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Abstract

Interacting Particle Systems (IPSs) are used to model spatio-temporal stochastic systems

in many disparate areas of science. We design an algorithmic framework that reduces IPS

simulation to simulation of well-mixed Chemical Reaction Networks (CRNs). This framework

minimizes the number of associated reaction channels and decouples the computational

cost of the simulations from the size of the lattice. Decoupling allows our software to make

use of a wide class of techniques typically reserved for well-mixed CRNs. We implement the

direct stochastic simulation algorithm in the open source programming language Julia.

We also apply our algorithms to several complex spatial stochastic phenomena. including a

rock-paper-scissors game, cancer growth in response to immunotherapy, and lipid oxidation

dynamics. Our approach aids in standardizing mathematical models and in generating

hypotheses based on concrete mechanistic behavior across a wide range of observed spa-

tial phenomena.

Introduction

Stochastic effects are crucial for accurately modeling evolutionary and biological processes

such as tumor growth, desertification, disease spread, embryonic development, maintenance

of species biodiversity, and pattern formation in general [1–3]. The associated spatial mathe-

matical models are commonly analytically intractable. Fortunately the advent of efficient com-

puting has allowed simulation to serve as a common first approach to stochastic modeling.

Non-spatial well-mixed versions of these models are often substituted due to their tractability

and ease of use. Many celebrated simulation algorithms such as the exact Stochastic Simulation

Algorithm (SSA), τ-leaping, and the next-reaction method have been developed and exten-

sively modified to address a wide range of well-mixed stochastic phenomena [4]. However,

well-mixed models fail to capture the appropriate statistics and pattern formation seen in the

spatial setting. Phenomena due to volume exclusion and spatial dispersion cannot be
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accurately captured via well-mixed Chemical Reaction Network (CRN) simulation. One com-

mon approach to stochastic spatial simulation is to partition the spatial domain into well-

mixed voxels. This approach utilizes a Reaction-Diffusion Master Equation (RDME) to model

the movement of particles between voxels and the reaction of particles within the same voxel.

While this method has substantial algorithmic development [5], it fails to take into account

important volume exclusion effects and fine-grained spatial variation. In particular, volume-

exclusion has been shown to alter the mass-action kinetics observed in well-mixed models,

instead producing fractal kinetics [6, 7]. This deviation from mass-action kinetics increases

depending on the regularity of the spatial structure in question; for our lattice-based models,

we expect to see significant departures from the well-mixed case due to these volume-exclud-

ing effects [6].

Interacting Particle Systems (IPSs) provide an alternative to both well-mixed CRN and

RDME based modeling. IPSs are a class of stochastic models with full spatial detail, tracking

each particle’s location on a lattice [8]. Interactions are assumed to be local, meaning particles

must be adjacent to each other to interact. Notions of locality and adjacency are details that

must be specified in a given model. For some typical reactions, see Table 1. Importantly, IPSs

preserve volume exclusion, meaning at most one particle can be present on any given lattice

site. Diffusive movement is typically modeled as particles undergoing random walks between

sites, respecting exclusion. This is in contrast with more common RDME approaches that cou-

ple compartments obeying well-mixed dynamics through non-excluding Brownian motion.

Recent significant advances in the basic RDME approach incorporate volume-excluding

effects. These include the excluded volume reaction-diffusion master equation (vRDME) [9]

and an approach that uses scaled particle theory to allow different-sized particles to have differ-

ent diffusion rates between voxels [10]. Performing a full comparison between the different

IPS and RDME approaches, volume-excluding and otherwise, is beyond the scope of this arti-

cle. For a detailed modern review that explores the wide array of RDME and Brownian motion

approaches to spatial stochastic simulation, we particularly recommend [11].

Example IPSs include the voter and contact processes as well as the classic Ising model

from statistical mechanics [12]. These specific models have a large body of theoretical results

from the mathematics community, specifically on their critical behavior. Unfortunately these

results do not readily extend to multi-type processes and complicated spatial domains. Numer-

ical approaches are computationally prohibitive, leaving direct simulation as the first and fre-

quently only line of attack. The recent IPS simulation package Spatiocyte [13] and its

numerous extensions address simulation biases generated under a lattice-based spatial struc-

ture [14] and parallelize the original simulation code [15]. We provide a more detailed

Table 1. Example processes with reaction diagrams.

Type Example reactions Processes

On-site ; ! A Immigration

A! ; Death

A! B Transformation

Pairwise A + ; ! A + ; Migration

A + ; ! A + A Binary fission

A + A! B + ; Dimerization

A + B! C + D Pairwise transformation

; denotes an open site that is part of a reaction.

https://doi.org/10.1371/journal.pone.0247046.t001
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description of the differences between our approach and Spatiocyte in the section “Availability

and Future Directions.”

The current paper extends the classic n-fold simulation method, defined later, to IPSs [16].

Our extension enjoys three major advantages over previous approaches. First, we generate the

minimum number of required reaction channels for a simulation, avoiding the combinatorial

difficulties that arise from counting adjacent configurations of particles. Second, we provide

efficient local updates after a reaction channel fires; thus only particles adjacent to a reaction

are updated. Critically, this prevents the computational complexity of the simulations from

scaling with the size of the lattice. Third, and perhaps most important, we separate the time

and reaction sampling steps from the configuration update steps in the algorithm. This reduces

our spatial process to the computational complexity of a CRN simulation, albeit with an addi-

tional complicated update. Accordingly, we can implement any CRN sampling algorithm for

our spatial setting with little additional effort. Well-mixed CRN simulation is extensively

developed [17–23]; therefore, spatial IPSs directly benefit from these prior innovations.

We build on the software package BioSimulator [24], written in the open source pro-

gramming language Julia [25]. BioSimulator implements different algorithms for sim-

ulating IPSs, including the direct stochastic simulation algorithm (SSA) and versions of the

next reaction method [26] and the sorting direct method [27]. Our software provides a simple,

intuitive interface through which nonspecialists can quickly observe complex behaviors of spa-

tial models with multiple interacting species. Summary statistics and particle count trajectories

permit straightforward model checking for the proposed systems. Within this framework,

modelers can determine which reactions and parameters are important for producing a certain

desired behavior. A recent example of an IPS in action has been reported in a recent immuno-

therapy model for cancer treatment [28]. This complex model of tumor-immune system inter-

actions illustrates which parameters generate the appropriate immune responses and spatial

patterns.

Our software is primarily directed at systems biologists, cancer researchers, ecologists, evo-

lutionary biologists, epidemiologists, and other scientists who are interested in the spatio-tem-

poral effects of discrete actors. We anticipate that BioSimulator’s ease of use and flexibility

will encourage researchers unfamiliar with stochastic processes to investigate the stochastic

and spatial features of their models via simulation. Finally, our software allows users to avoid

tedious re-implementation of different algorithms in their simulation studies.

The remaining exposition is organized as follows. First we give a mathematical description

of IPSs. We then enumerate the different sample classes for probabilistically equivalent parti-

cles using the species types and neighborhood configurations of the lattice or graph. This enu-

meration plus a description of the reaction rates across these sample classes provides a

straightforward means of extending the well-mixed SSA to IPSs. Lastly, we summarize how

our software implements each reaction, including updating the sample classes and reaction

rates. This is followed by a series of examples of complex, multi-species spatial stochastic phe-

nomena. We conclude with a brief description of the benefits of writing BioSimulator in

the Julia programming language.

Design and implementation

IPSs and pairwise reactions

An IPS models a collection of particles moving and reacting stochastically over some spatial

domain. Particles are discrete entities that may model animals, proteins, wildfire patches, or

cancer cells. Like well-mixed CRNs, these particles interact through a series of reaction chan-

nels. While stochastic CRNs assume every particle interacts uniformly with every other
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particle, IPSs restrict these interactions to neighboring particles. Each IPS has an associated

graph describing the spatial domain over which the process evolves. Nodes on the graph are

sites that a particle may occupy. Edges specify that two nodes are adjacent and hence liable to

interact. Typically we restrict nodes to contain at most one particle at a time; we refer to this

effect as volume exclusion.

Fortunately, embedding the IPSs on a graph allows us to restrict the reactions to being pair-
wise. We use the term pairwise instead of bimolecular deliberately; unimolecular reactions

that produce two product particles require an open adjacent site due to the volume excluding

effect. For example, birth through binary fission is written in well mixed reaction notation as

A! A + A. On a graph with exclusion, birth requires an open adjacent site and becomes A +

;! A + A where ; denotes an open site that becomes occupied by one of the offspring parti-

cles. This schema emphasizes volume exclusion since birth cannot occur when the A particle

has no open adjacent sites. We classify reactions into two groups, on-site and pairwise. For a

non-exhaustive list of examples, see Table 1; for a specific predator-prey example see Table 2.

These two reaction types, on-site and pairwise, are useful in describing a number of biological

applications, but like all models they have their limitations when the system’s dynamics are

complex. Higher-order reactions are reduced to pairwise interactions through the formation

of intermediate complexes.

Markovian dynamics, reaction channels, and sample classes

Particles evolve on the graph according to standard Markovian dynamics where the waiting

time to the next reaction is exponentially distributed [29]. If a particle can take part in multiple

reactions, then its exponential waiting time has rate equal to the sum of the rates of each indi-

vidual reaction under mass-action kinetics. Note that more complicated kinetics are allowed

provided that we restrict the interactions to neighboring particles. Longer range interactions

are feasible in principle, though they introduce combinatorial complexity in enumerating the

neighboring configurations. The current version of BioSimulator is restricted to mass-

action kinetics for immediate neighbors.

The rate at which a particle undergoes reactions depends on both the species of the particle

and the number and species of its neighboring particles. Although open sites are not collec-

tively considered a species, open sites next to occupied sites play a negative role in volume

exclusion. In order to draw parallels with well-mixed CRNs, we split each pairwise reaction

into a series of reaction channels. Each pairwise reaction channel is associated with a center

particle interacting with up to D neighboring particles of the appropriate type, where D is the

number of adjacent neighbors. D takes the values 4, 6, and 8, respectively, on a square planar

lattice, a hexagonal planar lattice, and 3-dimensional cubic lattice. Therefore the total number

of reaction channels is R = D × # pairwise reactions + # on-site reactions. See Fig 1 for a depic-

tion of a predator-prey process involving foxes and rabbits on a hexagonal lattice and Table 3

Table 2. Predator-prey reactions.

Name Diagram Type Name Diagram Type

Fox Predation F + R! F + F Pairwise Rabbit Reproduction R + ; ! R + R Pairwise

Fox Migration F + ; ! ; + F Pairwise Rabbit Migration R + ; ! ; + R Pairwise

Fox Death F! ; On-site Rabbit Death R! ; On-site

Foxes (F) and rabbits (R) interact on a 2D hexagonal lattice with open sites (;). Reactions are either on-site involving a single animal interacting only with itself, or

pairwise involving an animal interacting with an adjacent site.

https://doi.org/10.1371/journal.pone.0247046.t002
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for its associated reaction channels. For instance, when the third predation reaction channel

fires, the simulation searches for a fox adjacent to exactly three rabbits to undergo the

predation.

There are two approaches to sampling a reaction channel and associated particle. The more

rudimentary approach is to scan through the particles in the lattice, sum the per-particle reac-

tion rates, and select a particular particle to fire with probability proportional to its contribu-

tion to this sum [30]. A more sophisticated method is given by Bortz, Kalos, and Lebowitz

under the n-fold way [16]. Here particles are grouped into classes such that all members of a

Fig 1. Example initial configuration. Sites are color coded by occupancy; vermvermillion denotes a fox F, and cyan

denotes a rabbit R. A site can be occupied by at most one animal at a time. Open sites are left blank.

https://doi.org/10.1371/journal.pone.0247046.g001

Table 3. Reaction channels and associated sample indices.

Reactants Products Per Particle Rate Sample Index Reactants Products Per Particle Rate Sample Index

F R F F α 1 F ; ; F 2γ 14

F R F F 2α 2 F ; ; F 3γ 15

F R F F 3α 3 F ; ; F 4γ 16

F R F F 4α 4 F ; ; F 5γ 17

F R F F 5α 5 F ; ; F 6γ 18

F R F F 6α 6 R ; ; R γ 7

R ; R R β 7 R ; ; R 2γ 8

R ; R R 2β 8 R ; ; R 3γ 9

R ; R R 3β 9 R ; ; R 4γ 10

R ; R R 4β 10 R ; ; R 5γ 11

R ; R R 5β 11 R ; ; R 6γ 12

R ; R R 6β 12 F ; μ 19

F ; ; F γ 13 R ; μ 20

Each initial pairwise reaction in Fig 1a is split into six reaction channels, one for each number of adjacent reactants. Each reaction channel has an associated per particle

rate and sample index. This sample index points to the collection of particles that the reaction channel samples a reactant from. The total rate of each reaction channel is

equal to the per animal rate times the number of animals in the associated sample class. Note that the rabbit reproduction and migration channels share the same sample

indices because they share the same reactants.

https://doi.org/10.1371/journal.pone.0247046.t003
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given class take part in a specific reaction with the same rate. This explicitly forms a series of

reaction channels for sampling using Markovian dynamics and avoids time consuming

searches of the lattice.

We provide an extension to the n-fold way that decouples the sampling of the reaction

channels, an inherently non-spatial maneuver, from the sampling of a particle to undergo the

reaction. This in turn separates the spatial dependencies inherent in IPSs from the Markovian

dynamics of the reaction channels. Thus, spatial correlations are handled during the update

step. We do this via generating sample classes, which are collections of particles that can be

sampled by one or more reaction channels. The sample classes are motivated by the observa-

tion that the exact configuration of neighboring particles does not matter for a given reaction

channel firing. Only the number of neighboring particles of the appropriate type influence the

reaction rate. Therefore each sample class contains particles of a specific species that are adja-

cent to a specific number of particles of a type that the particle under consideration can react

with.

This is best demonstrated by an example; see the sample classes associated with each reac-

tion channel in Table 3. The rabbits in the predator-prey example are sorted into seven differ-

ent sample classes, numbers 7 through 12 and 20, one for each central rabbit interacting with

one to six open adjacent sites and a final class containing only rabbits. As an example for the

pairwise reaction channels, sample class 9 contains rabbits adjacent to three open sites. This

sample class is targeted by two different reaction channels, one for rabbit migration with three

neighbors and one for rabbit reproduction with three neighbors. Likewise there is a sample

class associated with each on-site reaction; sample class 20 contains every rabbit that can

undergo death.

Because multiple reaction channels may sample particles from the same sample class, the

total number of sample classes is less than or equal to the number of reaction channels. Specifi-

cally, the number of sample classes is equal to D × # unique pairs of reactants + # unique on-

site reactants. Using the list of reactants, we assign each reaction channel to its appropriate

sample class. Multiple reaction channels will map to the same sample class when the reactions

use the same pair of reactants. For example rabbit migration and reproduction map to the

same sample class, as shown in Table 3.

Local updates

For a reaction channel to fire, a particle is sampled uniformly from the appropriate sample

class. This particle, possibly along with a neighbor of the appropriate interacting species, then

undergoes the reaction. At this point, the reaction rates must be updated to reflect the chang-

ing configuration. Again there are two possible methods for updating these rates [30]. The

first, called a global update, scans the entire lattice grouping particles into classes and calculat-

ing reaction rates. While straightforward, this is inefficient due to the fact that configuration

changes take place over at most two neighboring particles. In contrast, we use a local update
that changes the rates associated with particles immediately adjacent to or involved in the reac-

tion. There is overhead associated with sorting the particles by class and the local updates, but

these improvements prevent the simulation step from scaling with the number of particles in

computational complexity.

We now expand upon how we perform local updates. Because each particle’s behavior

depends only on its adjacent particles, it suffices to enumerate these different neighborhood

configurations. Specifically, we count the number of ways L species can be distributed across D
neighboring sites. The standard stars-and-bars argument shows that the total number of con-

figurations K is equal to the binomial coefficient
Dþ L

L

� �
. Highly efficient algorithms exist to
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systematically enumerate all configurations [31]. For example, with D = 4 neighbors and L = 2

species, the configuration 1 + 1 + 2 corresponds to one open adjacent site, one adjacent particle

of the first type, and two adjacent particles of the second type. See Fig 2a for an example preda-

tor-prey model using the neighborhood configurations.

The naive approach to sampling particles for each reaction channel would be to group par-

ticles together by species and neighborhood configuration k 2 {1, 2, . . ., K}. However, K scales

factorially with the number of species in the simulation. This scaling issue further motivates

our previous discussion of the sample classes, which scale with the number of reaction chan-

nels. We therefore restrict the use of neighborhood configurations purely for updating the

sample classes after a reaction has occurred. We will now expand on how the neighborhood

configurations, sample classes, and reaction channels interact.

Fig 2b provides an example of the local update procedure after a reaction channel has been

chosen to fire. In this scenario, reaction channel 1 is firing, meaning the simulation searches

for a fox F adjacent to exactly one rabbit R to undergo the predation reaction. Foxes that satisfy

this condition are contained within sample class 1 as denoted in Table 3. Suppose the bolded

fox in the first configuration of Fig 2b is sampled from sample class 1 to undergo the reaction.

Since it has only one adjacent rabbit, also bolded, this rabbit is likewise sampled to be the target

of the predation reaction. At this point the rabbit changes type to a fox, shifting from vermil-

lion to cyan. The neighboring indices and sample classes of both particles and their adjacent

species now are updated to reflect the rabbit changing type. For example, the sampled fox loses

an adjacent rabbit and is removed from sample class 1 to reflect this change. Lastly we update

the rates of the reaction channels that have changed in terms of numbers of associated

particles.

This approach has two major benefits. First, it decouples the size of the simulation from the

size of the lattice. The most intensive operations required are those involving sampling a parti-

cle in a given sample class. These operations scale O(n) with the number of elements n in the

sample class. Second, this decouples the sampling algorithm from the update step, allowing us

to extend our approach to arbitrary simulation algorithms. It is worth noting that a significant

portion of the simulation time is spent updating the sample classes of a particle after a reaction

has occurred; this is an unavoidable consequence of the spatial structure imposed by the lattice.

See the first table in the S1 File for an example breakdown of the run-time of different parts of

the simulation step.

Extension to arbitrary simulation algorithms

We begin by demonstrating how our IPS sampling method maps neatly onto the SSA. Let

r = 1, 2, . . ., R denote the index of a reaction channel, and let λr denote the associated reaction

rate for the r-th reaction channel. λ0 = ∑r λr is the total reaction rate for the process. Given U1

and U2 independent uniform [0, 1] random variables, we determine the time T to the next

reaction and the next reaction channel j to fire by the conditions

T ¼ �
log ðU1Þ

l0

and
Xj� 1

r¼1

lr < U2l0 �
Xj

r¼1

lr:

Since the update step is kept separate from the time and reaction channel sampling steps,

we are able to decouple the stochastic simulation algorithm of choice from the spatial consider-

ations of the system. This applies to arbitrary simulation algorithms, including both exact and

approximate methods. For example, τ-leaping proceeds exactly as described in [19]: the time

increment is chosen to satisfy a leap condition, and a Poisson number of events from each

reaction channel is chosen to fire. As an example, one might devise a leap condition by
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Fig 2. Configurations and reaction updating with sample classes. (a) Initial configuration with sample indices and neighborhood

configurations. Note that the number of adjacent open sites can be inferred from the number of foxes and rabbits. (b) Updating the

neighborhood and sample indices after a reaction. Suppose the highlighted fox and rabbit sites undergo a predation event. The rabbit is

replaced with a fox, and so the neighborhood and sample indices of the sites surrounding the former R require updating to reflect the

new configuration. The sample indices of the new F will change as well, but its neighborhood index will not. This update procedure

need only be done for and around sites that change species.

https://doi.org/10.1371/journal.pone.0247046.g002
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restricting the expected number of double-firing events on an individual particle, which neces-

sarily depends on the total number of particles. However, the update step is no longer commu-

tative as updates after a reaction must be carried out sequentially. We cannot sum the total

changes to the sample classes in the same fashion as in the well-mixed case, because we must

account for the possibility of intersecting particle paths. Thus an additional overhead is needed

to randomly shuffle the order in which each reaction channel fires. In the case of exact SSAs,

we can use a reaction-reaction dependency graph to restrict the reaction rates that are updated

after each event to the subset that is dependent on the fired reaction channel. Unlike their

counterparts for CRNs, a dependency between two reactions is captured through common

sample classes. Our local updates necessarily affect multiple sample classes which are not

uniquely determined by participating particle types as our local update mechanism also affects

sample classes. As mentioned earlier, we will follow this manuscript with an extensive review

of the many different available well-mixed simulation algorithms applied to IPSs.

Results

We provide simulation outputs generated by our software for four examples from models of

varying complexity. Each demonstrates a phenomenon that is observed in the spatial IPS ver-

sion of the process but not in the well-mixed CRN version. Jupyter notebooks [32] generat-

ing each image can be found at https://github.com/alanderos91/BioSimulator.jl. Animations

for each example as well as tutorial notebooks explaining syntax, model construction, and sim-

ulation output are also provided through the link. For a list of reactions and parameters for

each example, see the S1-S4 Tables in S1 File.

First, we have the predator-prey model previously described in Table 3. The output from

the simulation is visualized in Fig 3. An animation of Fig 3 shows spiral wave patterns created

by the prey migrating into unoccupied areas while being chased by predators, see the S1 File.

The predators at the end of the wave die off, leaving space for the prey to migrate into and

repeat the process. In this example, spatial dispersion promotes increased biodiversity. It pre-

vents the large spike in predators that can lead to extinction or dramatic fluctuations in the

number of predators and prey commonly seen in the CRN version of the model.

Second, we present the three species rock-paper-scissors game depicted in Fig 4. Each spe-

cies undergoes a birth-death-migration process and has an additional predation reaction: rock

preys on scissors, scissors prey on paper, and paper preys on rock. Spiral wave patterns are also

observed in this animation. Spatial dispersal similarly maintains biodiversity. Migration at a

high rate can destroy this diversity as the populations mix [3].

Third, we have a more complicated model of an immune system interacting with a growing

tumor in Fig 5. The cancer cells undergo a standard birth-death-migration process. Immune

cells migrate in from the barrier cells at a constant rate and destroy tumor cells on contact.

This predation may produce a fibrotic cell that is weakly porous to immune cells, simulta-

neously blocking the spread of the cancer and the eradication of the cancer by the immune sys-

tem. The formation of a protective shell of fibroblasts is not seen in the well-mixed or RDME

cases due to the lack of volume exclusion. Our simulations recapture the immune-excluded

response result shown in [28]. This model is useful for exploring potential barriers to tumor

eradication during immuno-therapy.

Finally, we present a model of polyunsaturated fatty acid (PUFA) oxidation in lipid mem-

branes. Certain PUFAs are susceptible to oxidation which creates a kink in their long unsatu-

rated hydrocarbon tails. As a result, a membrane with a significant number of oxidated PUFAs

loses flexibility and can lead to neurodegeneration and aging [33]. Replacing the affected

hydrogen atoms with deuterium significantly reduces the rate of oxidation, acting as a vaccine
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of sorts against the infective nature of reactive oxygen species. Fig 6 shows the trail of depleted

(kinked) PUFAs left behind a reactive oxygen species jumping to unoxidated PUFAs. There

exists a phase transition when the frequency of deuteration reaches approximately a 20%. This

transition drastically reduces the length of the depleted PUFA chains left by an oxidated spe-

cies. This reduction has been observed in vitro through mortality experiments on yeast. It can

be observed using our software as a consequence of the oxidated species becoming trapped by

its own tail and the deuterated PUFAs.

Availability and future directions

We have presented a principle for algorithm design that stresses elegance, performance, repro-

ducibility, and wide applicability. These benefits can be broken down into three larger points.

First, our design allows for model standardization based on interacting particle systems.

Many in-silico studies of spatial particle processes are haphazard in their construction and do

not follow continuous time Markovian reaction dynamics. This limits the comparisons that

can be made between models and creates barriers for new researchers looking to perform their

own simulation studies. Adopting IPSs as a standard mathematical model enhances the most

useful application of spatial stochastic simulation, namely generating hypotheses for given

Fig 3. Realization of the predator-prey process. Foxes (predators) and rabbits (prey) diffuse within a bounded domain, undergoing the reactions

described in Table 3.

https://doi.org/10.1371/journal.pone.0247046.g003
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phenomena. Having a set of concrete, mechanistic rules with a straightforward probabilistic

interpretation allows researchers to develop a hypothesis based on reaction dynamics that

reproduce a given behavior in-silico and then take these dynamics back to an experimental set-

ting for verification. The PUFA oxidation example serves as a demonstration of how hypothe-

ses about an experimentally observed phenomenon can be tested using our software.

Second, our software is open-source and easily modifiable to individual needs. We have

coded our implementation in Julia, a fast, expressive, and flexible open-source programming

language designed for scientific computing [25]. Julia’s ease of use facilitates extensions of

our software to handle, for example, genealogies, particle tracking, and potentially long-range

interactions between particles. The ease of use and model standardization taken together make

further research done with our software easily reproducible and straightforward to document.

Lastly, our algorithm design allows us to apply arbitrary well-mixed stochastic simulation

algorithms to spatial IPSs. This will be explored later in a review article that compares how

each algorithm behaves in the spatial setting. Regardless, we can now apply a large swath of

algorithms to spatial stochastic simulation without tedious re-implementation.

It is enlightening to contrast our algorithmic framework with previous work that has been

published on different versions of stochastic IPS simulation. The most general spatial approach

Fig 4. Rock-paper-scissors game. Three different species undergo a birth-death-migration process. Additionally, rock preys on scissors, scissors prey

on paper, and paper preys on rock in a cyclic fashion.

https://doi.org/10.1371/journal.pone.0247046.g004
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uses Green’s Function Reaction Dynamics (GFRD) to allow particles to diffuse over a continu-

ous space [34, 35]. This approach does allow for volume exclusion but due to the nature of

Brownian motion is numerically intensive. Both Spatiocyte and our approach address this

problem by restricting particles to diffuse across a lattice [13, 15, 36]. The software package

Spatiocyte is generally similar to what we present here; particles diffuse and react across a lat-

tice obeying volume exclusion. While Spatiocyte is a very sophisticated package with many

enhancements, it does not enjoy the advantages of our sample classes in allowing invocation of

a range of different stochastic simulation algorithms. Specifically pSpatiocyte, the parallelized

and most recent version of Spatiocyte, restricts sampling to Gillespie’s direct method [15].

While we have provided a framework for performing IPS simulations, significant exten-

sions are possible that reduce the bias created by imposing a lattice spatial structure in IPS sim-

ulations [14]. First, square lattices are biologically unrealistic and can bias reaction kinetics

during simulation. Chew et al. [14] ameliorate this problem imposing a hexagonal close-

packed (hcp) lattice. Second, these authors derive a lattice spacing that minimizes the error

caused by particles of different sizes. Finally, Chew et al. show how to use a species’ diffusion

coefficient to derive diffusion rates on the hcp lattice. Each of these extensions can be

Fig 5. Model of immunotherapy. Tumor cells grow under a birth-death-migration process. Immune cells immigrate from the barrier at constant rate,

migrate to cancer cells, then destroy the cancer cells occasionally producing fibrotic cells after this predation. Fibrotic cells are slightly porous to the

immune cells but block the diffusion of the cancer cells. FI stands for a fibrotic cell that has an immune cell currently passing through it.

https://doi.org/10.1371/journal.pone.0247046.g005
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implemented in BioSimulator without changing the underlying algorithmic framework.

These enhancements and code parallelization along the lines of [15] must await future versions

of BioSimulator.

Our implementation of lattice simulation constitutes an extension of the BioSimulator
package and is available along with the entire package on the GitHub site https://github.com/

alanderos91/BioSimulator.jl. The code can be downloaded anonymously from the GitHub

URL. The site includes an issue reporting service as well as documentation, an installation

guide, example notebooks, build statuses, and code coverage. BioSimulator is licensed

under MIT “Expat” License and is OSI compliant.

Supporting information

S1 File. The file for a complete list of the reactions and parameters used in the examples.

We also include animations for each example IPS in the Results sections available through

GitHub.

(ZIP)

Fig 6. Model of lipid oxidation. Polyunsaturated fatty acids (PUFAs), denoted by open sites, are present in the lipid membranes of cells. Reactive

oxygen species can oxygenate a PUFA, resulting in a depleted PUFA that reduces the flexibility of the lipid membrane. Deuterated PUFAs are resistant

to the oxygenation. Adding a certain percentage of deuterated PUFAs to the membrane can drastically reduce the length of the depleted lipid chain. The

simulation was initiated with a single oxygenated PUFA at the origin.

https://doi.org/10.1371/journal.pone.0247046.g006
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