INTERFACE

royalsocietypublishing.org/journal/rsif

Research )

Check for
updates

Cite this article: Indelicato G, Cermelli P,
Twarock R. 2020 Surface stresses in complex
viral capsids and non-quasi-equivalent

viral architectures. J. R. Soc. Interface 17:
20200455.
http://dx.doi.org/10.1098/rsif.2020.0455

Received: 9 June 2020
Accepted: 14 July 2020

Subject Category:
Life Sciences—Mathematics interface

Subject Areas:
biomathematics

Keywords:
shear stress in viral capsids, capsid structure,
PRD1-adenovirus lineage

Author for correspondence:
Giuliana Indelicato
e-mail: giuliana.indelicato@york.ac.uk

THE ROYAL SOCIETY

PUBLISHING

Surface stresses in complex viral
capsids and non-quasi-equivalent
viral architectures

Giuliana Indelicato’, Paolo Cermelli® and Reidun Twarock'2

IDepartment of Mathematics, and “Department of Biology, University of York, York, UK
3Dipartimento di Matematica, Universita di Torino, Torino, Italy

Gl, 0000-0002-3445-2473; PC, 0000-0002-2181-8800; RT, 0000-0002-1824-2003

Many larger and more complex viruses deviate from the capsid layouts
predicted in the seminal Caspar—Klug theory of icosahedral viruses. Instead
of being built from one type of capsid protein (CP), they code for multiple
distinct structural proteins that either break the local symmetry of the CP
building blocks (capsomers) in specific positions or exhibit auxiliary proteins
that stabilize the capsid shell. We investigate here the hypothesis that this
occurs as a response to mechanical stress. For this, we construct a coarse-
grained model of a viral capsid, derived from the experimentally determined
atomistic positions of the CPs, that represents the basic features of protein
organization in the viral capsid as described in Caspar-Klug theory. We
focus here on viruses in the PRD1-adenovirus lineage. For T =28 viruses
in this lineage, which have capsids formed from two distinct structural
proteins, we show that the tangential shear stress in the viral capsid concen-
trates at the sites of local symmetry breaking. In the T=21, 25 and 27
capsids, we show that stabilizing proteins decrease the tangential stress.
These results suggest that mechanical properties can act as selective press-
ures on the evolution of capsid components, offsetting the coding cost
imposed by the need for such additional protein components.

1. Introduction

Viral capsids are protein containers that encapsulate and thus protect the genomic
material between rounds of infection. In the majority of cases, viral capsids are
organized with icosahedral symmetry, and their architectures can be modelled
in terms of the polyhedral models in the Caspar-Klug quasi-equivalence
theory. Smaller viruses, which typically have capsids assembled from multiple
copies of a single type of capsid protein (CP), are fairly well described by this
theory. By contrast, for larger and more complex viruses, such as those in the
PRD1-adenovirus lineage, multiple deviations from these models have emerged.
In some viruses, the hexagonal sites are occupied by different compositions of dis-
tinct types of CPs, thus breaking the local symmetry of the hexameric positions in
the surface lattice. In others, there are additional protein components in specific
positions, whose existence and locations cannot be explained in the context of
Caspar-Klug theory. Here we investigate our hypothesis that these deviations
from Caspar—Klug theory can be related to the mechanical properties—
specifically, the built-in stresses—of the capsid shell. The importance of residual
stress in many functions of the viral capsid has already been demonstrated, for
instance in [1]. In our work, using the Caspar-Klug models as a starting point,
we compute the stress distribution across the capsid with reference to these
models. We show that local symmetry breaking and the occurrence of additional
protein components can be correlated with the mechanical properties and
curvature of these capsid shells.
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License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2020.0455&domain=pdf&date_stamp=2020-08-05
mailto:giuliana.indelicato@york.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-3445-2473
http://orcid.org/0000-0002-2181-8800
http://orcid.org/0000-0002-1824-2003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Figure 1. (a—f) Examples of viruses with non-quasi-equivalent architectures. (a) Pseudoalteromonas virus PM2, (b) Pseudomonas virus PRD1, (c) the Mimivirus-
dependent Sputnik virus (PDB-ID: 2wOc, 1gw7, 3j26), (d) Haloarcula hispanica SH1 virus (SH1), (e) Haloarcula hispanica icosahedral virus (HHIV-2),
(f) Haloarcula californiae icosahedral virus (HCIV-1) (PDB-ID: 6qt9, 6h82, 6h9c). PDB data for Thermus phage P23-77 are not available. All capsids are viewed

along a fivefold axis.

A number of studies of the mechanical properties of viral
capsids have previously been performed, both theoretically
and experimentally (see [2,3]). This includes all-atoms mol-
ecular dynamics simulations (e.g. [4]), continuum models
based on shell theory (e.g. [5]) and coarse-grained models
in which whole proteins, or groups thereof, are represented
by rigid or elastic bodies [1,6-9]; this also includes models
in which the discrete nature of the shell is taken
into account by suitable triangulations of the surface
[10,11]. As capsids are intrinsically discrete structures, the
details of the tessellation as well as the local organization
into monomers, dimers, trimers, pentamers or hexamers
have an impact on the mechanical properties of the capsid.
Hence, it seems appropriate to use either molecular dynamics
or coarse-grained models, since continuum models cannot
take such details of the CP organization into account.

Here we use the coarse-grained model by Zandi & Reguera
[6], a simple scheme in which the hexamers and pentamers are
represented by spheres interacting with their neighbours via a
Lennard-Jones potential. This model is able to capture the
arrangement of the capsid building blocks (capsomers) as
described by Caspar-Klug theory, and has proven to be
useful to investigate a number of general features of viral
capsids, such as buckling depending on the shape [8] or
resistance to cracking [6].

According to Caspar—Klug theory, the arrangement of the
CPs follows the principle of quasi-equivalence: CPs must
locally have similar environments and group as 12 penta-
mers and a variable number of hexamers. The capsid can
therefore be represented as a surface with a close-packed
tessellation of pentagonal and hexagonal building blocks.
Note, however, that the actual mechanical and assembly
units, the capsomers, need not be pentamers and hexamers,
but can also be single proteins, dimers or trimers [12]. Penta-
mers must have fivefold symmetry, because they are located
on the particle fivefold symmetry axes. By contrast, hexamers
do not need to have local sixfold symmetry, but can occur

in distinct conformations formed from smaller units, thus
violating the principle of quasi-equivalence. We explore
here the mechanical reasons that may account for such
non-quasi-equivalent architectures.

In particular, we focus on the distribution of the residual
shear stress in medium-sized capsids in the PRD1-adenovirus
lineage (figure 1), spanning T=21 to T =28 architecture in
size, because they exhibit a wide spectrum of different devi-
ations from Caspar-Klug theory and are therefore ideal to
test our hypothesis.

The capsids of these viruses fall into two classes: either they
have a different organization of the major coat proteins at some
of the hexameric positions at and around the twofold axes or
they have ancillary cementing proteins that reinforce the
shell, again near the twofold axes. Our analysis suggests that,
in all viruses in the first class, the concentration of shear
stress at these axes may be responsible for the local deviations
from quasi-equivalence. For viruses in the second class, the
situation is less definite, in that in some cases the loci of
stress concentration do not coincide with the sites at which
reinforcing proteins are located. This could be the result of us
using coarse-grained models that are built from the atomic pos-
itions of the CPs, and thus they implicitly contain contributions
from any auxiliary proteins at the inner capsid surface that are
not captured by a simple model of the capsid shell. We there-
fore use a different strategy in this case. We compare the
model derived from the biological data with a mathematical
model of the capsid shell in isolation, showing that there is a
significant stress reduction relative to ideal spherical or icosa-
hedral mathematical rendering of the capsids that we are
attributing to the presence of the auxiliary components. We
also show that there is a correlation between the location of
the reinforcing proteins and the sites at which curvature is
concentrated, suggesting that these additional protein com-
ponents may, at least in part, also be a response to curvature-
related stresses. However, the latter is not dealt with explicitly
here, as this is not possible in the context of our model due
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Figure 2. The coarse-graining procedure illustrated for the example of a T=
28 capsid. Hexamers in the PDB structure of the viral capsid (a) are replaced
by spheres centred at the centres of mass of the atomic positions of each
capsomer (b).

to the intrinsic limitations of Lennard-Jones interactions.
Indeed, our model is appropriate to capture the local
interactions between neighbouring capsomers when the
curvature is small, and works better for capsids with small
deviations from sphericity and where icosahedral edges
are smooth. In summary, our analysis demonstrates that
non-quasi-equivalent components in a complex viral capsid,
in the form of either local symmetry breaking of the hexamers
or the occurrence of additional protein components at the inner
capsid shell, can be rationalized, at least in part, as a consequence
of mechanical stress.

2. A coarse-grained capsid model

The coarse-grained model for spherical capsids introduced by
Zandi & Reguera [6] is designed for capsids conforming to
Caspar-Klug theory, for which pentamers and hexamers (cap-
somers in what follows) are the basic mechanical units. The
capsid is idealized as a surface S, and the capsomers are rep-
resented as small spheres with centres on S (figure 2) that
interact via Lennard-Jones forces. The total energy is given as
the sum of all pairwise interaction potentials, and the stress is
measured by the virial stress at zero temperature. All hexamers
are modelled as indistinguishable and have the same size and
mechanical properties, and the same holds for the pentamers.

In the original model of Zandi and Reguera (see also Aznar
et al. [8]), the surface S is given either by a sphere or by a regular
icosahedron. Indeed, a classical scaling argument [5] supports
the idea that small capsids are nearly spherical, while large cap-
sids are in a good approximation icosahedral. More refined
theoretical arguments [13], however, suggest that capsids exhi-
bit a larger variety of shapes, and are often multi-faceted or
even slightly concave. The fact that many capsids of intermedi-
ate sizes do not fit well into the ‘sphere versus icosahedron’
dichotomy is also substantiated by the best-fit analysis of
viral shapes in [8].

As using central force potentials in the presence of edges
and corners would be inappropriate, we have based our analy-
sis here on a point set obtained by computing the centroids of
the actual hexamers and pentamers from experimental data
(Protein Data Bank (PDB) files of the atomic positions in viral
CPs), and have benchmarked our results against computations
based on idealized spherical and icosahedral models. The cal-
culations were performed with the software ‘UCSF Chimera’
[14] and MATLAB.

In our mathematical models of viral capsids, we denote by
X ={x}iz1, . a capsid configuration that is defined as the set of

points representing the centroids of the capsomers. We assume, [ 3 |

without loss of generality, that the points are indexed so that the
pentamers haveindicesi=1, ...,12,and the hexamersi=13, ...,
N. For the models based on the Zandi and Reguera approach,
X C S, where S is either a sphere or an icosahedron, while for
the structures obtained from the PDB data here we denote by
S the triangulated surface whose nodes are the points in X.
The adjacency matrix of a configuration is defined as
follows. For fixed 6>0, we say that two points x; and x; are
adjacent if their Euclidean distance is less than &, and write

A — 1 if | —xj| <5,
7710 otherwise.

The parameter & is chosen to be of the order of the distance
between the centres of two neighbouring capsomers, i.e.
twice the radius of a typical hexamer. Note that a pentamer
is adjacent to five hexamers, while a hexamer is adjacent to
six capsomers (pentamers or hexamers).

We follow [6] and approximate the interaction between
two capsomers indexed by i, j by a Lennard-Jones potential
of the form

12 \6
Vi(xi, x)) = Vi(rip) = € (ﬂ) -2 <@>
Tij Tij 2.1

rij = |xi — x]-\

Here, o;; denotes the equilibrium distance between the centres
of the capsomers (see table 2 in appendix A.1), and €( a positive
constant.

Departing slightly from [6,8], we write the total energy of
the system as

N
E(X) = ZAijVij(rij)/ (2.2)
=

and, as a measure of the interaction forces at equilibrium, we
take the static part of the local virial stress tensor at point x;
(e.g. [6,8] and formula (A.27) in [15]):

1
T:(X) = ] Zfi]‘ Qtij, Tij=2%—X, (2.3)
j#i
where
1dV;
fi= —;d—rl](rij)Aijrij 2.4
ij

is the interaction force between capsomers i and j and |51 is
the area of the capsid surface. The virial stress (here in its
static version) is a common tool in the study of many-particle
systems in molecular dynamics simulations. It is the analogue
of the Cauchy stress for discrete media. As such, it is a
measure of the interaction force between contiguous portions
of a material across their common boundary. In our context,
we can interpret it as a tool to study how the interaction
forces tend to deform the bonds between the hexamers.
This interpretation is discussed in some detail in the
following section.

The forces {fi}j-1, ... n are internal to the capsid, being the
interaction forces from all adjacent capsomers j#i on cap-
somer i, and, in general, are not balanced, i.e. Z]» fi]- # 0.
In the equilibrium configuration of the capsid, as captured
by the PDB file of the experimentally determined coordinates,
these forces are balanced by the external forces (such as elec-
trostatic interactions between the capsomers and the genomic
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(a) Y - 1,\

(b

Figure 3. Schematics describing the relation between the forces acting on a hexamer, the virial stress and the shear stress in a planar arrangement of the deformed
hexamers. (a) Interaction forces acting on the centroid x; of the central hexamer i due to the surrounding hexamers. In this example, the forces are balanced, i.e.
they add to zero. (b) Given a separating curve at x; with unit normal v; in the tangent plane to the capsid, T;w; is the traction across the curve and the shear stress

corresponds to the component of the traction tangential to the curve.

material or membrane proteins, osmotic pressure or steric
forces due to the confinement of the genome inside the
capsid). Only the internal forces, however, contribute to the
virial (or Cauchy) stress, which, by its very definition, is a
measure of the contact forces internal to a material body.

2.1. Maximum tangential shear stress

The stress T; can be decomposed into a part T; that is tangen-
tial to the surface S and a part that is normal to it, as
discussed in appendix A.2. The stress tensor measures the
contact interactions between different portions of a body
across their common boundary. Here, the role of the body
is played by the two-dimensional surface S as follows.
Consider a curve dividing two portions of S, and denote by
v; the unit normal to this curve in the tangent plane to the
surface at x. As sketched in figure 3, Tv; is the traction
across the curve. The shear stress is the component of this
traction tangential to the curve and, intuitively, is the
response to the sliding of the two portions of the surface rela-
tive to each other. The component of T;v; normal to the curve
is the tension along the direction v;. Clearly, both components
depend on the direction along which they are computed.

If we label the centroids, as in figure 3, that correspond to
the capsomers surrounding x; counter-clockwise as j=1, ..., 6
and assume that the forces are balanced with f;=—f ;3 and
rj=—t .3 for j=1, 2, 3, then we obtain

1 1<
Ti(X) :m;fﬂ(@ﬁj :E;fij(@ﬁj # 0.

Note that this holds even though 3. ;f; = 0.

Indeed, T; is a symmetric tensor, and we denote its eigen-
values by Amaxis Amini- These are the so-called principal
stresses at x; and they correspond to the maximal and mini-
mal tension along all possible directions v. The lateral
stress A; at point x; is defined as the mean tension,

1
Ai = i()\max,i + )\min/i)/ (25)

and the maximum tangential shear stress at point x; is
given by

1
Tmax,i — E(/\max,i - )\min,z‘)/ (2.6)

which is attained along the direction forming a 7/4 angle with
the eigenvectors of T;. More explicit representations of the lat-
eral and maximum shear stresses are derived in appendix A.3.

2.2. Shape analysis and curvatures of the capsid
Lennard-Jones interactions are not designed to penalize curva-
ture and, as such, our approach is not appropriate for the study
of the stress distributions in capsids with sharp edges, such as
perfectly icosahedral shells. Hence, in order to validate our
results, it is useful to analyse the curvature of the capsids we
discuss here. For a surface the curvature is measured by
the so-called second fundamental form, whose invariants are
the Gaussian and mean curvatures. In broader terms, the
Gaussian curvature at a point measures how ‘peaky” a surface
is at that point, whilst the mean curvature can be viewed as a
measure of the bending of the surface.

The advantage of using these curvature measures is that
they can be generalized to triangulated surfaces, which is
the case here. We use the definitions of [16]: the Gaussian cur-
vature for a triangulated surface is a function that associates
to each node i of the triangulation (here the centroids of the
capsomers) the number

KiZZW—ZGI,
]

where | label the triangles with a vertex ini (J=1,..., 6 and
J=1,..., 5 for i a hexamer and a pentamer, respectively)
and 6 are the internal angles at i of these triangles (figure 4a).
The mean curvature of a triangulated surface is a function
defined on the edges of the triangulation, and is given in
terms of the angle between the normals of two triangles
that meet at that edge,
%

H,']' = 21’1']' sin >
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Figure 4. lllustration of the differences between the three discrete curvature measures used for the shape analysis: (a) Gaussian curvature, (b) mean curvature and

(¢) true curvature.
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Figure 5. Caspar—Klug models of virus architecture. The T-number identifies different ways of superimposing an equilateral triangle on a hexagonal grid; (a) the
examples T=1(h=1,k=0;red), T=3 (h=1, k=1; blue) and T=4 (h =2, k=1; green) are shown. (b) Each triangle is defined by its edge length, which is
characterized by steps between hexagonal midpoints along two lattice directions h and k at a counterclockwise 7z/3 angle; the case (h, k) = (2, 4), corresponding to
a T=28 dextro capsid, is shown. (c) Twenty such triangles define an icosahedral surface, and its embedding into a hexagonal grid shows the organization of
hexagonal faces, each representing six proteins in the viral surface lattice of the T= 28 capsids.

where i and j are adjacent vertices and 6 is the exterior dihedral
angle along the edge, defined by cos 6;;=mn, - .. Here, n; and n,
denote the unit normals to the triangles, pointing outward from
S (figure 4b). For an icosahedron, the Gaussian curvature is con-
centrated at the vertices and the mean curvature at the edges,
while for a sphere both curvatures are constant.

In this paper, we also use a different notion of discrete curva-
ture that measures the angle between the capsomers. It is an
analogue to the mean curvature, in that it is a function that assigns
to each edge a measure of the angle between the capsomers
(hexamers and pentamers) that meet at that edge. We define

I:Iij = 21’1‘]' sin%,

2
where i and j denote adjacent vertices as before and 6; is
defined by cos éij =y - np. Here, n; and 7, denote the unit
normals to the capsomers pointing outward from S (figure 4c).

We shall use this curvature measure only for the discrete sur-
faces derived from the PDB data, since the software Chimera
allows us to compute the orientation of the median planes of
the capsomers. For the surfaces generated by the Zandi-Reguera
procedure, there is no information about the orientation of the
capsomers, and the true curvature is therefore not defined.

3. Applications to non-quasi-equivalent viral
architectures in the PRD1-adenovirus lineage

In order to determine the influence of the tangential shear
stress on the structural features of the capsid, we perform a

case study of viruses in the PRD1-adenovirus lineage because
they cover capsid architectures that deviate from the quasi-
equivalence principle in Caspar-Klug theory in different
ways. Viruses in this lineage infect organisms from all three
domains of life and exhibit similar structural features, such
as a common capsid architecture and coat protein folds
[17]. These viruses either have two major CPs, whose
arrangement violates the Caspar-Klug paradigm in a
number of hexamers, as is the case for viruses with T =28
capsids, or they exhibit cementing and other minor stabiliz-
ing structural proteins (as in the T=21, T=25 and T=27
capsids) whose locations at special positions in the capsid
cannot be explained via Caspar-Klug theory. We address
here the hypothesis that the non-uniform structure of the
capsid could be a means of accommodating the excess
residual stress at special locations, and thus constitute an
evolutionary response to stress concentrations at specific
sites in the capsid shell.

3.1. Non-quasi-equivalent hexamers in T= 28 capsid
architectures

We first consider capsids formed from two different types of
major CPs that exhibit distinct types of hexamers in the
capsid surface. We direct our investigations to Haloarcula hispa-
nica SH1 virus (SH1), Thermus phage P23-77, Haloarcula
hispanica icosahedral virus (HHIV-2) and Haloarcula californiae
icosahedral virus (HCIV-1); see figure 1d—f. The overall organ-
ization of these capsids can be described in terms of Caspar—
Klug theory (figure 5b,c). According to the quasi-equivalence
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Figure 6. Maps outlining the protein positions in the T= 28 capsids in the PRD1-adenovirus lineage. (a—c) SH1, HCIV-1 and HHIV-2. VP4 and VP7 correspond to
tiles coloured in yellow and green, respectively. (a) The capsid building blocks: (top) a VP7 monomer; (bottom) a VP4-VP7 heterodimer. (b) (top) A capsomer bearing
three turrets; (bottom) a capsomer with only two turrets. () The two distinct local protein configurations are shown on two icosahedral faces. The hexamers with
two turrets (shaded hexagons) are located adjacent to (and at) the twofold axes. A twofold axis is indicated by a black ellipse, and threefold axes by black triangles.
(d—f) P23-77. VP16 and VP17 are coloured in yellow and green, respectively. (d) The capsid building blocks: (tap) a VP17 monomer; (bottom) a VP16 homodimer.
(e) The two different types of hexamers. (f) Two icosahedral faces: the three hexamers adjacent to, and at, the twofold axes are shaded.

Figure 7. Surface architectures of PM2, PRD1 and Sputnik. (a) Schematic of the subunit given by the major CP. (b) A sketch of the hexamer formed from three
copies of the major CP. () PM2: the locations of hexamers with respect to two icosahedral faces. Red dots denote the sites at which the cementing proteins P6 are
anchored to the lipid membrane underneath the capsid. The hexamers adjacent to the twofold axes are indicated by shading, and pentons coloured in magenta as
before. (d) PRD1: positions of the hexamers with respect to two icosahedral faces. The red lines indicate the locations of the tape-measure proteins that reinforce the
capsid. The hexamers adjacent to the twofold axes are shaded. (e) Sputnik: positions of the hexameric units with reference to two icosahedral faces. Red lines denote
the sites at which the cementing proteins are anchored to the (Ps. Three hexamers in symmetric positions around the threefold axes are shaded.

paradigm of Caspar & Klug [18], every protein in the capsid
has approximately the same environment, and the geometric
structure of a virus can be modelled by superimposing the
planar layout of an icosahedral surface onto a close-packed
hexagonal tessellation made of repeated copies of a single
protein. The way in which the icosahedron is superimposed
onto the planar tessellation determines the so-called
T-number, which is defined as T =h? + hk + k?, where h and k
are positive integers, one possibly being zero. This defines a
planar embedding of an icosahedral surface into a hexagonal
lattice as illustrated in figure 5b,c. T corresponds to the
number of proteins in the fundamental domain of the
representation of the icosahedral group in this construction.

The Caspar—Klug scheme, however, does not fully explain
the structures of the capsids studied in this section, as the
hexameric positions are occupied in distinct ways by two
different types of proteins that form dimers and monomers,
and are therefore not quasi-equivalent. In particular, the
capsids of SH1, HHIV-2, HCIV-1 and P23-77 have a pseudo
T=28 dextro surface lattice. However, the two types of CP
break the local symmetry of the hexamers. There are two
distinct ways in which this occurs (figure 6): the two types of
CP form a heterodimer and one of the CP types also occurs as
a monomer; or, one type of CP occurs as a homodimer and the
other one as a monomer. These are discussed as scenario 1
and scenario 2 below.

Scenario 1 (figure 6c). In HHIV-2, HCIV-1 and SH1, the
major CPs VP4 and VP7 form dimers (heterodimers in what
follows, because they are made of two different proteins;
figure 6a), which in turn combine to form pseudo-hexameric
capsomers with three or two towers [19]. All three viruses

have the same protein organization within the icosahedral fun-
damental domain, consisting of a copy of a penton protein at
the fivefold axis (magenta), 12 copies of VP4 (yellow) and
15 copies of VP7 (green). The two types of hexamers, one
with two towers and the other with three (called type II and
type III hexamers), are formed from heterodimers and mono-
mers as illustrated in figure 6b. Three-tower hexamers are
built from three copies of the heterodimer VP7-VP4, while
the two-tower hexamers are made by two heterodimers and
two unpaired VP7 subunits (VP4 bears the tower, while VP7
has none). Hexameric units are non-quasi-equivalent, because
they can have two different types of organizations (whilst, by
contrast, all hexamers in a classical Caspar—Klug capsid must
be indistinguishable). The 90 two-towered capsomers sit in
special symmetric positions at the twofold axes (shaded cap-
somers in figure 6c). Note that the type II hexamers are
adjacent to and located at the twofold axes and their structures
are distinct from those of the other hexamers. Type III hexam-
ers stick together by two strong peg-in-hole interactions at each
hexamer interface, while type II hexamers have many fewer
interactions. They are therefore perhaps better suited to absorb-
ing the build up of shear stress, thus explaining their
occurrence in specific positions in the hexagonal surface lattice.
We will show below that these hexamers indeed are located at
hot spots of tangential shear stress (red /orange in figure 7a—c).
Scenario 2 (figure 6f). The major CPs of HHIV-2 and
HCIV-1 are structurally similar, regardless of their scarce
sequence similarity, to the ones of Thermus phage P23-77
and the individual p-barrels of the double g-barrel major
CP in marine bacteriophage PM2, which is considered to be
the most ancient member of the PRD1-adenovirus lineage.
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Figure 8. (a—d) Distribution of the maximum tangential shear stress for the T= 28 capsids of (a) SH1, (b) HCIV-1, (c) HHIV-2, (d) P23-77 viewed along a twofold
axis. The concentration of shear stress at the three hexamers at, and near, the twofold axes in (a—c) is apparent (cf. figure 6). Recall that the capsid in (d) is given
by the distribution of points on a sphere instead of the actual PDB file. (e—h) Lateral stress for the T= 28 capsids of (e) SH1, (f) HCIV-1, (g) HHIV-2, (h) P23-77
viewed along a twofold axis. Black ellipses and pentagons denote twofold and fivefold axes, respectively. Notice that the maximum value of the shear stress is

almost twice the maximum value of the lateral stress (stress units are arbitrary).

We use P23-77 in order to illustrate the second layout
according to which CPs can be organized in the capsid
shell. The P23-77 capsid is made from pseudo-hexameric
units formed from two major CPs, VP16 and VP17,
that give the shell a typical crenelated appearance [20].
VP16 and VP17 have a high structural homology to the
major CPs in HHIV-2: in particular, VP17 contains two
domains that sit atop each other, as in VP4, while the small
VP16 contains just one domain. VP16 does not exist as a
single protein in the capsid, but its native state is that of a
dimer of intertwined sub-units. All the VP16-VP16 homo-
dimers in the capsid sit across the boundaries of the
hexameric units. These display four copies of VP16 (yellow)
and two of VP17 (green) that attach to one VP16 in the hex-
amer via a specific site (figure 6d). Since the dimer does not
have a turret domain, in contrast to VP17, all the hexameric
units bear two turrets each. However, their arrangement is
different in the hexamers in special symmetric positions at
the icosahedral twofold axes, in that the hexamers have
twofold rather than a lack of rotational symmetry (figure 6e).

Note that the major CPs of P23-77 have structural simi-
larities to those of SH1 in scenario 1 above, but the
arrangement of the turrets differs between the two capsids
[21]. In fact, SH1, besides having two-tower capsomers, also
has capsomers with three turrets, giving the shell a crenella-
tion different from that of P23-77. Even though the protein
organization within individual hexamers is different from
scenario 1, the capsid of P23-77 also has the second hexamer
type at the positions where the tangential shear stress concen-
trates (cf. figures 6f and 7d). Indeed, both capsid architectures
exhibit two types of hexameric protein clusters, with, as we
shall see, one type located at the positions of maximal
shear stress.

3.2. Capsid architectures with auxiliary proteins

We next consider those members of the lineage for which the
arrangement of the major CPs satisfies the quasi-equivalence
principle, but for which minor or cementing proteins are
present that are not explained by the Caspar-Klug scheme.

The first example we consider is the marine lipid-contain-
ing bacteriophage PM2 (figure 1a), which is an icosahedral
pseudo T=21 virus in the PRD1-adenovirus lineage [22].
The major CP P2 forms the capsomer, which corresponds to
three copies of interlocking subunits, each of them displaying
a double g-barrel fold. This organization gives the hexamer
pseudo-sixfold symmetry (figure 8a,b).

Protein P1 contributes to the pentons at the fivefold axes,
while P3 to P10 are membrane-associated proteins connecting
the capsid to the lipid bilayer that encloses the genome. In
particular, the arrangement of the proteins P6 and P3 obeys
icosahedral symmetry and could help stabilize the capsid.
P6 is located adjacent to the two hexamers closest to the
twofold axes (figure 8c).

As a second example, we consider PRD1 (figure 1b),
which gives the name to the lineage. PRD1 is a bacteriophage
containing a membrane that encapsulates a double-stranded
DNA. The major CP P3 coincides with the hexamers and
arranges in a pseudo-T =25 shell, whereas protein P31
forms the pentamers at the fivefold axes (figure 84). The
remarkable feature of this capsid is the presence of 60
copies of a so-called tape-measure protein (P30), which
extends from the pentons along the edge of the facets towards
the twofold axes as shown in figure 8d, thus stabilizing the
capsid [23,24].

The third example is the pseudo T=27 capsid of the
Sputnik virophage (1c), which is formed from 12 pentons
sitting at the icosahedral fivefold axes and by several
pseudo-hexameric capsomers, displaying three copies of a
double p-barrel monomer as in the previous examples.

Here the multiple copies of a minor CP are located at the
boundaries of the hexamers [25], as shown in figure 8e.

4, Results

Structural features that cannot be explained with Caspar and
Klug’s quasi-equivalence theory present themselves in two
principally different ways: either via symmetry breaking
within hexamers or via additional structural proteins that
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Figure 9. Gaussian, mean and true curvatures of the capsids of PM2, PRD1 and Sputnik. Notice the concentration of mean and true curvature at the icosahedral
edges of PRDT and PM2, respectively. The Gaussian curvature peaks at the fivefold axes, as expected. Notice that the icosahedral faces are almost flat (dark blue)
only for PRD1. The distribution of curvature of the Sputnik is compatible with the shape of a pentakis-dodecahedron. The Gaussian curvature is measured in radiants,

while the mean and true curvature are measured in angstrom.

stabilize the capsid. These two distinct types of exceptions to
quasi-equivalence theory require a different interpretation of
our results.

In §4.1, we focus on capsids made of two different major
CPs, such as those described in §3.1. In these cases, hexamers
have similar overall shapes but distinct internal compositions
owing to the different ways in which monomers are arranged.
As the Lennard-Jones model cannot account for the internal
structures of the hexamers, our computed stress distribution
only captures the arrangement of the hexamers in the capsid,
and not their different material responses. However, since the
two types of hexamers have approximately the same shape,
the stress distribution we compute—notwithstanding the sim-
plicity of the model—is a reasonable approximation of the
actual stress distribution in the capsid due to the overall geo-
metry (in terms of the T-number of the capsid). The fact that
the hexamer structure is different exactly at those points
where there is a high stress concentration suggests that this
different internal structure is a response to the need of the hex-
amers to accommodate the excess stress, and points to a strong
correlation between structure and residual stress.

In §4.2, we consider capsids in which all hexamers have the
same structure, thus strictly following Caspar-Klug's quasi-
equivalence theory in the capsid, but in which additional
reinforcing proteins, such as those introduced in §3.2, occur
that are not explained by Caspar-Klug theory. However,
since the computed stress distribution is a function of the geo-
metry of the capsid, it already takes into account the

modification of the capsid geometry due to the effect of the rein-
forcing proteins. Therefore, concentration effects in this
distribution cannot be used to argue that these are a response
to Lennard-Jones forces. Indeed, care has to be taken when
interpreting the results, and we adopt the following strategy:
as experimental data for the capsid in the absence of the reinfor-
cing proteins are not available, we compare the stress
distribution computed based on the structural data, i.e. in the
actual capsids, with spherical and icosahedral models of cap-
sids. A comparison reveals that there is a stress reduction in
the actual structures, allowing us to conclude indirectly that
the auxiliary structural proteins result in stress reduction in
the capsid shell.

4.1. Non-quasi-equivalent hexamer positions in

response to shear stress
In this subsection we focus on the T = 28 capsids of SH1, HCIV-
1, HHIV-2 and P23-77; see §3.1. In order to support our conjec-
ture that the internal structure of the hexamers is a response to
the concentration of the shear stress, we computed the maxi-
mum shear stress and the lateral stress for the capsid
configurations obtained from the PDB files, as illustrated in
figure 7. Since, for the P23-77 capsid, there is no PDB file avail-
able in the literature, our computations for that capsid were
instead based on the spherical codes with icosahedral sym-
metry of Hardin et al. [26]. According to Aznar et al. [8], the
best choice among the spherical codes is given by the
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Figure 10. Histograms of the stress distribution for the T= 21 capsid, showing the number n of capsomers in each interval of stress values (in arbitrary units). Note
that the actual capsid (a) exhibits a lower stress concentration than the corresponding icosahedral (b) and spherical (c) shapes.

arrangement of points on a sphere that maximizes the volume
of their convex hull, since these point sets [26] approximately
minimize the Lennard-Jones energy. This assertion has been
verified numerically in [8] via Monte Carlo methods, and we
have also independently tested it. The high sphericity of the
P23-77 capsid is indeed implied in table C1 of Aznar ef al. [8]
(form factor 0.61) and confirmed in, among others, [27].

Note, moreover, that all T = 28 capsids studied here exhibit
a high degree of sphericity. This is supported by the curvature
analysis in figure 13: the Gaussian curvature concentrates at the
fivefold vertices that protrude from the capsid, the faces are not
flat and the mean curvature does not strongly concentrate at
the icosahedral edges, as would be the case in perfectly icosa-
hedral capsids (figure 14). This validates our approach based
on Lennard-Jones forces. In spherical surfaces, the curvature
effects are smoothed out over the whole surface, so that Len-
nard-Jones interactions are appropriate to capture the
nearest-neighbour interactions between the capsomers that
involve compression or extension tangential to the surface.

Our first main result is that the values of the shear stress are
consistently much larger than the values of the lateral stress, as
shown in table 1. This confirms that the tangential shear stress
should be more important than the lateral stress for the struc-
ture and mechanical properties of the capsid. Hence, it is
reasonable to investigate the distribution of the tangential
shear stress in relation to the positions of capsid features violat-
ing quasi-equivalence. The plots in figure 7 show the stress
distributions, where the colour code indicates the magnitude
of the stress. In all cases, the maximum shear stress concen-
trates at the hexamers with a different internal structure,
suggesting that such deviations from quasi-equivalence
might occur as a means of counteracting shear stress.

4.2. Auxiliary proteins breaking icosahedral capsid
symmetry

In this subsection, we focus on the T'=21, 25 and 27 capsids of
PM2, PRD1 and Sputnik; see §3.2. For these capsid architec-
tures, the correlation between the stress and the deviation
from quasi-equivalence is much weaker than for the T=28

capsids. We therefore investigate in these cases whether the
positions of the additional structural proteins correlate with
bending. We first focus on the T =21 capsid of PM2. The curva-
ture plots (figure 9—top row) reveal that the Gaussian
curvature concentrates at the fivefold axes, as expected, while
the mean curvature is indeed larger at the icosahedral edges
than at the faces, even though it does not fully vanish there.
This means that the actual capsid shape is neither spherical
nor icosahedral, but an interpolant between these extremal
options. Interestingly, the true curvature concentrates more
strongly than the mean curvature at the icosahedral edges,
while it is uniform on the icosahedral faces. Since the true cur-
vature measures how much two neighbouring hexamers are
bent relative to each other, this suggests that the cementing pro-
teins sitting at the twofold axes play the role of reinforcing the
hexamer-hexamer attachment at sites where they tend to be
strongly bent.

The analysis of the stress distributions in figure 15 does not
show a significant stress concentration at the twofold axes.
However, there is a clear reduction in the overall stress relative
to the idealized icosahedral and spherical models (figure 10).
The histogram representation of the stress shows that the
actual capsid structure of PM2 has fewer or no sites at which
the stresses take extreme values, since the tails of the stress dis-
tribution are shorter for PM2 than for the icosahedral and
spherical structures. This indicates that stress reduction may
be an important determinant of capsid shape.

For the T =25 PRD1 structure, the mean curvature concen-
trates at the icosahedral edges, suggesting that the shape is
close to icosahedral (figure 9, middle row). However, both the
Gaussian and the mean curvatures are invariant under the
full (120 elements, also containing reflections) icosahedral
symmetry, as in a conventional T =25 Caspar—Klug structure.
The true curvature, however, is not reflection-invariant. The
hexamers bend, following the same pattern as the tape-measure
protein that is located at the inner capsid surface. Figure 84
suggests that the positions of the tape-measure proteins may
be a response to curvature stresses. In addition, the shear
stress concentrates at the twofold axes, again suggesting a poss-
ibly strong correlation with the positions of the tape-measure
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Figure 11. Histograms of the stress distribution for the T = 25 capsid, showing the number n of capsomers in each interval of stress values (in arbitrary units). Note
that the actual capsid (a) exhibits a lower stress concentration than the corresponding icosahedral (b) and spherical (c) shapes.
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Figure 12. Histograms of the stress distribution for the T= 27 capsid, showing the number n of capsomers in each interval of stress values (in arbitrary units). Note
that the actual capsid (a) exhibits a lower stress concentration than the corresponding icosahedral (b) and spherical (c) shapes.

proteins. The latter could therefore play a role in reinforcing the
capsid in the regions that must support higher stresses. Further,
we observe a substantial stress reduction in the actual structure
relative to the icosahedral and spherical capsids (figure 16), as
well as an overall reduced stress concentration (figure 11).
Finally, in the T = 27 capsid of Sputnik, there is a substantial
concentration of the true curvature along three bands joining
the threefold axes to the fivefold axes. These appear to correlate
with the positions of the cementing proteins (figures 9, bottom
row and 8¢). Hence, the same considerations as before also
apply here. Even though the distribution of the stresses does
not directly correlate with the locations of the cementing
protein (figure 17), we again observe the absence of strong
loci of stress concentration in the model of the Sputnik capsid
derived from the PDB data, in contrast to the idealized icosahe-
dral and spherical models (figure 12). As before, this suggests
that the presence of the cementing proteins, whose effect on
capsid architecture is taken into account implicitly via the

PDB data but is absent in the idealized models, makes a
contribution to stress reduction in the capsid.

5. Discussion

Our model suggests a deep connection between the mechan-
ical properties of viral capsids, in particular the distribution
of the residual stresses, and the structural organization of the
CPs, consistent with earlier studies [6,8]. Our analysis reveals
that tangential shear stress is particularly important for the
T =28 viruses in the PRD1-adenovirus lineage, suggesting a
possible explanation for the occurrence of different types of
hexamers with distinct types of internal organization at
specific locations in the capsid. In particular, the shear stress
provides a possible explanation for the observed symmetry
breaking and deviations from Caspar-Klug’s quasi-equival-
ence theory. Interestingly, the T'=28 viruses discussed here
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Figure 13. Gaussian, mean and true curvatures of T = 28 capsids. The lack of flat faces in comparison with the curvatures of the idealized spherical and icosahedral
structures in figure 14 suggests that the shape of the capsid is better approximated by a sphere than by an icosahedron.
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Figure 14. Comparison of icosahedral and spherical geometries for a T= 28 structure. Gaussian curvature for (a) icosahedron and (b) sphere; mean curvature for

(c) icosahedron and (d) sphere (see also figure 13).

Table 1. Comparison between the maximum shear stress and the
maximum lateral stress for the T=28 capsids. The maxima are computed
over all capsomers.

SH1 HCIV-1 HHIV-2 P23-77

lateral stress: 2.9013 1.7044 1.6271 3.5817

max; |A;|
shear stress: 3.8703 43264 43217 43881

 max(Tna,)

are the only known viruses displaying this pseudo T-number
capsid architecture, suggesting that only viruses with distinct
types of CPs can realize such capsid geometries, owing to
shear stress.

For the other viruses in the same lineage, which are charac-
terized by the occurrence of additional protein components
stabilizing the capsid, there is a clear relation between the
decrease in residual stress and the presence of these additional
proteins. However, contrary to the T=28 case, our model
cannot be used directly to explain the location of the stabilizing
proteins. This is because, in the PDB data of the atomic
positions of the CPs that form the basis of our models,
the impact of such components on capsid organization is
implicitly contained. In this case, a comparison of our models
derived from the experimental PDB data and the idealized
models lacking such effects from additional components has
enabled us to probe their impacts indirectly. This again
revealed a possible role of these auxiliary structural proteins
in stress relief.

Recently, a new classification scheme for virus structure has
been introduced [28]. This models capsid architecture via
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Figure 15. Stress distributions for 7= 21 capsid architectures. (a—c) Distribution of the maximum shear stress for the PM2, icosahedral and spherical structures,
respectively. (d—f) Distribution of the lateral stress for the same structures. Notice the reduction of the stress in the models based on actual capsid data relative to

the purely theoretical structures.

Figure 16. (a—c) Stress distributions for T= 25 capsid architectures: distribution of the maximum shear stress for the PRD1, icosahedral and spherical structures,
respectively. (d—f) Distribution of the lateral stress for the same structures. Notice the reduction of the stress in the models based on actual capsid data relative to
the purely theoretical structures, as well as the concentration of shear stress at twofold axes.

a wider range of surface lattices, and contains the capsid
geometries of Caspar-Klug theory as special cases. This
extended scheme is in particular required for viruses with cap-
sids formed from more than one type of CP. For example, this
includes capsid architectures in which structural proteins
occupy not only hexameric positions as in the examples dis-
cussed here, but there are also smaller CPs occupying
trimeric positions. In herpes simplex virus 1 (HSV-1) [29], for
example, these trimeric positions are occupied by heterotri-
mers, consisting of a dimer and monomer formed from
different types of minor CPs. This local symmetry breaking
within the heterotrimer is akin to that of the hexameric
positions discussed here. It is therefore likely that the stress dis-
tribution across the capsid could also explain such heterotrimer
arrangements. This would also be consistent with the fact that
the hexamers in HSV-1 are identical and stabilized by another

structural protein, and therefore cannot absorb the stress as in
the examples discussed here. The proteins at the trimeric
positions, on the other hand, would be able to do this.

In any case, mechanical stress provides a possible expla-
nation for why such viruses code for more than one type of
CP exhibiting heterogenic hexamers or, in the case of HSV-1,
trimers, despite the additional demands on coding capacity.
It appears that the need to relieve mechanical stress, in particu-
lar the concentration of tangential stresses, could be a driver for
the evolution of such additional structural proteins, outweigh-
ing coding costs. Our analysis also begs questions regarding
the evolution of viral capsid architectures over larger time
scales. If mechanical stress is an evolutionary pressure impact-
ing on the types and numbers of the CPs, as our study suggests,
then it is perhaps not surprising to see only a limited number of
different CP morphologies. Phylogenetic classification based
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Figure 17. (a—c) Stress distributions for T= 27 capsid architectures: distribution of the maximum shear stress for the Sputnik, icosahedral and spherical structures,
respectively. (d—f) Distribution of the lateral stress for the same structures. Notice again the reduction of the stress in the models based on the actual capsid data

relative to the purely theoretical structures.

Table 2. Inter-capsomer distances: oy, and oy, correspond to the average distances in K between adjacent hexamers and pentamers, respectively.

SH1 HCV-1 HHIV-2
O 85.4080 86.0775 85.9620
Oy 72.3427 73.1553 74.0641

on CP homology irrespective of the level of sequence hom-
ology, as proposed by Bamford et al. [30], therefore captures
such essential evolutionary drivers.
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Appendix A

A.1. Equilibrium inter-capsomer distances

The values for o; are assigned as follows: for the model
based on the PDB data, and i, j corresponding to distinct
hexamers, these are the averages, over all hexamers,
of the distances between the centroids of adjacent capso-
mers, ie. =0y =1/2M)3", 15 Aplxp — x|, where
M=N(N-1)/2-60 is the number of links between adjacent

P23-77 PM2 PRD1 Sputnik
85.6209 72.9759 71.8629 76.1052
76.8300 63.4528 64.8080 71.1863

hexamers. For i, j corresponding to a hexamer and a pentamer,
on the other hand, we compute the minimum distance
between the pentamer centroid and the centroids of the adja-
cent hexamers, i.e. 0j:=0p,=min,<i24>121%, — ;1. For the
spherical and icosahedral models, the capsomers are approxi-
mated by spheres with different radii according to whether
they are pentamers or hexamers. Following [6], we assume
that the equilibrium distances between the centres of two adja-
cent capsomers are the sum of the radii of the corresponding
inscribed spheres. Taking the computed value of oy;,/2 for
the radius of a hexamer, then o;; =0y, and o= (1 +A)oy,/2,
for i, j both hexamers or a hexamer/pentamer pair,
respectively, and A = tan (z/6)/tan (7/5) (table 2).

A.2. Tangential projections

When S is a sphere or an icosahedron, the unit normal to S is
well defined away from the edges and corners. However,
when S is a triangulated surface, the outward unit normal
to S, which in turn defines the tangent plane to S, is only
defined on the triangular faces. In that case, we choose a
different approach: for each capsomer, we compute its habit
plane from the PDB data and define the outward unit
normal to S at the capsomer centroid as the unit normal to
the habit plane of the capsomer.

In any case, denoting by #; a choice of the outward unit
normal to S at point x;, the tangential part of the stress is
defined to be T = P,-T T;P;, with P,=1—-mn;® n; the projection
onto the plane orthogonal to #;.
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A.3. An alternative expression for the lateral and
maximum tangential shear stresses

In order to obtain a more explicit representation of the maxi-
mum shear stress, fix a basis (Ej, E;,) for the tangent plane to
S at point x; and represent T; in this basis by the matrix

(az‘ ﬁi)

Bi i)

with a; = (T; - Ejn)?, v = (T;-Ep)*, B = (T; - Ejn)(T;i - Epp).
The tangential shear stress across the surface curve with
unit normal v; = cosOE; ; + sinbE; , is given by the expression

. 1
v T = B;cos (26) + E(y,- — ;) sin (26),

where vf =—sin6E;; + cos 0E;>. Then the maximum shear
stress is computed as

1 7
Tmax,i — E 4312 + (71‘ - ai)zz

coinciding with the expression given in [6,8] for a;=y;. The
direction of the line across which the tangential shear stress
is maximal is defined by the angle 6,,,y,; such that:

@) for a;<y;, fi>0, Omax,i = ! arctan ((y; — a;)/28,);
(i) for i<y, Bi<0, 6max,; = sarctan((y; — a)/2B) +
(m/2);
(iii) for a;>7;, >0, Omax,i = yarctan ((y; — a;)/2B)) + m;
(iv) ;> 7, B;i <0, Omax,i = 3arctan ((y; — a;)/2B) + (/2).

A.4. Invariance under icosahedral symmetry
We prove here that, under suitable assumptions on the inter-
action energy, the lateral stress and the maximum tangential
shear stress have icosahedral symmetry as specified below.
We say that a configuration X is icosahedral if it is invar-
iant under the icosahedral group Z C SO(3). In this case, we
can characterize the configuration as the union of orbits of Z.
The action of Z can then be expressed in terms of a permu-
tation representation as follows. For every Q € Z, there
exists a permutation p on N elements such that

Qxi:xp(i)r vi=1,...,N. (AT

We write this permutation representation as Z — X C Sy,
with Sy the permutation group on N elements. Note that
the 12 distinguished points at the fivefold axes representing
the pentamers must belong to a single orbit.

Let Vj;(r;j) be an interaction energy between points x;
and x, depending only on their distance (not necessarily
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