28 N = 5 N = 6

PTSD 8 [33.3] 1 [9.1] 0 [0.0] 13 [46.4] 2 [25.0] 1 [11.1] 0.002

Other psych 7 [29.2] 2 [18.2] 4 [21.1] 9 [32.1] 0 [0.0] 2 [22.2] 0.565

Any medication 18 [75.0] 11 [100.0] 18 [94.7] 24 [85.7] 8 [8.1 9 [100.0] 0.192

Data are Mean ± SD or N [%]

�p<0.05, and

��p<0.01.

For categorical variables data are number [%] for “yes” answer, Fisher’s exact test was used for composite overall p (p-value) and logistic regression was used for between

group comparisons with Op-/DM- serving as reference group. For continuous variables ANOVA with Bonferroni adjustment was used for a composite overall p-value,

and linear regression was used for between group comparisons with Op-/DM- serving as reference group. Abbreviations: 25OHD = 25-hydroxyvitamin D,

HbA1c = hemoglobin A1c, A/G = Android/Gynoid, AUC = area under the curve, BMI = Body mass index, Charlson index = index of chronic disease, Cr = Creatinine,

CRP = C reactive protein, CVD = Cardiovascular disease, DBP = Diastolic blood pressure, DM = type 2 diabetes mellitus, F = fasting, FPG = fasting plasma glucose,

N = number, OGIS = Oral glucose insulin sensitivity (Mari’s index), Op = Opioid use, OSA = Obstructive sleep apnea, Psych = psychiatric, PTSD = Post-traumatic

stress disorder, SBP = Systolic blood pressure, TC = Total cholesterol, WHR = waist to hip ratio.

https://doi.org/10.1371/journal.pone.0194171.t001

Fig 1. Shannon index of alpha diversity. Pairwise Mann-Whitney test was used to compare alpha diversity estimates,

MF- vs. MF+ (p = 0.05). MF- group includes DM- plus DM+/MF- (n = 69), MF+ group includes DM+/MF+ (n = 30).

Abbreviations: DM = type 2 diabetes mellitus, MF = Metformin.

https://doi.org/10.1371/journal.pone.0194171.g001
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Fig 2. Non-metric multidimensional scaling (NMDS) ordination plot. The NMDS is based on Bray-Curtis dissimilarities

between OTU-level microbiota communities in three groups: 1 = DM-, 2 = DM+/MF-, 3 = DM+/MF+, ND = not defined.

Pairwise ANOSIM comparison showed a trend for DM+/MF- vs. DM+/MF+ (p = 0.067). Abbreviations: DM = type 2 diabetes

mellitus, MF = Metformin.

https://doi.org/10.1371/journal.pone.0194171.g002

Table 2. Abundance of the most prevalent genera in the entire group.

Bacterial Taxon %

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;

- f_Bacteroidaceae;g_Bacteroides 30.7

- f_Prevotellaceae;g_Prevotella 6.7

- f_Porphyromonadaceae;g_Parabacteroides 3.4

- f_Paraprevotellaceae;g_Prevotella 1.2

p_Firmicutes;c_Clostridia;o_Clostridiales;

- f_Ruminococcaceae;g_Faecalibacterium 5.9

- f_Veillonellaceae;g_Dialister 1.6

- g_Phascolarctobacterium 1.4

- f_Ruminococcaceae;g_Ruminococcus 1.4

- -g_Oscillospira 1.3

- f_Lachnospiraceae;g_Lachnospira 1.1

- c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Catenibacterium 2.3

p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae;g_Desulfovibrio 1

- c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella 3.2

p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidobacterium 1.4

Data are percent (%) relative abundance of taxa in the entire group. Abbreviations: p = phyla, c = class, o = order,

f = family, g = genus.

https://doi.org/10.1371/journal.pone.0194171.t002
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Comparison of the gut microbiota between subgroups by opioid use

In the entire group, the opioid use subgroup was the largest among psychiatric disorders

(n = 45). Grouping of subjects by opioids, T2D, and metformin showed some specific differ-

ences in microbiota abundance (Table 3). The only difference that remained significant in

FDR-adjusted analysis was for genus Bifidobacterium (q = 0.013). There were also trends for

differences in the order Lactobacillales (p = 0.02) and species Prevotella copri (p = 0.03).

The interactions and/or associations of T2D, metformin and opioids were further assessed

by differential subgroup analysis. First, the data were compared by T2D and opioid status sepa-

rately. T2D but not opioid use was associated with significantly lower Bifidobacterium abun-

dance, for T2D p = 2.9 x 10−4, q = 5.5 x 10−3, for opioid use p = 0.65, q = 0.88. Combination of

T2D and opioids was also associated with significant difference. Both, p and q values were sig-

nificant (p = 4.8 x 10−4, q = 9.1 x 10−3), indicating that the difference between the groups could

not be explained by one factor alone and the effect of one factor was changed by the other.

Thus, comparison was performed for all possible combinations of two factors, i.e. T2D and

opioids (Figs 3 and 4). The abundance of Bifidobacterium was lower in T2D individuals who

were not using opioids (Fig 3A). However, this effect of diabetes was not observed in the pres-

ence of opioids (Fig 3B). Similarly, the pair-wise comparison of Bifidobacterium showed that

in participants without T2D, there was no difference in the subgroup without vs. with opioid

use (Fig 4A), yet in subjects with T2D, there was 3.2 log2 fold increase in Bifidobacterium in

those with vs. without opioids (p = 1.3 x 10−5, q = 2.5 x 10−4) (Fig 4B). There were no signifi-

cant interactions for other genera.

Table 3. Comparison of the gut microbiota among groups.

Groups Op- Op- Op- Op+ Op+ Op+ P overall

DM- DM+/MF- DM+/MF+ DM-/ DM+/MF- DM+/MF+

N per group 23 11 21 27 8 9

Class

Actinobacteria 110.5 3.6 28.7 82.5 285.3 47.6 <0.0001�

Order

Bifidobacteriales 107 2.2 25.9 79.3 282 41.6 <0.0001�

Lactobacillales 41.5 4.1 57 70.6 262.9 100.5 0.02

Family

Bifidobacteriaceae 107 2.2 25.9 9.3 282 41.6 <0.0001�

Paraprevotellaceae 52.4 176.3 106.5 109.1 14.4 194 0.07

Genus

Prevotella; Prevotella 308.8 512.4 213.6 467.5 236 573.5 0.09

Paraprevo; Paraprevotella 25.7 137.7 71.1 79.1 0.4 136.5 0.05

Bifido; Bifidobacterium 107 2.2 25.8 79.2 281.7 41.4 <0.0001�

Veillo; Dialister 36.4 67.8 99.5 107 162 96.6 0.07

Veillo; Phascolarctobacterium 70 48.4 72 100.9 12 150.3 0.08

Species

Prevotella;s_copri 242.9 349.9 143.9 349.7 162.7 433.8 0.03

Data are taxon sequence abundance adjusted relative to 5600 counts per sample. Six groups are defined by opioid use, T2D, and metformin use. The ‘P overall’ provides

composite effect among six groups.

�P value for FDR = 0.013.

For statistics Mann-Whitney nonparametric test was applied and false discovery rate (FDR)-corrected P values were calculated. To assess which groups were impacted

when p was significant the differential analysis was performed using edgeR. Abbreviations: Op = Opioid, DM = type 2 diabetes mellitus, MF = Metformin.

https://doi.org/10.1371/journal.pone.0194171.t003
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The differential analysis of Bifidobacterium genus relative sequence abundance also revealed

a significant interaction and association of opioid and metformin in diabetic individuals

(Table 4). The comparison of each factor separately showed that each significantly affected

Bifidobacterium abundance, for metformin p = 9.1 x 10−4, q = 0.02, for opioid use p = 4.6 x

10−8, q = 8.7 x 10−7. Combination of metformin and opioids also was associated with signifi-

cant difference (p = 5.5 x 10−6, q = 1.1 x 10−4) suggesting a significant interaction of opioid and

metformin in diabetic individuals.

Further, the pair-wise comparison showed that for individuals not taking metformin there

was a significant 6.74 log2 fold increase in Bifidobacterium abundance in opioid users as com-

pared to non-users (p = 1.2 x 10−9, q = 2.2 x 10−8) (Fig 5A). Since metformin was not included

in this pair-wise comparison, the significant “q” suggests association of opioid use with Bifido-
bacterium abundance. Contrary, there was no significant difference in Bifidobacterium when

comparing opioid users with non-users in individuals taking metformin (log2FC = 0.53,

p = 0.51, q = 0.88) (Fig 5B). Comparably, in the participants not using opioids, metformin was

associated with a significant 3.17 log2 fold increase in Bifidobacterium relative to those not

using metformin (p = 3.4 x 10−3, q = 0.03) (Fig 6A). The opposite relationship was observed in

Fig 3. The interactive influence of T2D on Bifidobacterium genus in men using or not using opioids. Data are pair-wise comparisons for the

relative sequence abundance of Bifidobacterium. The differential subgroup analysis was done using edgeR, the false discovery rate (FDR) adjusted

p values (q values) were calculated using the Benjamini-Hochberg FDR correction. Abbreviations: 0/1 = factor absent/present. CPM = count per

million, DM = type 2 diabetes, Substance = opioids. (A) 2.3 log2 fold decrease in subjects with vs. without T2D when both groups are not using

opioids (q = 0.03). (B) No difference between without vs. with T2D when both groups are using opioids.

https://doi.org/10.1371/journal.pone.0194171.g003
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the participants using opioids; metformin was associated with a significant 3.67 log2 fold

decrease in Bifidobacterium relative to those not using metformin (p = 1.2 x 10−3, q = 0.01)

(Fig 6B), again suggesting metformin-opioid interaction.

The differential analysis of Prevotella genus (phylum Bacteroidetes) revealed a significant

interaction of opioid and metformin in subjects with T2D (Table 4). Similar to Bifidobacter-
ium, Prevotella abundance was associated with opioid use. The pair-wise comparison showed

that for individuals not taking metformin there was a significant 9.94 log2 fold decrease in Pre-
votella in opioid users as compared to non-users (p = 4.4 x 10−3, q = 0.04) (Table 4). Since met-

formin was not included in this pair-wise comparison, the significant “q” suggests association

of opioid use with Prevotella abundance. At the species level a trend was observed for interac-

tion of opioids and metformin for Prevotella unidentified species and for Bacteroides caccae

(Table 4).

Comparison of the gut microbiota between groups by circulating leptin

and oxytocin

We next explored circulating leptin and oxytocin, and their relationship to the gut microbiota,

due to their essential role in obesity and behavioral aspects related to this cohort. Leptin resis-

tance was suggested as mechanistic explanation of increased circulating leptin in obesity and

Fig 4. The interactive influence of opioids on Bifidobacterium genus in men with and without T2D. Data and analysis are the same as in

Fig 3. (A) No difference between without vs. with opioids when both groups are without T2D. (B) 3.2 log2 fold increase in those with vs.

without opioids when both groups have T2D (q = 2.5x10-4).

https://doi.org/10.1371/journal.pone.0194171.g004
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T2D compared to non-obese/non-diabetic individuals, and similar variability was seen in this

study. Conversely, circulating oxytocin was not different among the groups (Table 1). Com-

parison between lower and higher circulating leptin and oxytocin (divided by the 50th percen-

tile) in the subgroup without T2D showed some variability trends in microbiota abundance.

There was lower abundance of Dialister in High-Leptin compared to Low-Leptin subgroup

(p = 0.03). Contrary, there was higher abundance of Dialister in High-Oxytocin compared to

Low-Oxytocin subgroup (p = 0.04). The opposite trends were observed for the order Lactoba-

cillales, a higher abundance in High-Leptin compared to Low-Leptin subgroup (p = 0.06) and

vice versa for oxytocin (p = 0.05) (Fig 7). No differences were seen in subjects with diabetes.

Associations between bacterial populations and key circulating biomarkers

Correlation analysis was performed for the entire group and a subgroup not using metformin

(n = 69) and revealed several albeit weak associations. In the entire group positive associations

were found between abundance of Dialister and HbA1c (τ = 0.195, p = 0.013), Ruminococcus
and fasting glucose (τ = 0.183, p = 0.014), Catenibacterium and OGIS (τ = 0.184, p = 0.017). In

the subgroup not using metformin similar associations were shown and in addition, there was

a negative correlation of Catenibacterium with leptin (τ = -0.254, p = 0.008) and a positive

Table 4. The interactive influence of metformin and opioids on gut microbiota in the subgroup with diabetes.

LogFC LogCPM p value q value

Bifidobacterium
Interaction of Op and MF 5.5x10-6 1.1x10-4

Op-/MF+ vs Op-/MF- 3.17 11.95 3.4x10-3 0.03

Op+/MF+ vs Op+/MF- -3.67 14.82 1.2x10-3 0.01

Op+/MF- vs Op-/MF- 6.74 14.59 1.2x10-9 2.2x10-8

Op+/MF+ vs Op-/MF+ 0.53 12.40 0.51 0.88

Prevotella
Interaction of Op and MF 4.3x10-3 0.04

Op-/MF+ vs Op-/MF- -1.03 14.04 0.51 0.88

Op+/MF+ vs Op+/MF- 10.43 14.07 8.4x10-4 0.01

Op+/MF- vs Op-/MF- -9.94 13.64 4.4x10-3 0.04

Op+/MF+ vs Op-/MF+ 0.31 14.56 0.73 0.90

Species

Prevotella unidentified

Interaction of Op and MF 8.9x10-3 0.16

Op-/MF+ vs Op-/MF- -0.65 14.42 0.63 0.92

Op+/MF+ vs Op+/MF- 10.31 14.27 1.5x10-3 0.03

Op+/MF- vs Op-/MF- -9.85 13.85 0.01 0.09

Op+/MF+ vs Op-/MF+ 1.13 14.62 0.46 0.85

Bacteroides caccae

Interaction of Op and MF 0.03 0.19

Op-/MF+ vs Op-/MF- -3.69 16.22 6.12x10-5 1.4x10-3

Op+/MF+ vs Op+/MF- -0.09 13.22 0.92 0.99

Op+/MF- vs Op-/MF- -6.09 18.24 2.8x10-3 0.06

Op+/MF+ vs Op-/MF+ -0.83 13.86 0.39 0.85

Data are taxon relative sequence abundance. The differential subgroup analysis was done using edgeR, the false discovery rate (FDR) adjusted p values (q values) were

calculated using the Benjamini-Hochberg FDR correction. Abbreviations: CPM = count per million, FC = fold change, MF = metformin use, Op = opioid use, q = FDR-

adjusted p value.

https://doi.org/10.1371/journal.pone.0194171.t004
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correlation of class Gammaproteobacteria with oxytocin (τ = 0.295, p = 0.002). These associa-

tions, however, did not reach significance in FDR-adjusted analysis (p> 0.05).

Discussion

The study showed novel interaction of opioids, T2D and metformin with specific microbiota

in African American men with high burden of chronic disease. Previous studies implicated

bifidobacteria and lactobacilli as playing important role in psycho-metabolic health [9–11].

This role was suggested to be explained at least in part by production of GABA, a well-known

neuromodulator [12]. Therefore, we hypothesized that these bacteria could vary among the

subgroups in our population with high burden of chronic psycho-metabolic disorders. The

study supported at least in part this hypothesis. Connection to GABA production was further

suggested by the interactive influence of opioids and metformin on microbiota in subjects

with diabetes. The interactions of opioids and metformin were observed for genera Bifidobac-
terium and Prevotella, as well as unidentified species of Prevotella and Bacteroides caccae, all

taxa previously reported as GABA producers [12].

Fig 5. The interactive influence of metformin on Bifidobacterium genus in men with T2D and using or not using opioids. Data are pair-wise

comparisons for the relative sequence abundance of Bifidobacterium. The differential subgroup analysis was done using edgeR, the false discovery

rate (FDR) adjusted p values (q values) were calculated using the Benjamini-Hochberg FDR correction. Abbreviations: 0/1 = factor absent/present.

CPM = count per million, MF = metformin, Substance = opioids. (A) 6.74 log2 fold increase in Bifidobacterium in opioid users vs. non-users when

both groups are not taking metformin (q = 2.2 x 10−8). (B) No difference between opioid users vs. non-users when both groups are taking

metformin.

https://doi.org/10.1371/journal.pone.0194171.g005
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Interactions of opioids, T2D and metformin with Bifidobacterium

The study agreed with previous data suggesting associations of microbiota with T2D and met-

formin use although there were some discordant results [1,7,27]. More precisely, the current

study suggested an association of T2D and metformin use with Bifidobacterium. Bifidobacter-
ium abundance was significantly lower in subjects with T2D compared to those without T2D.

This gram-positive anaerobe was previously shown depleted in patients with T2D [28] and

T1D [29]. In T2D, an inverse association was observed between Bifidobacterium and high car-

bohydrate intake [30] and HbA1c [31]. Corresponding to depletion of Bifidobacterium in

T2D, treatment of T2D patients with Bifidobacterium improved glycemic control suggesting

probiotic property of this bacterium [11,32,33]. The current study also showed Bifidobacterium
interacting with metformin in T2D, metformin treatment compared to no treatment was asso-

ciated with higher abundance of Bifidobacterium. These data were in agreement with strong

metformin signature in the human gut microbiome of T2D [27,34] and more specifically, with

higher relative abundance of Bifidobacterium in T2D patients treated with metformin [34].

The current study showed significant difference in Bifidobacterium abundance when analy-

sis was stratified by opioid use, T2D and metformin use, suggesting an interaction of these

Fig 6. The interactive influence of opioids on Bifidobacterium genus in men with T2D and taking or not taking metformin. Data and analysis

are the same as in Fig 5. (A) 3.17 log2 fold increase in Bifidobacterium in men taking vs. not taking metformin when both groups are not opioid

users (q = 0.03). (B) 3.67 log2 fold decrease in Bifidobacterium in men taking vs. not taking metformin when both groups are opioid users

(q = 0.01).

https://doi.org/10.1371/journal.pone.0194171.g006
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factors, i.e. the difference could not be explained by one factor alone and the effect of one fac-

tor was changed by the other. Previous studies demonstrated that the abundance of Bifidobac-
terium was lower in T2D individuals compared to controls. However, none showed that in

patients with T2D using opioids, this effect was not observed. The T2D-opioid interaction

could explain, at least in part, previously reported discordant results for associations of micro-

biota and T2D [1,7,27]. Considering wide-spread use of opioids in the general population and

in T2D, this observation, if confirmed in larger studies, may be important as beneficial bacteria

(probiotics) are suggested for improving diabetes care [3].

Possible mechanisms of opioid interactions with microbiota

To date, no human cohorts have examined associations of opioid use with the gut microbiota.

However, common gastro-intestinal side effects of opioids including nausea and constipation

could possibly be attributed to changes in gut microbiota [20]. In mice, chronic morphine

treatment significantly altered the gut microbial composition and induced preferential expan-

sion of gram-positive Firmicutes and reduction in Bacteroidetes [19]. In various disease mod-

els describing morphine-mediated co-morbidities, morphine treatment caused changes in gut

microbiota composition, dysregulated bile acids, disrupted intestinal mucosal immunity and

integrity, and increased low grade and severe inflammation [19,20]. Moreover, transplantation

of morphine-induced dysbiotic microbiome into healthy wild-type mice resulted in “mor-

phine-like” diseased phenotype; whereas, transplantation of “normal” microbiome into mor-

phine treated animals showed distinct improvement in the gut pathology suggesting causal

relationship between morphine and microbiota changes [19]. Previously reported relationship

between opioids and microbiota could also help explaining differences in bifidobacteria and

lactobacilli abundance observed in the current study.

Fig 7. Taxa abundance based on circulating leptin and oxytocin. Data are relative counts for taxa abundance of genus Dialister
and order Lactobacillales (Lacto) in subjects without diabetes. The subjects were divided based on low (Low) or high (High) level

of Leptin (Lep) and oxytocin (OT). Pairwise Mann-Whitney test was used to compare the groups. There was lower abundance of

Dialister in High-Leptin vs. Low-Leptin (p = 0.03), but higher abundance of Dialister in High-Oxytocin vs. Low-Oxytocin

(p = 0.04). The opposite trends were observed for the order Lactobacillales, a higher abundance in High-Leptin vs. Low-Leptin

(p = 0.06) and vice versa for oxytocin (p = 0.05).

https://doi.org/10.1371/journal.pone.0194171.g007
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Previously, bifidobacteria as well as lactobacilli were identified as the most efficient produc-

ers of GABA [12], a neurotransmitter affecting pathophysiology of both T2D and psychiatric

disorders [35, 36]. GABA-producing lactobacilli isolated from fermented dairy products (i. e.

cheese, yogurt) were implicated in bioactive properties assigned to those foods [12]. The pres-

ent study showed relatively low representation of lactobacilli, where this result could be

explained by the previous observation in mice for morphine-mediated lowering of relative

abundance of lactobacilli [19].

In addition to producing GABA, both bifidobacteria and lactobacilli can ferment complex

carbohydrates into short chain fatty acids (SCFA, acetate, propionate, butyrate), known to

beneficially impact metabolism (inducing intestinal glucagon-like peptide-1 [GLP-1] and PYY

release) and behavior [3,15,27]. Specifically, in T2D patients, protein intake negatively corre-

lated with Bifidobacterium abundance and SCFA production [30] while metformin use was

associated with higher relative abundance of Bifidobacterium [34]. Consumption of probiotic

fermented milk containing bifidobacteria and lactobacilli was shown to result in improved gly-

cemic control compared to placebo in a double-blind, randomized, placebo-controlled trial of

patients with T2D [11,32,33]. Moreover, supplementation of Lactobacillus casei resulted in

enriched Bifidobacterium abundance, improved glycemic control and increased GLP-1 levels

in mouse model of T2D [37]. However, at this time, there are no studies dedicated to mecha-

nistic insight connecting opioid use with SCFA-producing microbiota.

Cross-sectional nature of the study precluded evaluation of causality and there have not

been trials for Bifidobacterium use for opioid or other addiction disorders. In randomized con-

trolled trials (RCTs) of healthy volunteers, however, combination of various bifidobacteria and

lactobacilli strains (L+B) improved mood and anxiety [38], and reduced aggressive thoughts

[38], but some results were discordant [6]. In another report, the (L+B) treatment in RCTs for

T2D improved fasting blood glucose [32,33], increased insulin sensitivity [33], modestly

decreased HbA1c [11,32], and reduced inflammation and oxidative stress [32]. These data sug-

gested a potential link involving the gut microbiota, psychological factors, and metabolism

that warrants consideration therapeutically.

Possible mechanisms of opioid interactions with Bifidobacterium

The strongest association in the current study was observed in relation of opioids with the

genus Bifidobacterium. Previous studies in mice showed that antibiotic-induced dysbiosis was

associated with reduced Bifidobacterium spp. and downregulation of mu-opioid receptors in

the gut [39] suggesting a possible connection of Bifidobacterium spp. with opioids. Of note,

Bifidobacterium was among species strongly expressing activity of β-glucuronidase (GUS)

enzymes [20]. Microbiome-encoded β-glucuronidase (GUS) enzymes had been found ubiqui-

tously present in all major human microbiota phyla and play essential role in metabolizing

xenobiotics [40]. Opioids similar to many other drugs were shown to undergo major biotrans-

formation involving glucuronidation in the liver and subsequent hydrolysis by β-glucuroni-

dase in both intestinal mucosal cells and gut bacteria [20]. Microbial β-glucuronidase was

implicated in intestinal damage caused by nonsteroidal anti-inflammatory drugs (NSAIDs)

and the widely used anticancer drug irinotecan that was blocked by GUS-targeted inhibitors

[41,42]. Similar mechanisms could be proposed for explaining morphine-microbiota interac-

tions. Diet also influenced β-glucuronidase activity [20,43]. For example, fecal microbial β-glu-

curonidase activity was increased in people consuming high-meat diet compared with diets

without meat [43]. Contrary, high-vegetable diet enhanced biomass of bifidobacteria and was

associated with reduced microbial β-glucuronidase activity [44]. Diet was not evaluated in the

present study, however, based on previous data in comparable population [7] we did not
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expect major influence of diet, as each group likely had very similar dietary patterns. Mecha-

nistic role of gut microbiota in opioid metabolism and its role in opioid sensitivity and addic-

tion remains an unknown question worthy of greater investigation.

Possible mechanisms of opioid-metfromin interaction with

Bifidobacterium

Bifidobacterium genus was also significantly affected by opioids and metformin interaction.

The abundance of Bifidobacterium was significantly different in subjects using opioids com-

pared to those not using opioids if they were not taking metformin, yet this effect was not

observed in the presence of metformin. Conversely, metformin action on Bifidobacterium dif-

fered by the presence or absence of opioids. In subjects using opioids, metformin was associ-

ated with decreased Bifidobacterium. Contrary, in subjects not using opioids, metformin was

associated with increased Bifidobacterium. While no previous studies have shown these inter-

actions, a study evaluating metformin tolerance in more than 400,000 patients showed that

among 28 drugs expected to interfere with metformin metabolism, codeine was the only drug

significantly associated with early discontinuation likely due to metformin intolerance [45].

Codeine, similar to other opioids, is an inhibitor of organic cation transporter 1 (OCT1) [45].

OCT1, acting in the liver and intestinal cells, is important for metformin pharmacokinetics

and therapeutic efficacy, and could be involved in 80-fold variability of steady-state metformin

concentration reported in T2D patients [46]. Of note, we observed lower HbA1c in the sub-

group with T2D on MF and taking opioids vs. those not taking opioids. This observation

could possibly be explained by opioids acting as OCT1 inhibitors and leading to higher blood

and/or tissue level and efficacy of metformin. OCT1 inhibitors were suggested as contributors

to gastrointestinal side effects and intolerance of metformin experienced by up to 20–30% of

patients [47,48]. The data from the current and previous studies suggest the possible impor-

tance of OCT1 for metformin and opioid metabolism, implying that OCT1 could be a mecha-

nistic link for interaction of metformin and opioids observed in the current study.

Leptin and oxytocin associations with Dialister

In addition to Bifidobacterium, Dialister featured prominently in relationship with selected key

biomarkers. There was a trend for association of Dialister with circulating leptin and oxytocin

in subjects without diabetes. Specifically, lower abundance of Dialister was seen in High-Leptin

compared to Low-Leptin subgroup, while the opposite direction of relationship was seen for

oxytocin. Leptin and oxytocin have each been strongly associated with obesity and T2D

[16,17] and psychiatric conditions [49,50] in previous studies. The possible differing relation-

ship of Dialister with leptin and oxytocin could be explained at least in part by opposite associ-

ation of these hormones with obesity and T2D reported in previous studies [16,17]. In the

present study, leptin was increased in subjects with T2D compared to those without T2D while

oxytocin was not different among the subgroups. Corresponding with reported data [1], we

previously observed higher abundance of Dialister associated with higher glucose level in pre-

diabetes [7]. Similarly, Dialister abundance positively correlated with dietary carbohydrates

[51], supporting important role of Dialister in glucose metabolism. In addition, association

between oxytocin (as a behavioral hormone) and Dialister shown in this study agreed with pre-

viously reported association of Dialister with behavioral characteristics in young children [5],

implicating Dialister in possible impact on brain function. Taken together, the data from us

and others supported a mechanistic role of the gut microbiota in the gut-brain axis effects on

physical and mental health.
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Limitations and conclusions

The study has limitations. The 16S rRNA sequencing for taxonomic profiling has relatively

limited resolution and a narrower range than metagenomic approaches [52]. The correlational

nature of the analyses does not allow determining if observed interactions and associations are

a function of effects of opioid on the gut microbiota, effects of microbiota on opioid metabo-

lism, or a combination thereof. Diet is known to be a major contributor to microbiota compo-

sition and was not evaluated here. Lifestyle behavior including smoking and physical activity

can be additional potential confounders. Similarly, specificity of the population, e.g. high bur-

den of disease prevents generalizing the findings to other populations.

In conclusion, the present study showed possible physiological links between microbiota

and brain in agreement with previous human and animal data. The data showed novel interac-

tions of microbiota with opioids, T2D, and metformin, suggesting possible venues for the

management of T2D with psychiatric co-morbidities by targeting the gut microbiota. The data

also corroborated previous research implying that some specific probiotic bacteria could be of

importance to the host health. The report contributed to a growing literature linking gut

microbiota to human behavior and metabolism. Further studies including randomized trials

are needed to provide relevant clinical outcomes and mechanistic insights into gut micro-

biota-brain connections.

Supporting information

S1 File. The primary data set. The bio-clinical subjects characteristics.

(XLSX)

Acknowledgments

The authors acknowledge the following research volunteers Puja Mehta, Farah Salim, Viraj

Barot, Raj Patel, Deepika Khanna and En Sen Ten; Nicolas Perez for and managing data, and

Dr. Toni Zeigler and her laboratory for assisting in oxytocin measures. The authors thank

Ankur Naqib for assistance in analysis of sequence data, Vaiva Liakaite and Weihua Wang for

assistance in DNA extraction and preparation and sequencing of amplicons.

A disclaimer: the contents do not represent the views of the U.S. Department of Veterans

Affairs or the United States Government.

Author Contributions

Conceptualization: Elena Barengolts.

Data curation: Elena Barengolts, Stefan J. Green, Yuval Eisenberg, Arfana Akbar, Bharathi

Reddivari, Brian T. Layden, Lara Dugas, George Chlipala.

Formal analysis: Lara Dugas, George Chlipala.

Funding acquisition: Elena Barengolts.

Investigation: Elena Barengolts, Yuval Eisenberg, Arfana Akbar, Bharathi Reddivari.

Methodology: Lara Dugas.

Project administration: Arfana Akbar, Bharathi Reddivari.

Resources: Stefan J. Green, Bharathi Reddivari.

Supervision: Elena Barengolts, Brian T. Layden.

Gut microbiota and psycho-metabolic health

PLOS ONE | https://doi.org/10.1371/journal.pone.0194171 March 29, 2018 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0194171.s001
https://doi.org/10.1371/journal.pone.0194171


Validation: Stefan J. Green, George Chlipala.

Visualization: George Chlipala.

Writing – original draft: Elena Barengolts.

Writing – review & editing: Stefan J. Green, Yuval Eisenberg, Brian T. Layden, George

Chlipala.

References
1. Semenkovich CF, Danska J, Darsow T, Dunne JL, Huttenhower C, Insel RA, et al. American Diabetes

Association and JDRF Research Symposium: Diabetes and the Microbiome. Diabetes. 2015; 64

(12):3967–77. https://doi.org/10.2337/db15-0597 PMID: 26420863

2. Erdman SE. Defining ‘good health’. Aging (Albany NY). 2016; 8:3157–58.

3. Barengolts E. Gut microbiota, prebiotics, probiotics, and synbiotics in management of obesity and predi-

abetes: review of randomized controlled trials. Endocr Pract. 2016; 22(10): 1224–34. https://doi.org/10.

4158/EP151157.RA PMID: 27409822

4. Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM et al. The Intestinal Micro-

biota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and

Eating Disorder Psychopathology. Psychosom Med. 2015; 77(9):969–81. https://doi.org/10.1097/PSY.

0000000000000247 PMID: 26428446

5. Christian LM, Galley JD, Hade EM, Schoppe-Sullivan S, Kamp Dush C, Bailey MT. Gut microbiome

composition is associated with temperament during early childhood. Brain Behav Immun. 2015;

45:118–27. https://doi.org/10.1016/j.bbi.2014.10.018 PMID: 25449582

6. Leclercq S, Forsythe P, Bienenstock J, Posttraumatic Stress Disorder: Does the Gut Microbiome Hold

the Key? Can J Psychiatry. 2016; 61(4):204–13. https://doi.org/10.1177/0706743716635535 PMID:

27254412

7. Ciubotaru I, Green SJ, Kukreja S, Barengolts E. Significant differences in fecal microbiota are associ-

ated with various stages of glucose tolerance in African American male veterans. Transl Res. 2015; 166

(5):401–11. https://doi.org/10.1016/j.trsl.2015.06.015 PMID: 26209747

8. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, et al. Alterations of the Host Micro-

biome Affect Behavioral Responses to Cocaine. Sci Rep. 2016; 6:35455. https://doi.org/10.1038/

srep35455 PMID: 27752130

9. Moroti C, Souza Magri LF, de Rezende Costa M, Cavallini DC, Sivieri K. Effect of the consumption of a

new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus.

Lipids Health Dis. 2012; 11:29. https://doi.org/10.1186/1476-511X-11-29 PMID: 22356933

10. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, et al. Probiotic Bifidobacterium

longum NCC3001 Reduces Depression Scores and Alters Brain Activity: a Pilot Study in Patients With

Irritable Bowel Syndrome. Gastroenterology. 2017; pii: S0016-5085(17)35557-9. https://doi.org/10.

1053/j.gastro.2017.05.003 PMID: 28483500

11. Tonucci LB, Olbrich Dos Santos KM, Licursi de Oliveira L, Rocha Ribeiro SM, Duarte Martino HS. Clini-

cal application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled

study. Clin Nutr. 2017; 36(1):85–92. https://doi.org/10.1016/j.clnu.2015.11.011 PMID: 26732026

12. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, et al. GABA produc-

tion and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human micro-

biota. Anaerobe. 2016; 42:197–204. https://doi.org/10.1016/j.anaerobe.2016.10.011 PMID: 27794467

13. Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care. 2017; 40(Suppl

1):S4–S5. https://doi.org/10.2337/dc17-S003 PMID: 27979887

14. Degenhardt L, Bucello C, Mathers B, Briegleb C, Ali H, Hickman M, et al. Mortality among regular or

dependent users of heroin and other opioids: a systematic review and meta-analysis of cohort studies.

Addiction. 2011; 106(1):32–51. https://doi.org/10.1111/j.1360-0443.2010.03140.x PMID: 21054613

15. Sinha R, Jastreboff AM. Stress as a common risk factor for obesity and addiction. Biol Psychiatry. 2013;

73(9):827–35. https://doi.org/10.1016/j.biopsych.2013.01.032 PMID: 23541000

16. Barengolts E. Oxytocin—an emerging treatment for obesity and dysglycemia: review of randomized

controlled trials and cohort studies. Endocr Pract. 2016; 22(7):885–94. https://doi.org/10.4158/

EP151192.RA PMID: 27018619

17. Altirriba J, Poher AL, Rohner-Jeanrenaud F. Chronic Oxytocin Administration as a Treatment Against

Impaired Leptin Signaling or Leptin Resistance in Obesity. Front Endocrinol (Lausanne). 2015; 6:119.

https://doi.org/10.3389/fendo.2015.00119 PMID: 26300847

Gut microbiota and psycho-metabolic health

PLOS ONE | https://doi.org/10.1371/journal.pone.0194171 March 29, 2018 20 / 22

https://doi.org/10.2337/db15-0597
http://www.ncbi.nlm.nih.gov/pubmed/26420863
https://doi.org/10.4158/EP151157.RA
https://doi.org/10.4158/EP151157.RA
http://www.ncbi.nlm.nih.gov/pubmed/27409822
https://doi.org/10.1097/PSY.0000000000000247
https://doi.org/10.1097/PSY.0000000000000247
http://www.ncbi.nlm.nih.gov/pubmed/26428446
https://doi.org/10.1016/j.bbi.2014.10.018
http://www.ncbi.nlm.nih.gov/pubmed/25449582
https://doi.org/10.1177/0706743716635535
http://www.ncbi.nlm.nih.gov/pubmed/27254412
https://doi.org/10.1016/j.trsl.2015.06.015
http://www.ncbi.nlm.nih.gov/pubmed/26209747
https://doi.org/10.1038/srep35455
https://doi.org/10.1038/srep35455
http://www.ncbi.nlm.nih.gov/pubmed/27752130
https://doi.org/10.1186/1476-511X-11-29
http://www.ncbi.nlm.nih.gov/pubmed/22356933
https://doi.org/10.1053/j.gastro.2017.05.003
https://doi.org/10.1053/j.gastro.2017.05.003
http://www.ncbi.nlm.nih.gov/pubmed/28483500
https://doi.org/10.1016/j.clnu.2015.11.011
http://www.ncbi.nlm.nih.gov/pubmed/26732026
https://doi.org/10.1016/j.anaerobe.2016.10.011
http://www.ncbi.nlm.nih.gov/pubmed/27794467
https://doi.org/10.2337/dc17-S003
http://www.ncbi.nlm.nih.gov/pubmed/27979887
https://doi.org/10.1111/j.1360-0443.2010.03140.x
http://www.ncbi.nlm.nih.gov/pubmed/21054613
https://doi.org/10.1016/j.biopsych.2013.01.032
http://www.ncbi.nlm.nih.gov/pubmed/23541000
https://doi.org/10.4158/EP151192.RA
https://doi.org/10.4158/EP151192.RA
http://www.ncbi.nlm.nih.gov/pubmed/27018619
https://doi.org/10.3389/fendo.2015.00119
http://www.ncbi.nlm.nih.gov/pubmed/26300847
https://doi.org/10.1371/journal.pone.0194171


18. Poutahidis T, Kearney SM, Levkovich T et al. Microbial symbionts accelerate wound healing via the

neuropeptide hormone oxytocin. PLoS One. 2013; 8(10):e78898 https://doi.org/10.1371/journal.pone.

0078898 PMID: 24205344

19. Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, et al. Opioid-induced gut microbial dis-

ruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation.

Mucosal Immunol. 2016; 9(6):1418–28. https://doi.org/10.1038/mi.2016.9 PMID: 26906406

20. Wang F, Roy S. Gut Homeostasis, Microbial Dysbiosis, and Opioids. Toxicol Pathol. 2017; 45(1):150–

56. https://doi.org/10.1177/0192623316679898 PMID: 27895265

21. Barengolts E, Manickam B, Eisenberg Y, Akbar A, Kukreja S, Ciubotaru I. Effect of high-dose vitamin D

repletion on glycemic control in African-American males with prediabetes and hypovitaminosis D.

Endocr Pract. 2015; 21(6):604–12. https://doi.org/10.4158/EP14548.OR PMID: 25716637

22. Seltzer LJ, Ziegler T, Connolly MJ, Prososki AR, Pollak SD. Stress-induced elevation of oxytocin in mal-

treated children: evolution, neurodevelopment, and social behavior. Child Dev. 2014; 85(2):501–12.

https://doi.org/10.1111/cdev.12136 PMID: 23865588

23. Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: understanding

and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One.

2015; 10(5):e0128122. https://doi.org/10.1371/journal.pone.0128122 PMID: 25996930

24. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd

mergeR. Bioinformatics. 2014; 30(5):614–20. https://doi.org/10.1093/bioinformatics/btt593 PMID:

24142950

25. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments

with respect to biological variation. Nucleic Acids Res. 2012; 40:4288–97. https://doi.org/10.1093/nar/

gks042 PMID: 22287627

26. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological). 1995; 57:289–300.

27. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2

diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015; 528

(7581):262–6. https://doi.org/10.1038/nature15766 PMID: 26633628

28. Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, et al. Molecular characterization of the fecal microbiota

in patients with type II diabetes. Curr Microbiol. 2010; 61:69–78. https://doi.org/10.1007/s00284-010-

9582-9 PMID: 20087741

29. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in

children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;

11:46–58. https://doi.org/10.1186/1741-7015-11-46 PMID: 23433344

30. Yamaguchi Y, Adachi K, Sugiyama T, Shimozato A, Ebi M, Ogasawara N, et al. Association of Intestinal

Microbiota with Metabolic Markers and Dietary Habits in Patients with Type 2 Diabetes. Digestion.

2016; 94:66–72. https://doi.org/10.1159/000447690 PMID: 27504897

31. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, et al.Analyses of gut microbiota and plasma bile acids

enable stratification of patients for antidiabetic treatment. Nat Commun. 2017; 8:1785–97. https://doi.

org/10.1038/s41467-017-01682-2 PMID: 29176714

32. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic

yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012; 28(5): 539–43. https://doi.

org/10.1016/j.nut.2011.08.013 PMID: 22129852

33. Tajabadi-Ebrahimi M, Sharifi N, Farrokhian A, Raygan F, Karamali F, Razzaghi R, et al. A Randomized

Controlled Clinical Trial Investigating the Effect of Synbiotic Administration on Markers of Insulin Metab-

olism and Lipid Profiles in Overweight Type 2 Diabetic Patients with Coronary Heart Disease. Exp Clin

Endocrinol Diabetes. 2017; 125(1):21–27. https://doi.org/10.1055/s-0042-105441 PMID: 27219886

34. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejı́a EP, Carmona JA, Abad JM,

et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muci-

niphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care. 2017;

40:54–62. https://doi.org/10.2337/dc16-1324 PMID: 27999002

35. Wan Y, Wang Q, Prud’homme GJ. GABAergic system in the endocrine pancreas: a new target for dia-

betes treatment. Diabetes Metab Syndr Obes. 2015; 8:79–87. https://doi.org/10.2147/DMSO.S50642

PMID: 25678807

36. Martinotti G, Lupi M, Sarchione F, Santacroce R, Salone A, De Berardis D, et al. The potential of prega-

balin in neurology, psychiatry and addiction: a qualitative overview. Curr Pharm Des. 2013; 19

(35):6367–74. PMID: 23782139

Gut microbiota and psycho-metabolic health

PLOS ONE | https://doi.org/10.1371/journal.pone.0194171 March 29, 2018 21 / 22

https://doi.org/10.1371/journal.pone.0078898
https://doi.org/10.1371/journal.pone.0078898
http://www.ncbi.nlm.nih.gov/pubmed/24205344
https://doi.org/10.1038/mi.2016.9
http://www.ncbi.nlm.nih.gov/pubmed/26906406
https://doi.org/10.1177/0192623316679898
http://www.ncbi.nlm.nih.gov/pubmed/27895265
https://doi.org/10.4158/EP14548.OR
http://www.ncbi.nlm.nih.gov/pubmed/25716637
https://doi.org/10.1111/cdev.12136
http://www.ncbi.nlm.nih.gov/pubmed/23865588
https://doi.org/10.1371/journal.pone.0128122
http://www.ncbi.nlm.nih.gov/pubmed/25996930
https://doi.org/10.1093/bioinformatics/btt593
http://www.ncbi.nlm.nih.gov/pubmed/24142950
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1093/nar/gks042
http://www.ncbi.nlm.nih.gov/pubmed/22287627
https://doi.org/10.1038/nature15766
http://www.ncbi.nlm.nih.gov/pubmed/26633628
https://doi.org/10.1007/s00284-010-9582-9
https://doi.org/10.1007/s00284-010-9582-9
http://www.ncbi.nlm.nih.gov/pubmed/20087741
https://doi.org/10.1186/1741-7015-11-46
http://www.ncbi.nlm.nih.gov/pubmed/23433344
https://doi.org/10.1159/000447690
http://www.ncbi.nlm.nih.gov/pubmed/27504897
https://doi.org/10.1038/s41467-017-01682-2
https://doi.org/10.1038/s41467-017-01682-2
http://www.ncbi.nlm.nih.gov/pubmed/29176714
https://doi.org/10.1016/j.nut.2011.08.013
https://doi.org/10.1016/j.nut.2011.08.013
http://www.ncbi.nlm.nih.gov/pubmed/22129852
https://doi.org/10.1055/s-0042-105441
http://www.ncbi.nlm.nih.gov/pubmed/27219886
https://doi.org/10.2337/dc16-1324
http://www.ncbi.nlm.nih.gov/pubmed/27999002
https://doi.org/10.2147/DMSO.S50642
http://www.ncbi.nlm.nih.gov/pubmed/25678807
http://www.ncbi.nlm.nih.gov/pubmed/23782139
https://doi.org/10.1371/journal.pone.0194171


37. Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via

a gut microbiota dependent mechanism. Food Funct. 2017; 8:3155–64. https://doi.org/10.1039/

c7fo00593h PMID: 28782784

38. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi, et al. Assessment of psychotropic-like

properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum

R0175) in rats and human subjects. Br J Nutr. 2011; 105(5):755–64. https://doi.org/10.1017/

S0007114510004319 PMID: 20974015

39. Aguilera M, Vergara P, Martinez V. Environment-related adaptive changes of gut commensal micro-

biota do not alter colonic toll-like receptors but modulate the local expression of sensory-related sys-

tems in rats. Microb Ecol. 2013; 66(1):232–43. https://doi.org/10.1007/s00248-013-0241-0 PMID:

23666270

40. Pollet RM, D’Agostino EH, Walton WG, Xu Y, Little MS, Biernat KA, et al. An Atlas of beta-Glucuroni-

dases in the Human Intestinal Microbiome. Structure. 2017. https://doi.org/10.1016/j.str.2017.05.003

41. Liang X, Bittinger K, Li X, Abernethy DR, Bushman FD, FitzGerald GA. Bidirectional interactions

between indomethacin and the murine intestinal microbiota. Elife. 2015; 4: e08973. https://doi.org/10.

7554/eLife.08973 PMID: 26701907

42. Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, et al. Structure and Inhibition of

Microbiome beta-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chem Biol. 2015;

22(9):1238–49. https://doi.org/10.1016/j.chembiol.2015.08.005 PMID: 26364932

43. Reddy BS, Weisburger JH, Wynder EL. Fecal bacterial beta-glucuronidase: control by diet. Science.

1974; 183(4123):416–17. PMID: 4808971

44. Valerio F, Russo F, de Candia S, Riezzo G, Orlando A, Lonigro SL, et al. Effects of probiotic Lactobacil-

lus paracasei-enriched artichokes on constipated patients: a pilot study. J Clin Gastroenterol. 2010; 44:

S49–S53. https://doi.org/10.1097/MCG.0b013e3181d2dca4 PMID: 20495470

45. Stage TB, Lee MP, Hallas J, Christensen MM, Brøsen K, Christensen K, et al. Early Discontinuation of

Metformin in Individuals Treated with Inhibitors of Transporters of Metformin. Basic Clin Pharmacol Tox-

icol. 2016; 118:487–95. https://doi.org/10.1111/bcpt.12579 PMID: 27128732

46. Christensen MM, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The phar-

macogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated

hemoglobin A1c. Pharmacogenet Genomics. 2011 Dec; 21:837–50. https://doi.org/10.1097/FPC.

0b013e32834c0010 PMID: 21989078

47. Dujic T, Causevic A, Bego T, Malenica M, Velija-Asimi Z, Pearson ER, et al. Organic cation transporter

1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med.

2016; 33:511–4. https://doi.org/10.1111/dme.13040 PMID: 26605869

48. Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of Organic Cation

Transporter 1 With Intolerance to Metformin in Type 2 Diabetes:A GoDARTS Study. Diabetes. 2015;

64:1786–93. https://doi.org/10.2337/db14-1388 PMID: 25510240

49. Labad J, Price JF, Strachan MW, Fowkes FG, Deary IJ, Seckl JR, et al. Leptin levels and depressive

symptoms in people with type 2 diabetes: the edinburgh type 2 diabetes study. Psychosom Med. 2012;

74(1):39–45. https://doi.org/10.1097/PSY.0b013e31823ba8af PMID: 22210236

50. Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, et al. Biological mark-

ers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysi-

ology and neurocognition. World J Biol Psychiatry. 2017; 18(3): 162–214. https://doi.org/10.1080/

15622975.2016.1190867 PMID: 27419272

51. Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, et al. Impact of West-

ernized Diet on Gut Microbiota in Children on Leyte Island. Front Microbiol. 2017; 8:197. https://doi.org/

10.3389/fmicb.2017.00197 PMID: 28261164

52. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S

rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One.

2014; 9(4):e93827. https://doi.org/10.1371/journal.pone.0093827 PMID: 24714158

Gut microbiota and psycho-metabolic health

PLOS ONE | https://doi.org/10.1371/journal.pone.0194171 March 29, 2018 22 / 22

https://doi.org/10.1039/c7fo00593h
https://doi.org/10.1039/c7fo00593h
http://www.ncbi.nlm.nih.gov/pubmed/28782784
https://doi.org/10.1017/S0007114510004319
https://doi.org/10.1017/S0007114510004319
http://www.ncbi.nlm.nih.gov/pubmed/20974015
https://doi.org/10.1007/s00248-013-0241-0
http://www.ncbi.nlm.nih.gov/pubmed/23666270
https://doi.org/10.1016/j.str.2017.05.003
https://doi.org/10.7554/eLife.08973
https://doi.org/10.7554/eLife.08973
http://www.ncbi.nlm.nih.gov/pubmed/26701907
https://doi.org/10.1016/j.chembiol.2015.08.005
http://www.ncbi.nlm.nih.gov/pubmed/26364932
http://www.ncbi.nlm.nih.gov/pubmed/4808971
https://doi.org/10.1097/MCG.0b013e3181d2dca4
http://www.ncbi.nlm.nih.gov/pubmed/20495470
https://doi.org/10.1111/bcpt.12579
http://www.ncbi.nlm.nih.gov/pubmed/27128732
https://doi.org/10.1097/FPC.0b013e32834c0010
https://doi.org/10.1097/FPC.0b013e32834c0010
http://www.ncbi.nlm.nih.gov/pubmed/21989078
https://doi.org/10.1111/dme.13040
http://www.ncbi.nlm.nih.gov/pubmed/26605869
https://doi.org/10.2337/db14-1388
http://www.ncbi.nlm.nih.gov/pubmed/25510240
https://doi.org/10.1097/PSY.0b013e31823ba8af
http://www.ncbi.nlm.nih.gov/pubmed/22210236
https://doi.org/10.1080/15622975.2016.1190867
https://doi.org/10.1080/15622975.2016.1190867
http://www.ncbi.nlm.nih.gov/pubmed/27419272
https://doi.org/10.3389/fmicb.2017.00197
https://doi.org/10.3389/fmicb.2017.00197
http://www.ncbi.nlm.nih.gov/pubmed/28261164
https://doi.org/10.1371/journal.pone.0093827
http://www.ncbi.nlm.nih.gov/pubmed/24714158
https://doi.org/10.1371/journal.pone.0194171

