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Abstract: In electrode-based microfluidic devices, micro channels having narrow cross sections
generate undesirable temperature inside the microfluidic device causing strong thermal distribution
(joule heating) that eventually leads to device damage or cell loss. In this work, we investigate
the effects of joule heating due to different electrode configuration and found that, electrodes with
triangular arrangements produce less heating effect even at applied potential of 30 V, without
compromising the performance of the device and separation efficiency. However, certain electrode
materials have low thermal gradients but erode the channel quickly thereby affecting the reliability
of the device. Our simulation also predicts optimal medium conductivity (10 mS/m with 10 V) for
cells to survive inside the channel until they are selectively isolated into the collection outlet. Our
investigations will aid the researchers in the designing of efficient and reliable microfluidic devices to
overcome joule heating inside the microchannels.

Keywords: microfluidics; DEP based devices; joule’s heating; device reliability; cell separation

1. Introduction

The synergies between electrokinetics and dielectrophoresis offer unique capabilities
to drive the particles or cells in microchannel by inducing applied electric field externally.
Dielectrophoresis (DEP) is a technique to manipulate cells in precise ways which enables
label-free sorting of cells from heterogenous mixtures of population and enables scientific
inquiry that cannot be addressed using conventional methods [1,2]. However, joule heating
is often observed in microchannel in electrode-based microfluidics device such as DEP.
When electric field is applied to induce particle motion in a microchannel, the electric
current passing through the medium having conductivity results in joule heating [3].
Numerous attempts have been made to understand, how generation of joule heating can
be positively utilized in electrode-based devices for cell manipulation and analysis [4–15].
However, the driven electric field can cause catastrophic side effects inside a microchannel
due to the heat dissipated in the medium through which electric current is passed. Since
microfluidic device has very narrow channel geometry and due to the fact that electrical
resistance is more as we decrease the channel cross section, more heat is produced inside
a channel with increased resistance. This results in temperature gradient formation in
the fluid present inside the microchannel. This elevated temperature may denature the
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biological entities present in the samples and also makes the liquid properties non-uniform
such as its electrical conductivity, viscosity, and thermal conductivity of the liquid [16]. The
variations and disturbances resulting from joule heating may inevitably affect throughput
and reliability of the DEP-based devices [17].

Therefore, it is important to study the joule heating to understand its effects in device
performance and cell health [18], especially, in applications to cell sorting and manipulation,
by varying various parameter constraints in order to come out with the optimal design
and efficient operation of microfluidic systems. Several DEP-based microfluidic devices
were developed by focusing on various design constraints, such as electrode geometries,
channel geometries to investigate the efficacy of sorting [19–23]. The potential impact of
joule heating on device reliability and performance have been widely studied and demon-
strated by several researchers [24–28] in applications to cell manipulations and isolations.
However, the studies do not demonstrate the effects of different parameters that actually
contribute to joule heating effect. Therefore, in our study, we found that, the electrode
arrangements and the choice of electrode geometries generally requires large applied po-
tentials to produce sufficient DEP force for effective separation of cells/particles [4,29,30].
These large potentials create strong electric field gradients for particle separation, but at
the same time, it creates strong joule heating region.

An electrode with tip edges (triangular electrode) requires less applied voltage as
compared to flat rectangular/square electrode edges, that can generate a strong DEP force
required for effective cell separation [31,32]. However, it creates a strong thermal gradient
across the micro channel, especially around the electrode tip thereby creating strong joule-
heating region. The exposed cells in these regions eventually get exposed to this high
temperature which causes damage to the cell if the threshold temperature exceeds over
316 K [33]. We observed that, there are various factors that lead to joule heating problem in
microfluidic devices such as electrode geometry, electrode potentials, substrate materials,
and conductivity of the medium. Therefore, in this study, we attempt to explore the effects
of these parameters which can provide optimal solution to avoid joule heating effects
thereby improving device performance and reliability with no or less cell damage. In
our findings, we observed the effects of temperature on the cell when it is exposed to the
region of strong thermal gradient at various positions in a microchannel (initial, center,
and rear end). The thermal impact on cells and its survival time provides a comprehensive
understanding about cell behavior. We explore the optimum design constraints to ensure
effective separation and cell viability in DEP-based microfluidic devices. This study will
enable the future researchers to develop a reliable and effective DEP device and other
electrode-based microfluidic devices for various bio clinical applications.

2. Materials and Methods
2.1. Theory of DEP

DEP force is generated due to particle exposure to non-uniform electric field. The
amount of force experienced by the particle is dependent on various parameters like applied
potentials, conductivity of the medium, and size of the particles [34] (see equation 1). The
device geometry is illustrated in Figure 1a, which shows that the cells of five different
types can be selectively deflected to distinct collection outlets using DEP force generated
through a series of triangular electrode arrangements at one side of the channel(+V) and flat
electrode at the other side of the channel (-V). The simulation of separating five different
cell types (25, 20, 15, 10, 7 µm) into different collection outlets is shown in Figure 1b.

FDEP(i) = 2πε0εmRe[fCM (ω)] R3 ∇E2 (1)

where “εm” is the relative permittivity of the suspending medium, R is the radius of the
particle, ∇E2 denotes gradient of the electric field, Re[fCM (ω)] denotes the real part of the
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Claussius Mosotti [CM] factor that determines effective polarizability and is expressed
as[35],

fCM

(∼
ε p,
∼
ε m

)
=

∼
ε p −

∼
ε m

∼
ε p + 2

∼
ε m

(2)

where
∼
ε is the complex permittivity and defined as,

∼
ε = ε− j

( σ

ω

)
(3)
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Figure 1. A microfluidic chip design with five outlets arrangements was successfully simulated to separate multiple targets 
in a single run. (a) The schematic illustration of five outlets device showing the dimensions with triangular electrodes 
arrangements in the side wall. (b) Simulation of particle streamlines reveals that cells of distinct sizes (25, 20, 15, 10, 7 µm) 
were selectively collected in target reservoirs. (c) Simulations verify that, strong joule heating was observed in center 
region of the channel where electric field gradient is very strong. 
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Figure 1. A microfluidic chip design with five outlets arrangements was successfully simulated to separate multiple targets
in a single run. (a) The schematic illustration of five outlets device showing the dimensions with triangular electrodes
arrangements in the side wall. (b) Simulation of particle streamlines reveals that cells of distinct sizes (25, 20, 15, 10, 7 µm)
were selectively collected in target reservoirs. (c) Simulations verify that, strong joule heating was observed in center region
of the channel where electric field gradient is very strong.

Therefore, CM factor can be written as,

fCM
(
εp, σp, εm, σm, ω

)
=

(
εp − εm

)
+ j/ω

(
σp − σm

)(
εp + 2εm

)
+ j/ω

(
σp + 2σm

) (4)

The CM factor is dependent on the complex permittivities of the particles and the
suspending medium.

2.2. Numerical Modeling for Joule Heating

With reference to equation 5, joule heating in the device is majorly due to applied
potentials, field distribution, and conductivity. Therefore, change in any of these parameters
has great influence on the thermal distribution across the microchannel of the device. In our



Materials 2021, 14, 5819 4 of 9

study, we observed the effects of strong temperature distributions at the center region (200
µm from electrode wall, near electrode region), while at initial and final region, the effects
are only minimal (Figure 1c). The effect of temperature at initial, final, and center regions
was simulated for varying potentials and we found that, temperature distribution at the
center region is very strong and hence the joule heating is more at this region. Therefore,
we have considered the center region as the main region of interest throughout our study.

If “σ” is the conductivity of the buffer solution between the positive and negative
electrode then the heating power per volume V depends linearly to conductivity of the
suspending medium (σ) and to the square of the electric field strength and is expressed
as [36],

q =
Pheat

V
= σ . E2

rms ∝ σ . U2
rms (5)

where “rms” denotes root mean square value, “U” represents the voltage applied be-
tween the electrodes. The amount of heat generated (Pheat) is equal to the amount of heat
dissipated under the steady state condition [3]. The electric field (Erms) depends on the
conductivity of the suspending medium (σ) which is greatly affected by the change in
temperature and is expressed as,

σ = σ0[1 + α(T − T0)] (6)

Here, “σ0” refers to the conductivity at a reference temperature T0, and α is the
temperature coefficient of the suspending medium. The Joule heating-induced temperature
field is governed by the energy equation expressed as [37],

ρ{p

(
∂T
∂t

+
→
uB ∇T

)
= k1∇2T + λ(T)(∇φ)2 (7)

where {p and kl represents the specific heat and thermal conductivity of the buffer solution,
respectively, and they are considered to be constant (i.e., independent of temperature).

2.3. Device Design and Simulation Studies

The blood cells mixtures are flown from of the inlets (inlet 2), while the buffer solution
is flown through inlet 1 which will squeeze the cells from inlet 2 close to the electrode
region [38]. The device has a channel length of 1400 µm and channel width of 300 µm.
The electrolyte (PBS solution) in the ratio of 1:9 with respect to blood samples, was used
throughout the simulation. The device has a thickness of 80 µm as seen in Figure 1a. Electric
potential is applied on either side of electrode arrangements made at the channel wall for
generating non-uniform electric field. +V is applied on the one side of the channel wall
(triangular electrode) and –V is applied on the other side of the channel wall (flat electrode).
Under the application of electric field, cells of different sizes experiences different dep
forces [18] enabling them to selectively deflect cells to distinct collection reservoir.

COMSOL Multiphysics simulation software was used to simulate our study for
realizing temperature distribution and joule heating effects for device reliability. Joule
heating modelling requires coupling of following three physics interfaces (Fluid Flow,
Electric Current, and Bio-Heat transfer in fluids):

(i) Electric current interface is used to generate non-uniform electric field within the
microchannel.

(ii) (Bio-heat transfer interface in simulation is used to generate the thermal distribution
on the blood cells with boundaries set to room temperature of 290 K. Laminar flow
interface is used to enable fluid flow at desired velocity from both inlets (inlet 1 and
inlet 2).

(iii) A time-dependent solver is used to solve electric field and thermal distribution that
provides understanding of the results through joule heating simultaneously.
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3. Results and Discussions

The main contribution of this paper is to identify optimal combinations of electrode
geometry, applied potentials, electrode materials, and buffer conductivity that will lead
to effective separation of particles/cells while observing less joule heating effects, in the
case of DEP-based cell sorting device. Though our simulation results will only predict the
optimal solution for DEP based device, the efficiency of our proposed solution may be
further explored by experimental demonstration and other electrode-based device falling
under this regime.

3.1. Contribution of Electrode Shapes in Producing Optimum Joule Heating

We performed simulation to investigate the effects of joule heating on various electrode
shapes (triangular, square, rectangle, and semi-circular geometry) to come out with efficient
design for reliable DEP separation device. The reliability of the device performance was
found to be much better when triangular electrode arrangements are employed. From our
study, we found that, complete cell separation can be easily achieved with time period of
1 s (time for samples to flow from inlet to outlet). Using triangular shaped electrode with
applied potential of 5 V, we observed much stronger DEP forces compared to square and
rectangular while generating low thermal gradient at the center region (the temperature
measured was relatively low as close to 310 K (Figure 2a,e), where the cells managed
to survive for at least 1.45 s inside the device, which is sufficient enough for effective
separation). However, under the same voltage, the temperature for semicircular, square,
and rectangular electrodes was observed to be 322 K, 327 K, and 330 K (Figure 2b–d)
which may eventually cause cell damage as it is greater than the threshold temperature
(>316 K) for cell survival. We further noticed that the device with triangular geometry
remains reliable for separation, even with applied potentials varying between 10 V and
25 V (Figure 2e). However, with other electrode geometries, beyond 10 V, the temperature
drastically increases over 600 K (which is above the threshold value of the cell withstanding
temperature) and cell survival time is only 0.3 s, 0.1 s, and 0.04 s respectively (much less
than the required time for flow from inlet to outlet), which may denature the cell condition.
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Figure 2. Simulation studies representing contribution of joule heating effects on various electrode shapes. (a) Triangular-
shaped electrode generates fewer thermal gradients while maintaining reliable separation. The legend graph shows,
temperature is around 310 K at the applied potential of 10 V. The insets are magnified views of electrode geometries showing
the dimensions of the electrodes. (b) With same potential (10 V), semi-circular shape electrodes generate strong electric
field leading to high temperature distribution inside the channel (around 322 K). (c) The square shaped electrode generates
electric field more than semi-circular geometry (above 327 K). (d) Rectangular shaped electrode geometry produces even
more electric field than square electrode (330 K) at 10 V. (e) The comparison plots reveal that triangular electrodes remain
attractive even if applied potential is varied between 5 and 15 V, to keep the survival time of cells within threshold as
compared to other electrode geometry, however increasing voltage beyond 15 V produces high joule heating (temperature
beyond 400 K damages cell).
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3.2. Choice of Electrode Materials Affects Reliablity of the Device

Not only the shapes, the choice of electrode materials also plays a key role in joule
heating generation inside a microchannel. Therefore, our study was extended to investigate
the effect of different electrode material which contributes to device performance and
reliability. Materials such as gold, copper, silver, nickel, platinum, and aluminum are mostly
used as electrode in microfluidic devices [39]. Since effective separation at low voltage
of 5 V was demonstrated in previous section (Section 3.2), the simulation was performed
on different electrode materials at this voltage range and change in temperature on each
electrode was observed. The performance of the electrode for multiple runs was evaluated
at 3 s. When the voltage was increased to 10 V, the device temperature increased to above
400 K. We observed ~10 K temperature variation in all the other electrodes compared to
copper (see Figure 3a). Though copper electrode showed the least temperature distribution
across the channel but due to electrode–fluid interaction, there is additional increase in
device temperature when copper materials is used [14] and this will degrade and destroy
the channel compared to gold and platinum. However, at 50 V, the temperature increases
above 2000 K, which is quite high and may eventually lead to device failure. Further, we
also observed that, change in different substrate materials causes variation in temperature
distribution inside the microfluidic device that will ultimately contribute to joule heating
effects. From Figure 3b, we noticed that glass substrate has the potential to generate the
least amount of joule heating of 310 K compared to other substrate materials (PDMS,
PMMA, polyimide).
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distributions eventually affecting reliability and performance of the sorting system. (a) Simulation graph reveals that copper
electrode has least thermal distributions (less joule heating) even at the applied potential of 10 V, however increasing the
potential erodes the channel quickly compared to gold and platinum. (b) At the applied potential of 10 V, only glass has
very least thermal distribution and joule heating effects for effective performance of the device.

3.3. Change in Buffer Conductivity Affects Survival Time of the Cells

Our observation also provides a solution to optimize buffer conductivity of the
medium for effective and reliable separation. The buffer conductivity varied from 10 [mS/m]
to 100 [mS/m] to understand the effects of joule heating and reliable cell separation. We
found that, thermal distribution inside the channel increases as conductivity and poten-
tial increase (see Figure 4a). However, with buffer conductivity between 10 [mS/m] and
30 [mS/m] and applied potential of 5 V, the temperature generated inside the channel is
only 300 K (below threshold) and the survival time of cells inside the microchannel is found
to be 1.45 s (Figure 4b). These values are sufficient for the cells to selectively deflect to
target outlets without any loss or damage. When buffer conductivity is increased to higher
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values (40 [mS/m] to 100 [mS/m]), the temperature experienced by the cells increases
over 325 K to 400 K (above the threshold value), causing cellular damage. To sort multiple
cell types which require using high voltages (10 V, 15 V, 25 V, and 40 V), we found that,
survival time of cells are found to be decreasing (0.3 s, 0.15 s, 0.04 s, and 0.1 s respectively)
(see Figure 4c), which is quite less time for the cells to flow out of the device timely and
eventually causing cellular damage.
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sign efficient and reliable microfluidic devices where joule heating is the main concern 
inside a microchannel. 

Figure 4. Simulation studies showing the effect of temperature at different conductivity level of the medium [10 mS/m
to 100 mS/m]. (a) The plot of the temperature variation inside the channel reveals that, increases in conductivity causes
increase in temperature at an applied potential of 5 V to 15 V. (b) While keeping buffer conductivity at 10 [mS/m] and
applied potential of 10 V, the survival time of cells inside micro channel is found to be 1.45 s. This duration is sufficient
enough to selectively deflect the cells to target outlets. (c) When the buffer conductivity is increased from 15 mS/m to
55 mS/m, the survival time is reduced to 0.3 s–0.1 s, this duration is very less for cells to survive inside the channel and will
cause cell loss.

4. Conclusions

The aim of this study is to explore the optimal parameters to design electrode-based
dielectrophoretic device in order to minimize joule heating effects. It was observed that,
the strong temperature distribution created inside a microchannel due to the variations
of different parameters affects the performance and reliability of the device. We further
noticed that temperature distribution is maximum at the center region and cells are likely
to get damage at this region as it exposes to strong thermal gradients. Therefore, this region
was considered as the region of interest throughout our study.

From this work, the following main conclusions can be drawn:

i. The triangular electrode is found to be effective in generating low thermal gradient at
the center region, while maintaining microfluidic device reliable for separation, even
at applied potential varied between 10 V and 40 V.

ii. Among different electrode materials considered, we found that copper generates low
thermal gradient compared to other materials. However, copper electrodes degrades
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and destroys the channel as opposed to gold and platinum, and hinders its application
for multiple runs.

iii. The device material fabricated using glass substrate has potential to generate least
amount of joule heating, 313 K, compared to other substrate materials (PDMS, PMMA,
polyimide) thereby increasing throughput of the separation system.

iv. With buffer conductivity of 10 [mS/m] and applied potential of 5 V, the survival time
of cells inside microchannel is found to be 1.45 s. This duration is sufficient enough to
selectively deflect the cells to target outlets. However, survival time was found to be
decreasing with increasing buffer conductivity (upto 55 [mS/m]) making the device
less reliable.

Hence, we anticipate that, our proposed guidelines will enable the researcher to design
efficient and reliable microfluidic devices where joule heating is the main concern inside a
microchannel.
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