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Abstract: Dengue is the most prevalent arthropod-borne viral disease worldwide and affects approx-
imately 2.5 billion people living in over 100 countries. Increasing geographic expansion of Aedes
aegypti mosquitoes (which transmit the virus) has made dengue a global health concern. There are
currently no approved antivirals available to treat dengue, and the only approved vaccine used in
some countries is limited to seropositive patients. Treatment of dengue, therefore, remains largely
supportive to date; hence, research efforts are being intensified for the development of antivirals.
The nonstructural proteins, 3 and 5 (NS3 and NS5), have been the major targets for dengue antiviral
development due to their indispensable enzymatic and biological functions in the viral replication
process. NS5 is the largest and most conserved nonstructural protein encoded by flaviviruses. Its
multifunctionality makes it an attractive target for antiviral development, but research efforts have,
this far, not resulted in the successful development of an antiviral targeting NS5. Increase in struc-
tural insights into the dengue NS5 protein will accelerate drug discovery efforts focused on NS5
as an antiviral target. In this review, we will give an overview of the current state of therapeutic
development, with a focus on NS5 as a therapeutic target against dengue.

Keywords: antiviral targets; dengue virus; flavivirus; NS5; nucleoside inhibitors; non-nucleoside
inhibitors; polymerase

1. Introduction

Dengue is an arthropod-borne disease caused by the dengue virus (DENV), which
is primarily transmitted by Aedes aegypti mosquitoes [1]. Dengue fever is the most preva-
lent mosquito-borne disease worldwide, with the virus circulating mainly in tropical and
subtropical regions including Southeast Asia, the Americas, Africa, Western Pacific, and
Eastern Mediterranean regions [2]. In 2013, dengue incidence was estimated to be ap-
proximately 400 million dengue infections annually, with 96 million cases manifesting
clinically [3]. Dengue is endemic in over 100 countries and affects about 2.5 billion people
living in the tropics and subtropics [4]. Although the mortality rate of severe dengue
is relatively low–approximately 22,000 deaths annually from dengue shock syndrome
(DSS) [5]–the disease has become a global health concern in the last few decades due to
increasing geographic expansion of Aedes aegypti mosquitoes [6]. This expansion stems
from global warming trends which increase the potential for dengue epidemics in temper-
ate regions, increased urbanization, global trade, increased human travel, and the lack of
effective vector control in dengue endemic regions [7–9].

Currently, there are no antivirals developed to treat dengue infection, and treatment re-
mains supportive [10]. Although a DENV vaccine has recently been used in some countries,
its indication is limited due to risk of severe dengue in certain populations [11]. This has led
to calls for intensified research efforts for the development of a novel vaccine, therapeutics,
and vector-control strategies against dengue, for better prevention and control. This review
summarizes current research efforts in dengue antiviral research and development, with
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a focus on NS5 as a therapeutic target against dengue. For that purpose, we will first
provide an overview of disease burden, epidemiology, clinical manifestations, and give an
introductory overview of the current state of therapeutic efforts against the dengue virus.
In a second section, we will explore the biology of dengue virus including the genome
structure and viral life cycle. Finally, we will explore, in greater detail, the current efforts to
develop antivirals against dengue with focus on NS5.

1.1. Disease Burden, Clinical Importance, and Manifestations

Although current research efforts in the development of effective vaccines and thera-
peutics against dengue are promising, the global burden of the disease is yet to be fully
elucidated. The increase in geographical distribution of the virus is a major concern and
adversely impacts both global health and economy in the future [8]. Many tropical and
subtropical regions currently bear the disease and economic burden of dengue, with Asia
accounting for 70% of the global disease burden, followed by Latin America and Africa [3].
The disease burden in Africa is known to be largely underestimated due to poor records
of dengue occurrence data and from dengue being masked by other flu-like diseases or
malaria, which have similar symptoms [12,13]. Nevertheless, a consistent increase in
dengue epidemics has been observed in Africa and the Pacific and Indian Oceans in the
last four decades [14,15].

The international economic burden of dengue is still loosely estimated. However, the
assessment of disability-adjusted life years, provides evidence for the dengue economic
burden, comparable to that of hepatitis B virus infections and upper respiratory tract
infections [16]. The worldwide annual cost of dengue was estimated to be approximately
USD 9 billion [17], with an average of USD 2.2 billion in the Americas (between 2000 and
2007), USD 1.2 billion in South-East Asia (between 2000 and 2010), and USD 76 million in
Africa [17,18]. These estimates are predicted to increase in future years [19], hence the need
for constant public health surveillance efforts in the estimation of the global burden and
geographic expansion of dengue.

Dengue typically presents as an acute febrile illness often accompanied by headaches,
retro-orbital pain, arthralgia, myalgia, and in some cases, with transient morbilliform
rashes and petechiae. The most common laboratory abnormalities include leukopenia,
thrombocytopenia, and liver enzyme elevation. Dengue is a self-limiting disease with an
incubation period of around four to seven days, with viremia usually occurring during
a febrile episode. Although majority of dengue cases are either asymptomatic or mild,
approximately 500,000 people infected per year develop potentially life-threatening severe
diseases, such as dengue hemorrhagic fever (DHF) and Dengue Shock Syndrome (DSS) [3].
Severe dengue is characterized by an abrupt onset of hemorrhagic manifestations with or
without shock during periods of defervescence. In hyperendemic regions of the world,
where all four DENV serotypes are circulating, the incidence of DHF/DSS is about 10-
to 100-fold higher—particularly for those who develop secondary DENV infections. Al-
though mortality rates can be mitigated with early supportive measures, dengue outbreaks
continue to be a major public health problem that has a significant socioeconomic and
healthcare impact in affected populations [20].

1.2. Viral Serotypes and Antibody-Dependent Enhancement (ADE)

Dengue virus has four different serotypes (DENV 1–4) based on structural anti-
gens which induce type-specific antibodies upon infection [6]. A fifth serotype (DENV5),
which is currently limited to only an outbreak in Sarawak, Malaysia, has also been identi-
fied [21,22]; however, its genome sequence is yet to be reported. Infection with any serotype
often results in long-term immunity against the same serotype (homotypic immunity). Im-
munity against the other serotypes (heterotypic immunity) occur for a short period of time
only [23], with cross-protection lasting for about six months [24]. Exposure to one DENV
serotype is known to increase the risk of severe dengue infection following secondary
infection with another DENV serotype, a phenomenon attributed to antibody-dependent
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enhancement (ADE) [25]. This ADE phenomenon can explain the increased disease severity
observed during secondary infections with another serotype whereby non-neutralizing
crossreactive antibodies bind to heterologous DENV. This binding facilitates viral entry
through Fc receptors expressed on target cells, including dendritic cells, monocytes, and
macrophages [26,27], and resulting in increased viral uptake and subsequent replication
within the target cells [28,29]. Consequently, ADE results in higher viral load, and causes
vascular leakage induced by a combination of pro-inflammatory and anti-inflammatory
responses [30], ultimately leading to severe dengue shock syndrome [31].

All four major DENV serotypes principally causes similar clinical symptoms. How-
ever, certain biological differences occur among them [32,33]. These include, but are not
limited to, epidemic potential, transmission efficiency, disease severity, host immunity
associations between specific serotypes or genotypes, and conditions that favor the dis-
placement of one genotype by another [34,35]. A 30% divergence occurs in the DENV
polyprotein among the four serotypes, with many genotypes within a serotype identified
in different geographic locations [34]. This led to the hypothesis that some DENV serotypes
have greater epidemic potential and virulence compared to others [36,37]. The differences
in epidemic potential have been mostly ascribed to genetic changes which result in amino
acid changes in the nonstructural (NS) proteins [8].

1.3. Dengue Vaccines and Antiviral Agents: Current State

To date, no antiviral agent or universal vaccine is available to treat or prevent dengue.
The only dengue vaccine available on the market is CYD-TDV, which was developed by
Sanofi Pasteur (marketed as Dengvaxia®) [38] and is currently approved in 20 countries in
Latin America, Asia, and Australia [21]. CYD-TDV is a live-attenuated vaccine, effective
for the prevention of severe infection in previously infected people. However, this vaccine
increases the risk of severe dengue in individuals who have not been previously infected
(dengue-naïve individuals) [22]. This limits its use to seropositive individuals only and
stresses the need for a universal vaccine to prevent infection in seronegative individuals,
especially children [10]. There are several dengue vaccine candidates currently in clini-
cal development, including live-attenuated tetravalent chimeric vaccines (Takeda’s TDV
and United States [U.S.] National Institute of Health/Butantan’s TV003/TV005 and LAV
Delta 30), a recombinant vaccine (Hawaii Biotech Inc./Merck’s DEN-80E), and a DNA
vaccine (D1ME100 being developed by the U.S. Naval Research Center) [39–41].

Several antiviral candidates have been developed against dengue, but none have
been successful to effectively treat dengue infection [42,43]. There is an urgent need for
the development of therapeutics against dengue, as treatment is still primarily based on
supportive therapy, including the use of analgesics and fluid replacement [3]. Other ap-
proaches, including artificial intelligence (AI) and computational analyses are currently
being developed with great potential for advancing and accelerating dengue immunother-
apeutic discovery [44]. Additionally, recent advances in molecular and structural virology
are increasingly shedding more light on NS proteins, particularly the NS5 protein [45]. This
makes flaviviral NS5 a very promising target for antiviral development.

2. Dengue Viral Life Cycle and Proteins
2.1. Genome Structure and Organization

Dengue viruses are enveloped, single-stranded, positive-sense RNA viruses of the
Flaviviridae family. All four DENV serotypes are spherical, enveloped viral particles,
approximately 500 Å in diameter [46]. Their genome consists of approximately 11,000 nu-
cleotides and encodes a precursor polyprotein, which undergoes proteolytic processing to
generate three structural proteins (capsid protein C, precursor membrane protein prM, and
an envelope protein E) and seven nonstructural (NS) proteins including NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5 (Figure 1) [5]. The structural proteins are part of the mature vi-
ral particle and are not involved in viral genome replication. The NS proteins are expressed
only in dengue infected cells and are mainly responsible for viral replication [47–49].
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poly(A) tail but ends in a conserved stem-loop (SL) secondary structure. Both UTRs are 
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stem loop A (SLA) of about 70 nucleotides, which has been shown to promote viral RNA 
synthesis through interactions with NS5 [52]. Additionally, both UTRs contain comple-
mentary Upstream AUG Regions (known as UAR) and cyclization sequences (CS) that 
hybridize for genome cyclization and RNA synthesis to occur [50]. 

2.2. Viral Life Cycle 
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Figure 1. Genome Structure and Organization of the Dengue Virus. The dengue virus is spherical in shape, enveloped,
and contains a positive-sense, single-stranded RNA genome. The genome encodes a precursor polyprotein, with an
open-reading frame ~11 kb in length. Following viral entry into the host cell, the polyprotein is cleaved into three structural
proteins (capsid, pre-membrane, and envelope), and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A with a 2k
signal peptide at the C-terminal, NS4B, and NS5).

The genome open reading frame (ORF) is flanked by two untranslated regions (UTRs):
a 5′-UTR of approximately 95–135 nucleotides, which contains a type I cap like cellular
mRNA; and a 3′-UTR of approximately 114–650 nucleotides, which lacks a poly(A) tail
but ends in a conserved stem-loop (SL) secondary structure. Both UTRs are required for
efficient viral translation and replication [50,51]. The 5′-UTR contains a large stem loop
A (SLA) of about 70 nucleotides, which has been shown to promote viral RNA synthesis
through interactions with NS5 [52]. Additionally, both UTRs contain complementary
Upstream AUG Regions (known as UAR) and cyclization sequences (CS) that hybridize
for genome cyclization and RNA synthesis to occur [50].

2.2. Viral Life Cycle

The dengue virus life cycle consists of multiple steps including viral entry, viral
replication, viral assembly, and viral release (Figure 2). The flavivirus life cycle is initiated
by the fusion of the viral membrane with the host plasma membrane. This is followed by
endocytosis of the virus into an endosome. The low pH of the endosome triggers a viral
glycoprotein-mediated fusion of viral and host cellular membranes, permitting disassembly
of the virion and subsequent release of the viral RNA genome into the cytoplasm [53]. The
cell surface receptor, through which receptor-mediated endocytosis occurs during DENV
viral entry, is yet to be fully identified. However, proposed host cellular receptors include
dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN),
glycoproteins like heparan sulfate receptors, or mannose receptors [54–56]. Human C-type
lectin-like molecule (CLEC5A) has also been proposed to function as a crucial macrophage
receptor for DENV. Mice studies have also shown that it functions as a proinflammatory
receptor for DENV [57,58].
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Figure 2. Life Cycle of the Dengue Virus and Antiviral Targets. The viral membrane attaches to host cell receptors (DC-SIGN,
CLEC5A, heparan sulfate receptors) and viral entry occurs through receptor-mediated endocytosis. The viral genome
is released into the cytoplasm followed by translation of the polyprotein encoding the open reading frame. Polyprotein
processing leads to its cleavage into structural and nonstructural (NS) proteins by host proteases and the NS2B-NS3 viral
protease. Viral replication occurs on the endoplasmic reticulum by NS proteins followed by viral assembly and trafficking of
immature viral particles to the trans-Golgi network (TGN). The acidic environment of the TGN facilitates viral maturation
and subsequent release of mature viral particles from the host cell. A list of inhibitors against targets at different stages
of the viral cycle are indicated. DC-SIGN, dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin;
CLEC5A, human C-type lectin-like molecule.

After the viral genome is released into the cytoplasm, the positive-strand viral RNA is
immediately translated into a single polyprotein. The translated polyprotein is then cleaved
by viral and cellular proteases into three structural, and seven nonstructural proteins.
Synthesis of a negative-strand intermediate then proceeds, which acts as a template for
the synthesis of new positive-strand viral RNAs. The nonstructural proteins replicate the
genomic RNA by going through several rounds of transcription to produce many viral
genomes and subsequently viral proteins [59].

Viral assembly occurs at the endoplasmic reticulum (ER), where the capsid proteins
and newly made viral RNA are enveloped by the ER membrane and glycoproteins to
produce immature viral particles. Immature viral particles move through the secretory
pathway and the Trans-Golgi Network (TGN), which has an acidic environment. The acidic
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environment of the TGN causes the precursor membrane protein (prM) to be processed
by a furin host protease into the mature protein (M) [60]. The viral maturation process
is known to be indispensable for infectivity, and studies suggest that prM shields the
envelope proteins from premature fusion and pH-induced reorganization during viral
secretion [61–63]. Following successful maturation of the virus, viruses are then released
from the cell [5].

3. Dengue Antiviral Research and Development
3.1. Classical Antiviral Targets

Research efforts into the development of antiviral agents against dengue have inten-
sified in the last few years since there are still no available treatments to date. Classical
targets for the development of small molecule inhibitors include NS3 protease, NS3 heli-
case, NS4B, and NS5 proteins [64]. NS3 and NS5 proteins are thought to be the most crucial
targets for antiviral development because of their indispensable enzymatic activities in the
viral replication process. NS3 has multiple enzymatic activities including serine protease,
nucleoside triphosphatase (NTPase), 5′-RNA triphosphatase, and helicase activities [65,66],
while NS5 has methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp)
activities [67]. Table 1 shows a list of compounds that target the dengue virus, for which
crystal structures with the target was solved, divulging a binding site, and potentially
supporting a mechanism of action.

3.1.1. NS3 Protease

NS3 is the second largest flaviviral protein after NS5 (approximately 69 kDa), and
it plays an important role in the viral replication cycle. It consists of two domains: an
N-terminal protease domain responsible for cleaving the viral polyprotein precursor into
individual proteins; and a C-terminal RNA helicase domain involved in DENV genome
replication and viral RNA synthesis. The NS3 protease requires NS2B as a cofactor, to
function properly. Studies have also shown that the NS3 protease is catalytically inac-
tive in vitro, corroborating its need to bind to NS2B for proper folding and enzymatic
activity [65,66].

Several inhibitors have been examined for use as NS2B-NS3 protease inhibitors
(Table 1). Compound BP13944 for example, was shown to be a dengue protease inhibitor,
through high-throughput screening (HTS) of over 50,000 compounds [68]. The compound
inhibited dengue viral replication in all DENV serotypes with no apparent toxicity. Com-
pound 32, a keto amide was examined and shown to inhibit dengue viral replication
in a dose-dependent manner [69]. Two anthracene-based compounds, ARDP0006 and
ARDP0009, were identified through virtual screening and inhibited DENV-2 replication in
cell culture studies [70]. Aprotinin was also identified, and studies showed that it binds to
the NS3 protease pocket with high specificity and prevents the substrate from accessing the
NS3 protease active site [71]. With many compounds identified as NS3 protease inhibitors,
only few of them are effective for potential drug development against dengue, mostly
because of their weak binding to the NS3 protease [72].

Table 1. Small Molecule Inhibitors against dengue NS3 and NS5.

Target Function PDB ID Compound Name Ki or KD (µM) IC50 (µM) References

NS5 MTase 3P8Z Compound 10 0.82 (N7), 0.17
(2′-O) na [73]

1R6A Ribavirin
5′-triphosphate 55 * 100 [74]

5EHI BF287 na 452 [75]
5EKX NB2E11 na >1000 [75]
5EHG BF341 na 369 [75]
5EIF NB2C3 na >1000 [75]
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Table 1. Cont.

Target Function PDB ID Compound Name Ki or KD (µM) IC50 (µM) References

5EC8 BF175 na na [75]
5EIW NB3C2 na >1000 [75]
5E9Q BF174 na na [75]

4R8S Sinefungin 0.136 * 0.03 (N7), 0.04
(2′-O) [76–78]

na 1-TP 22 8.4 [79]
na 2-TP na 1.1 [79]

RdRp 5K5M Compound 27 na 0.173 [80]
5I3P Compound 27 na 0.048 [80]
5I3Q Compound 29 na 0.016 [80]
5IQ6 HeE1-2Tyr 1.96 1.5 [81]

5HMW Compound 5 154 * 177 [82]
5HMY Compound 15 1.4 * 1.7 [82]
6IZX RK-0404678 na 201 [83]

5HMX Compound 10 28 * 15 [82]
5HN0 Compound 4 >200 * 769 [82]
5HMZ Compound 23 0.12 * 0.34 [82]
3VWS NITD-107 225 * 113 [84]
5F3Z PC-79-SH52 29 * 140 [85]
5F3T JF-31-MG46 210 730 [85]
5F41 FD-83-KI26 67 * 210 [85]
6IZZ RK-0404678 na 287 [83]

NS3 Protease
(NS2B-NS3) 4M9T DTNB na na [86]

3U1J Aprotinin 0.026 na [87,88]
6MO1 Compound 8 na 0.29 [89]
6MO2 Compound 9 na 0.59 [89]

IC50—Half maximal inhibitory concentration; Ki—inhibition constant; KD—dissociation constant; * indicates the value shown is a KD;
PDB—protein data bank.

3.1.2. NS3 Helicase

The C-terminal RNA helicase domain of NS3 is known to participate in the genome
replication and RNA synthesis process with other NS proteins like NS5. The NS3 helicase
activity is important for the fusion of secondary structures at the untranslated regions
prior to initiation RNA synthesis. It is also responsible for unwinding dsRNA intermediate
products formed during viral RNA synthesis, prior to the capping of the positive-strand
RNA [66].

Many compounds identified as inhibitors against DENV NS3 are focused on the NS3
protease domain. This is more due to the crystal structures of the DENV NS3 helicase do-
main lacking binding pockets for potential small molecule inhibition [72,90]. Nonetheless,
some compounds have been reported to have activity against DENV by inhibiting the NS3
helicase. For example, suramin, a polysulfonated compound with anthelminthic activity
was shown to inhibit DENV NS3 helicase in a non-competitive manner [91,92]. In addition,
analogues of the ML283 compound (which inhibits hepatitis C virus NS3 helicase) were
identified as inhibitors of DENV NS3 helicase [91].

3.1.3. NS4B

NS4B is a 27 kDa integral membrane protein with high hydrophobicity. It is fairly
conserved among flaviviruses (approximately 40% sequence homology) [93] and is known
to play a role in preventing host immune response following viral infection. While the
NS4A protein triggers membrane reorganization and autophagy to improve the viral
replication process, NS4B suppresses interferon α/β signaling and NS3 helicase activity
resulting in regulation of the host’s immune cell response [65].

The NS4 proteins (NS4A and NS4B) do not have any reported enzymatic activity
during viral RNA replication. However, they are known to be important in flavivirus
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replication and host interactions. NITD-618, a compound selected from a library of over
1.5 million molecules was found to be active against NS4B for all four DENV serotypes [94].
A new inhibitor against DENV NS4B, SDM25N was also identified, where it inhibits NS4B
by restricting genomic RNA replication [95].

3.1.4. NS5

NS5 is the largest (approximately 100 kDa) and most conserved nonstructural pro-
tein encoded by flaviviruses, with over 75% sequence homology across all four DENV
serotypes [67,71]. It is a key component of the viral replication complex, with multiple
enzymatic and biological functions. NS5 contains an N-terminal methyltransferase (MTase)
domain, responsible for synthesis of the 5′ RNA cap and methylation, and a C-terminal
RNA-dependent RNA polymerase (RdRp) domain, responsible for viral RNA synthe-
sis [96,97] (Figure 3). The C-terminal RdRp domain initiates RNA synthesis through a de
novo mechanism, different from a primer-dependent mechanism employed by other viral
polymerases. Flaviviral RdRp has a canonical right-hand structure, like other polymerases
with palm, fingers, and thumb subdomains [67,98,99]. The palm subdomain has the most
conserved structure among all known polymerases, and it contains the active site for
polymerization. Flaviviral RdRps have two anti-parallel β-strands surrounded by eight
α-helices, and three functional motifs which play a role in RNA synthesis. The fingers
subdomain consists of a core and two fingertips, one of which connects to the thumb
subdomain. The thumb subdomain also consists of eight α-helices and two anti-parallel
β-strands with an interface that constitutes the motif E. Most importantly, the thumb
subdomain consists of a loop that protrudes from the thumb towards the polymerase active
site [98]. This priming loop is a unique feature of polymerases that carry out de novo RNA
synthesis [100].

NS5 plays a fundamental role in the flaviviral replication cycle, making it a very
important target for the development of antivirals against dengue. Apart from performing
viral RNA synthesis, NS5 interacts with other viral proteins like NS3 and host proteins to
carry out its replication functions [101]. It interacts with stem loop A (SLA) at the 5′ end of
the dengue viral RNA to promote viral RNA synthesis [102]. It also carries out biological
functions by binding to, and promoting the degradation of hSTAT2, to suppress type I
interferon response [103]. Many antiviral agents have been evaluated against NS5 activity
by either inhibiting its MTase or RdRp activity at different viral replication stages.

Sinefungin, a SAM (S-adenosyl-L-methionine) analogue was reported as a broad-
spectrum DENV inhibitor. It binds to the SAM site in the DENV MTase domain in a similar
fashion as SAM but does not undergo the same interactions with the protein as SAM does.
However, MTase interaction assays showed Sinefungin’s affinity to be six times greater
than that of SAM. Other DENV NS5 inhibitors that function as MTase inhibitors include
SAH (S-adenosyl homocysteine), compound 10, and GMP (guanosine monophosphate).
These inhibitors, together with Sinefungin failed to show good progress because of their cell
non-permeability [104]. Ribavirin, a synthetic guanosine analogue shown to inhibit HCV
replication, displayed activity against DENV MTase but was later shown to be ineffective
as a DENV prophylactic drug (Table 1) [105,106].

A novel group of flexible nucleoside analogs known as “fleximers” were recently
developed and were shown to have antiviral activity against filoviruses such as the Ebola
virus [107], coronaviruses (such as severe acute respiratory syndrome coronavirus (SARS-
CoV) [108]), and flaviviruses (including Zika virus and Dengue virus). These fleximers
have a “split” purine nucleobase which contributes significantly to the nucleoside scaffold
activity [109–111]. Several fleximers of the FDA-approved acyclic nucleoside acyclovir,
which is used to treat herpes infections have been developed. Recent studies have shown
that some of these fleximers that have been developed (1-TP and 2-TP) inhibit the MTase
activity of ZIKV and DENV, with very weak activity against the DENV RdRp even at high
concentrations [79]. Fleximers have therefore shown to be promising nucleoside analogs
which can target dengue NS5, with a low possibility of viral resistance against them [112].
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Flaviviral RdRps are proposed to be the most important drug targets, because of their
indispensable function in viral replication and most importantly because human host cells
lack the viral RdRp [98]. DENV RdRp replicates the viral RNA genome in the absence of a
primer strand (de novo replication mechanism). A complementary (−) RNA strand is first
synthesized from the (+) RNA template strand to form a dsRNA duplex [113,114]. The
dsRNA duplex is subsequently used as a template for the synthesis of additional (+) RNA
strands which can either be used as mRNA for protein translation or packaged into new
virions [84,97,101].

Small molecule inhibitors against viral RNA polymerases are generally divided into
nucleoside inhibitors and non-nucleoside inhibitors based on their mechanism of inhibition.

Nucleoside Inhibitors

Nucleoside analog inhibitors (NI) are chemically modified analogs of endogenous nu-
cleosides which can either block viral replication by disrupting DNA and RNA synthesis, or
inhibit viral enzymes involved in nucleoside/nucleotide metabolism [115]. They are com-
monly used small molecule inhibitors for the treatment of viral infections including human
immunodeficiency virus (HIV), hepatitis B virus (HBV), herpes viruses, and HCV [112].
Some of the approved nucleoside analogs used to treat these infections include tenofovir
(HIV) [116,117], sofosbuvir (HCV) [118], and lamivudine/entecavir (HBV) [119,120]. Many
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potent inhibitors are currently being developed for HCV treatment including nucleoside
analogs. Since arthropod-borne flaviviruses are closely related to HCV, nucleoside analogs,
especially those developed against HCV, are promising targets that can be repurposed for
the treatment of flaviviral infections, including dengue [121].

Nucleoside inhibitors, which target flaviviral RdRps, are very attractive for drug devel-
opment because humans lack the RdRp enzyme leading to less off-target effects [115,121–123].
They target the polymerase active site which is situated in the palm subdomain of the
RdRp [124]. The mechanism of action of nucleoside analog inhibitors involves the pre-
mature termination of viral nucleic acid synthesis [125]. They are generally converted
into nucleosides following intracellular phosphorylation by host cell kinases [98]. This
is followed by the incorporation of their 5′-triphosphate metabolites into the viral RNA
nascent chain which occurs in a competitive fashion. The incorporation leads to the for-
mation of nonfunctional viral RNA chains because of the premature termination of the
elongating nascent viral RNA [126]. Nucleoside analog inhibitors, which target flaviviral
RdRps functions as “nonobligate chain terminators”, display a 3′-hydroxyl group which is
conformationally hindered reducing their ability to form a phosphodiester linkage with
incoming nucleoside triphosphates [125]. Nucleoside inhibitors which function as obligate
chain terminators lack the 3′-hydroxyl group. Nucleoside reverse transcriptase inhibitors
used for the treatment of HIV infections are examples of obligate chain terminators [127].

Few compounds have been reported to date as nucleoside analog inhibitors against fla-
viviral RdRps. GTP analogs including ddGTP, 3′dGTP, 2′-O-methyl-GTP, and 3′-dioxolane
3′dGTP have been shown to weakly inhibit DENV2 RdRp activity through in vitro as-
says [97]. Further development of novel nucleoside analogs effective against flaviviruses
like dengue remains in need.

Non-Nucleoside Inhibitors

Non-nucleoside analog inhibitors (NNI) do not bind to the putative active site of
flaviviral RdRps. Instead, they bind to allosteric pockets or surface cavities of their target
polymerase. They can induce a conformational change when they bind allosterically,
resulting in an inactive polymerase. NNIs can also trap their target polymerase in a
functional conformation but block an essential conformational transition from initiation to
elongation required during RNA synthesis [98]. Allosteric inhibition using non-nucleoside
inhibitors have shown to be an effective strategy for the inhibition of HCV RdRp activity
and HIV reverse transcriptase activity [128]. However, only a few allosteric inhibitors have
been described for DENV RdRp.

One of the first NNIs reported to inhibit DENV-2 RdRp activity is ammonium-21-
tungsto-9-antimoniate, also known as HPA23 [129]. It was also previously reported to
inhibit the reverse transcriptase activity of HIV by competing with the nucleic acid tem-
plate [130], which does not make it a true allosteric inhibitor. A class of pyridobenzothiazole-
based compounds including HeEI-2Tyr was reported to inhibit DENV RdRp activity and
antiviral activity in DENV cell culture in the low micromolar range [81]. Their binding
mechanism was shown to be similar to NITD-107 which binds to the RNA template tunnel
of the polymerase (between the fingers subdomain and the priming loop), and locks the
RdRp in a closed conformation, inhibiting DENV viral RNA synthesis [84].

A novel allosteric pocket of DENV RdRp (termed “N pocket”) was recently identified
at the interface of the thumb and palm subdomains, close to the RdRp active site. Since
the characterization of this allosteric binding site, potent compounds, which inhibited
DENV 1-4 replication in many cell-based assays, including compound 29, compound
27, and JF-31-MG46 (Table 1) have been designed [80,82,85]. DENV allosteric N-pocket
inhibitors are quite like the HCV polymerase site III (palm I) non-nucleoside inhibitors [131].
However, their binding affinities are weaker compared to the HCV class III inhibitors. The
DENV N-pocket lacks the HCV primer grip wall, which stabilizes HCV inhibitor binding.
Furthermore, the C-terminal loop of the HCV RdRp penetrates the active site and is
involved in RdRp activity, unlike that of DENV, which is disordered in many crystal
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structures reported. The absence of these regions in DENV have been suggested to be the
reason for the weaker binding affinities of DENV for the N pocket inhibitors compared to
HCV site III inhibitors which form additional contacts with the primer grip wall and the
C-terminal loop [132].

Overall, advances in structure-guided approaches used in the design of potent al-
losteric inhibitors show promising potential for the development of more potent inhibitors
that can target DENV. Representative crystal structures of DENV NS5 solved with some of
the potent inhibitors are shown in Figure 4.
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active site of the NS3 protein; (B) RK-0404678 is bound to the RNA binding site of the NS5 RdRp, close to the priming loop;
(C) HeE1-2Tyr is bound to the RNA template tunnel, between the fingers subdomain and the priming loop; (D) Ribavirin
5′-triphosphate is bound to the GTP binding site of the NS5 MTase; (E) Sinefungin is bound to the SAM binding site of the
NS5 MTase. All structure representations were made in PyMOL.

3.2. Other Dengue Antiviral Targets

Other antiviral targets evaluated for antiviral activity against DENV includes the NS1
protein, the envelope protein, and the viral capsid.

3.2.1. NS1

NS1 is a nonstructural protein of approximately 46–55 kDa depending on its glyco-
sylation state. It is found in different cellular locations and occurs in multiple oligomeric
forms. NS1 is also present in the ER-resident form, the membrane-anchored form, and
the secreted form. It is first produced as a soluble monomer, and then associates with the
membrane after dimerization in the ER lumen [133]. Intracellular NS1 is known to partici-
pate in early viral RNA replication. It is also transported to the surface of the cell where it
either associates with the membrane or is secreted as a soluble hexamer [134]. The specific
function of NS1 in the viral replication cycle is yet to be fully understood, but studies have
shown that it is highly immunogenic making it a potential candidate for vaccine target and
is being used as a diagnostic marker in confirming dengue infection [133,135,136].
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3.2.2. Envelope Protein

The DENV envelope protein, a 53 kDa dimer is the major component of the virion
surface. In its dimeric form, the E protein becomes adequate for binding to the cell surface,
fusion, and viral entry into host cells [96,137]. The E protein has approximately 40%
sequence homology among flaviviruses [135].

Many heterocyclic compounds identified in silico, were found to have activity against
DENV E protein. NITD-448 compound was found to inhibit DENV E protein-mediated
membrane fusion. Compounds D02, D04, and D05 were found to inhibit maturation or
viral host cell entry due to their binding to the E protein [94,138].

3.2.3. Viral Capsid

The DENV viral capsid is approximately 11 kDa and interacts with the genomic RNA
to form the nucleocapsid, which is essential for dimerization in viral assembly. The capsid
protein also contains an internal hydrophobic sequence required for membrane association
between the virus and the host cell receptor [96].

The capsid is also known to be a potential target for antiviral agents. Compound
ST-148 was identified as a DENV capsid inhibitor. It was shown to block the cytopathic
effect caused by DENV and was found to be effective against all four DENV serotypes [139].

3.3. DENV Small Molecule Inhibitors in Clinical Trials

Antiviral research efforts have targeted both structural and NS DENV proteins, how-
ever specific focus has been put on the NS3 and NS5 proteins, because of their multifunc-
tional nature [66,140]. Unfortunately, no antiviral agents developed specifically to target
DENV have entered clinical trials to date [45]. A nucleoside analogue, balapiravir was
clinically investigated as a DENV NS5 inhibitor. Balapiravir was originally developed as
an antiviral agent against hepatitis C virus (HCV) and was evaluated in a phase 1 clinical
trial as a short-course antiviral against DENV [43]. However, it failed to meet the efficacy
endpoint and was found to poorly permeate target cells, resulting in termination of clinical
development against dengue infection [141].

3.4. Alternative Therapeutic Approaches

Since there is no specific treatment for dengue currently available, dengue patients
are usually provided with supportive care including bed rest, fluid replacement therapy,
analgesics, and antipyretics to relieve the fever [5]. There is currently no effective vaccine
available to prevent the disease, and vector control strategies have been mostly ineffective
and expensive [142,143]. A study was recently conducted in Indonesia to assess the efficacy
of Wolbachia-infected Aedes aegypti mosquitoes for the control of dengue. Interestingly, the
study showed that the deployment of the infected mosquitoes into wild-type Aedes aegypti
mosquito populations effectively reduced the incidence of symptomatic dengue cases and
resulted in fewer dengue hospitalizations [144]. The results from this study show the
potential of the use of genetically modified mosquitoes as a dengue vector control strategy.

None of the small molecule inhibitors developed against dengue has advanced beyond
early clinical trials which shows the need for continued efforts in the design of novel
therapeutic approaches against dengue. Nucleic acid-based therapies have been proposed
as an alternative approach, which can inhibit gene expression and act as antivirals against
dengue [145]. RNA interference (RNAi) has been employed as a therapeutic approach
in tumors, metabolic disorders, and several infectious diseases, and can potentially be
applied to treat dengue. This approach has been proposed to protect the host cell from
viral infections by degradation of viral RNA although flaviviral RNA has been shown
to be resistant to RNAi because replication occurs in assembled ER membrane packets.
RNA decoys, like phosphorodiamidate morpholino oligomers (PMOs), which target the
translation initiation site (5′UTR) of DENV RNA are promising therapeutics but are yet to
be tested in animal models [5].
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Advances in molecular and structural virology have propelled drug discovery efforts
with increasing structural information being obtained on the dengue virus and nonstruc-
tural proteins crucial for the viral life cycle [45]. High-resolution structures determined
by cryo-electron microscopy (Cryo-EM), nuclear magnetic resonance (NMR) spectroscopy,
and X-ray crystallography are now being used in combination with in-silico approaches
and infectious clone methods to identify new targets for DENV [66,146].

The complex nature of the human immune response to DENV, especially the antibody-
dependent enhancement phenomenon, makes it more difficult to develop potent and
effective therapeutics. High-throughput sequencing approaches and advancements in
computational analysis of complex data has however provided the means for better assess-
ment and analysis of the DENV immune response [44]. Recent studies have shown that
machine learning models, complex statistical analyses and visualizations can be applied to
answering questions about ADE, and potentially identifying novel therapeutics against
dengue [147–149].

4. Conclusions

Currently, the overall efforts to develop therapeutic avenues against dengue virus have
not stemmed the increasing trends of global disease burden and geographical expansion.
Thus far, the major axis of therapeutic efforts against DENV have largely centered on the
development of vaccines. These efforts have advanced to late clinical trials although with
limited end results. Conversely, the research efforts to develop antivirals targeting DENV
have been mostly underwhelming with most development efforts in the preclinical stages.
Multiple research efforts are currently ongoing in the development of antivirals against
dengue, especially those against NS3 and NS5 proteins. The advancement of antiviral
research focused on dengue NS5 as a target is, however, still limited by its low structural
and mechanistic characterization, when compared to the viral RNA or DNA polymerase
from other viruses with more developed therapeutic efforts such as HIV and HCV. More
in-depth characterization of the structure of the dengue NS5 protein and mechanistic
insights into how it performs its multiple functions will strengthen drug discovery efforts
geared towards NS5 as a target against the dengue virus.
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