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Abstract
Standard methods for studying the association between two ecologically important 
variables provide only a small slice of the information content of the association, 
but statistical approaches are available that provide comprehensive information. In 
particular, available approaches can reveal tail associations, that is, accentuated or re-
duced associations between the more extreme values of variables. We here study the 
nature and causes of tail associations between phenological or population-density 
variables of co-located species, and their ecological importance. We employ a simple 
method of measuring tail associations which we call the partial Spearman correlation. 
Using multidecadal, multi-species spatiotemporal datasets on aphid first flights and 
marine phytoplankton population densities, we assess the potential for tail associa-
tion to illuminate two major topics of study in community ecology: the stability or 
instability of aggregate community measures such as total community biomass and 
its relationship with the synchronous or compensatory dynamics of the community's 
constituent species; and the potential for fluctuations and trends in species phenol-
ogy to result in trophic mismatches. We find that positively associated fluctuations 
in the population densities of co-located species commonly show asymmetric tail 
associations; that is, it is common for two species’ densities to be more correlated 
when large than when small, or vice versa. Ordinary measures of association such as 
correlation do not take this asymmetry into account. Likewise, positively associated 
fluctuations in the phenology of co-located species also commonly show asymmetric 
tail associations. We provide evidence that tail associations between two or more 
species’ population-density or phenology time series can be inherited from mutual 
tail associations of these quantities with an environmental driver. We argue that our 
understanding of community dynamics and stability, and of phenologies of interact-
ing species, can be meaningfully improved in future work by taking into account tail 
associations.
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1  | INTRODUC TION

All ecologists study relationships between biological and envi-
ronmental variables and among biological variables. But standard 
methods for studying the association between two variables pro-
vide only a small slice of the information content of the association. 
For instance, the two pairs of variables in Figure 1a,b have identical 
Pearson correlation coefficients, and also have identical Spearman 
correlation coefficients, but nonetheless display very different pat-
terns of association (Ghosh, Sheppard, Holder, et al., 2020; Ghosh, 
Sheppard, & Reuman, 2020). Correlations are not the only way to 
study associations, but they are very commonly used, and other 
standard methods in ecology provide a similarly limited amount 
of information that neglects patterns of association (Anderson, de 

Valpine, Punnett, & Miller, 2018; Genest & Favre, 2007; Joe, 2014; 
Mai & Scherer, 2017; Nelsen, 2006) that seem likely to be ecolog-
ically important (Ghosh, Sheppard, Holder, et al., 2020; Ghosh, 
Sheppard, & Reuman, 2020).

The variables of Figure 1a (respectively, Figure 1b) are more 
strongly related in the left (respectively, right) portions of their dis-
tributions, thereby displaying asymmetric associations of the distri-
bution tails, henceforth called asymmetric tail association. For two 
positively associated variables, stronger association between values 
in the left or lower portions of the distributions of the variables is 
henceforth referred to as left-tail association (Figure 1a), whereas 
stronger association between values in the right or upper portions of 
the distributions of the variables is henceforth referred to as right-tail 
association (Figure 1b). The word “distribution” is sometimes omitted 
from the terminology, but implied. Tail association is a potentially 
important pattern of association that is not captured by standard 
correlation coefficients.

Statistical approaches exist, however, that provides a complete 
description of the relationship between variables; these approaches 
are based on the idea of the copula. Tail associations are an import-
ant aspect of a copula approach to dependence, and tail association 
will be a focus of this paper. We here give a conceptual flavor of cop-
ulas before subsequently focusing on tail association. We introduce 
copulas instead of proceeding directly to tail associations, for three 
reasons: to properly credit the copula ideas at the root of our tail 
association tools, and the researchers who developed them; to indi-
cate the origin of our tail association tools, so that future researchers 
seeking to generalize our approach will have a place to start; and to 
introduce ideas (normalized rank plots—see below) that are neces-
sary to define our measures of tail association. Copulas can be used 
to separate the information content of a bivariate dataset, (xt, yt) for 
t = 1,…,T, into two nonoverlapping parts: the information in the mar-
ginal distributions (which is not about the association between the 
variables) and the rest of the information (which is solely about the 
association). Following Ghosh, Sheppard, Holder, et al. (2020) and 
Genest and Favre (2007), the isolated information about the associa-
tion between xt and yt is revealed by the plot of ut against vt, where ut 
is the rank of xt in the set {x1, x2, . . . , xT}, divided by T + 1; and vt is the 
rank of yt in the set {y1, y2, . . . , yT}, also divided by T + 1. Here the rank 
of the smallest element of a set is understood to be 1. We refer to 
the ut and vt as normalized ranks of the xt and yt. We refer to the plot 
of vt against ut as the normalized rank plot for yt and xt. For instance, 
the normalized rank plots for Figure 1a,b are in Figure 1c,d and show 
the asymmetric associations in the tails. The normalized rank plot 
reflects the copula structure of (xt, yt) (Genest & Favre, 2007; Ghosh, 
Sheppard, Holder, et al., 2020). Ranking makes the marginal distri-
butions uniform, isolating only the information on association be-
tween the variables. Genest and Favre (2007) states that inferences 
about dependence structures should always be based on ranks. It is 
likewise the purpose of copula approaches to separate association 
information from information on marginals.

We emphasize that we have not here provided a formal defini-
tion of copulas, instead only introducing the fundamental copula 

F I G U R E  1   Pedagogical figure for introducing tail association 
and partial Spearman correlation. (a, b) Two pairs of variables that 
have identical Pearson (P) correlation, and also identical Spearman 
(S) correlation, but that differ markedly in the nature of the 
association. Panel a shows stronger left- than right-tail association 
and panel b shows the reverse. (c, d) Normalized rank plots (see 
Section 1) for panels a and b, respectively. (e, f) Graphics supporting 
the definitions of partial Spearman correlation and our statistic 
measuring asymmetry of tail association (see Section 2). This figure 
is similar in some respects to figs 1 and 7 of Ghosh, Sheppard, 
Holder, et al. (2020)
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idea of separating dependence information from information on 
marginals. Brief (Anderson et al., 2018; Genest & Favre, 2007; 
Ghosh, Sheppard, Holder, et al., 2020) and comprehensive 
(Joe, 2014; Mai & Scherer, 2017; Nelsen, 2006) introductions to 
copulas are available elsewhere. Copulas can also be used to study 
multivariate data. Copula approaches are applied widely and to 
great effect in fields such as finance and neuroscience (Emura & 
Chen, 2016; Goswami, Hazra, & Goyal, 2018; Kim et al., 2008; 
Li, 2000; Li, Xie, & Hu, 2013; Onken, Grünwälder, Munk, & 
Obermayer, 2009; Serinaldi, 2008; She & Xia, 2018), but only 
rarely, so far, in ecology (Anderson et al., 2018; Ghosh, Sheppard, 
Holder, et al., 2020; Ghosh, Sheppard, & Reuman, 2020; Popovic, 
Warton, Thomson, Hui, & Moles, 2019; Valpine, Scranton, Knape, 
Ram, & Mills, 2014). The potential of copulas for improving ecolog-
ical understanding was argued by Ghosh, Sheppard, Holder, et al. 
(2020), and those authors also introduced tail association as an im-
portant aspect of copula structure and elaborated the relationship 
between tail association and copulas.

The study of Ghosh, Sheppard, Holder, et al. (2020) was a 
wide-ranging study of the importance, causes, and consequences of 
copula structures in associations between ecological variables. One 
of the main foci of that paper was associations between fluctuations 
through time of population-density or phenological measurements 
of the same species in different locations. This study instead focuses 
on population-density and phenological measurements of different 
species in the same location. Ghosh, Sheppard, Holder, et al. (2020) 
studied, for instance, associations between first flight time series, 
for a given species of aphid, measured at different locations in the 
United Kingdom (UK); and associations between plankton density 
time series, for a given plankton taxon, measured at different loca-
tions in seas around the UK. We instead study associations between 
first flight or population-density time series measured in the same 
location for different (sympatric) species. Thus, in contrast with the 
study of Ghosh, Sheppard, Holder, et al. (2020), this study is more 
part of community ecology than of spatial ecology. Our reasons for 
this shift are as follows.

First, synchronous (positively correlated) and compensatory (neg-
atively correlated) population-density dynamics of different spe-
cies occupying the same area are longstanding topics of concern 
in community ecology, with important ramifications for the stabil-
ity or instability of aggregate community or ecosystem properties 
(Gonzalez & Loreau, 2009; Jochimsen, Kümmerlin, & Straile, 2013; 
Kent, Yannarell, Rusak, Triplett, & McMahon, 2007; Loreau & 
Mazancourt, 2008; Raimondo, Turcáni, Patoèka, & Liebhold, 2004); 
there are reasons to believe tail associations in this context will 
play an important but unstudied role in understanding these top-
ics. A major past insight into community dynamics (Gonzalez & 
Loreau, 2009) was that an aggregate property of a community, such 
as its total biomass, can be relatively stable through time although 
its constituent parts (population biomasses of individual species) are 
highly variable, if the parts show compensatory dynamics (Hallett 
et al., 2014). Likewise, synchrony amplifies community biomass vari-
ability because the concordant variations of species biomass time 

series reinforce each other in the total (Ma et al., 2017). If synchro-
nous fluctuations show right-tail association, then species are highly 
abundant simultaneously, which may produce years of extremely 
high community biomass. Alternatively, if synchronous fluctuations 
show left-tail association, species are very scarce simultaneously, po-
tentially producing years of extremely low community biomass. Thus 
the tail association of synchrony, not just the presence and strength 
of synchrony, may independently influence temporal variability of 
aggregate community properties. This is revisited in the Discussion.

Second, studies of the phenology of species interacting in one 
area have also played a central role in community ecology, with im-
portant ramifications for whether and to what extent interactions 
will be modified by climate change (Durant, Hjermann, Ottersen, & 
Stenseth, 2007; Yang & Rudolf, 2010); there are reasons to believe 
tail associations between variables in this context may play an im-
portant role, as well. As climate changes and phenologies shift, 
there is the potential for phenologies of interacting species to shift 
differently, disrupting the interaction (Thackery et al., 2010). This 
idea is referred to as the match–mismatch hypothesis. Even if, for 
instance, year-to-year fluctuations in the emergence times of two 
interacting species are highly correlated, if this correlation is prin-
cipally in the right (respectively, left) tails of the distributions of 
possible emergence times, so that early (respectively, late) emer-
gences of the species are actually uncorrelated, then mismatched 
years are likely to occur, impacting the species. Such mismatches 
will occur, in this conceptual example, when emergence is early 
(respectively, late). Essentially, even with substantial correlation 
between emergence dates of species, if this correlation is prin-
cipally in one of the tails, then uncorrelated emergences, and 
therefore mismatches, can occur under some conditions. One po-
tential mechanism by which early emergences, for example, may 
be uncorrelated between species while later emergences remain 
correlated is if both species follow the same environmental cue 
for their emergence, but physiological limitations of only one of 
the species prevent emergence before a certain date. Advancing 
emergence dates of myriad species make this scenario more 
plausible.

We here begin exploring whether tail associations may be im-
portant for studies of synchrony and compensatory dynamics, and 
for studies of phenology and the match–mismatch hypothesis. We 
use a 56-year dataset of population densities of 4 species of dino-
flagellates from the Certaium genus, from 15 locations in the seas 
around the UK; and a 35-year dataset of annual first flight dates 
for 20 species of aphid from 10 locations within the UK. The terms 
left- and right-tail association, defined above, do not apply to 
negatively associated variables, because the negative association 
means values in the left tail of one variable are associated with 
those in the right tail of the other; slightly modified methods are 
required to study tail association and its asymmetry in negatively 
associated variables. But our aphid and plankton population and 
phenology variables were almost exclusively positively associated 
with each other (see Section 3). Therefore, we introduce methods 
and present results in this study chiefly for the case of positively 
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associated variables, returning to the topics of negatively asso-
ciated variables and compensatory population dynamics in the 
Discussion.

In addition to examining whether tail association in our data 
is asymmetric, we also test for possible causes of such patterns. 
One possible mechanism, similar to some of the mechanisms ex-
plored by Ghosh, Sheppard, Holder, et al. (2020), is explained for 
the Ceratium example as follows. Earlier work showed that av-
erage sea surface temperature is an important correlate of phy-
toplankton abundance in our data (e.g., Defriez, Sheppard, Reid, 
& Reuman, 2016; Sheppard, Defriez, Reid, & Reuman, 2019a; 
Sheppard, Reid, & Reuman, 2017): cold water is associated with 
more phytoplankton, likely because upwelling and mixing of the 
surface and deeper ocean layers bring both nutrients and cold 
water to the photic zone. However, if it is the case for a given 
location that very cold water is associated with no more Ceratium, 
on average, than is moderately cold water, then that corresponds 
to a positive relationship and a left-tail association between the 
“coldness” of the surface water (measured, for instance, by how 
many degrees colder the water is than average) and Ceratium 
abundance. If such tail association is strong and consistent across 
Ceratium species, it should produce positive relationships with 
left-tail association between the abundance time series of the 
species. Likewise, in locations for which the winter coldness-Cer-
atium abundance association shows less left-tail association, one 
should see less left-tail association between different Ceratium 
species. So tail association between two species may be inher-
ited from joint tail association of both species on a common envi-
ronmental driver. Phytoplankton are also strongly influenced by 
the abundant generalist copepod consumer Calanus finmarchicus, 
so our actual investigation of the mechanism proposed here will 
take into account this influence as well as the association with sea 
surface temperature. For aphid first flight, we examine the same 
potential mechanism, but the relevant driver in that case is winter 
temperature.

Thus this paper focuses on whether and why population-den-
sity or phenological time series of co-located species may show 
asymmetric patterns in their tail associations, with a focus on pos-
itively associated variables because positive associations are what 
occurred in the available data. We ask the following specific ques-
tions. (Q1) Do synchronous/positively correlated population-den-
sity or phenological time series of co-located species commonly 
show asymmetric tail associations? (Q2) If so, what are the causes 
of these patterns? We examine potential ecological consequences 
of asymmetric tail associations in the Discussion. We regard our 
investigation as a first step toward a better understanding of the 
potential importance of asymmetric tail associations for such cen-
tral ecological topics as synchrony and compensatory dynamics 
in communities and their influence on community stability; and 
the match–mismatch hypothesis in phenology. The Discussion also 
has additional thoughts on next steps toward this goal. Our results 
and the conceptual considerations introduced above are good ev-
idence, in our view, of the potential for tail association to make a 

crucial difference in how ecologists understand these important 
topics.

2  | METHODS

2.1 | Data

Our population dataset comprised average annual abundance esti-
mates for 15 locations (Figure S1) in the North Sea and British seas 
for 4 species from the Ceratium genus of dinoflagellates, and for 
the generalist consumer copepod species C. finmarchicus, for the 
56 years 1958–2013. These data were a subset of a larger dataset 
covering 22 taxa and 26 locations, analyzed by Sheppard et al. (2017), 
Sheppard et al. (2019a), and Ghosh, Sheppard, Holder, et al. (2020). 
The locations are 2° by 2° grid cells. The data were originally ob-
tained from the Continuous Plankton Recorder (CPR) dataset, now 
operated and maintained by the Marine Biological Association of the 
United Kingdom. Data preprocessing steps were the same as used 
by Ghosh, Sheppard, Holder, et al. (2020). Ceratium species were 
extracted in part because they have a role in harmful algal blooms 
(red tides) (Baek, Shimode, Shin, Han, & Kikuchi, 2009); and also 
because four species were available from the genus (Table 1), and 
we chose closely related species because they may be influenced in 
similar ways by environmental variables. The 15 locations we used 
were selected from the 26 locations of the larger dataset (Figure 
S1) as follows. First, to reduce the effects of sampling variation on 
statistical results, we chose the subset of locations for which more 
than 35 years of data were available for all species. Second, for a 
given location, we excluded Ceratium species that were undetected 
for more than 10% of sampled years at that location. Finally, we con-
sidered only those locations for which at least two Ceratium species 
remained. We also had data on average growing season sea surface 
temperature for each grid cell and year (Sheppard et al., 2017, 2019a). 
Earlier analyses (e.g., Sheppard et al., 2019a) demonstrated that sea 
surface temperature and C. finmarchicus abundance are important 
covariates of phytoplankton dynamics in UK seas, though associa-
tions between temperature and phytoplankton are probably due to 
relationships both these variables have with nutrient abundance in 
surface ocean layers. Sea surface temperature data preprocessing 
was the same as used by Sheppard et al. (2017).

Our phenology dataset comprised annual first flight dates for 
20 aphid species (Table 1) from 10 locations across the UK (Figure 
S2), spanning the 35 years 1976–2010. These data were a sub-
set of a larger dataset covering 11 locations, analyzed previously 
by Sheppard, Bell, Harrington, and Reuman (2016) and Ghosh, 
Sheppard, Holder, et al. (2020). The data were originally obtained 
from the Rothamsted Insect Survey suction-trap dataset (Bell 
et al., 2015; Harrington, 2014). Data preprocessing was the same 
as that of Sheppard et al. (2016). Locations were screened, leading 
to the removal of one of the original 11 sampling locations, by re-
quiring at least 30 years of data be available for all species, again to 
reduce sampling variation of statistics. We also had time series of 
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winter average temperature for each location and year. The winter 
temperature for year t was the average of December of year t − 1 
to March of year t. Earlier analyses have demonstrated the impor-
tance of winter temperature for aphid first flight date (e.g., Sheppard 
et al., 2016).

2.2 | Statistical methods

Given bivariate data (xt, yt) for a set of years, t, of size T, and after 
computing normalized ranks (ut, vt) as described in the Introduction, 
tail association and asymmetry of tail association were measured 
using the partial Spearman correlation of Ghosh, Sheppard, Holder, 
et al. (2020), which we here reintroduce. The standard Spearman 
correlation itself measures association between the variables xt and 
yt (or between ut and vt – recall the Spearman correlation is based 
on ranks, so is the same for both sets of variables); but Spearman 
correlation measures only the overall association of the samples and 
cannot tell us how association varies across the distributions of the 

variables. Given two bounds 1≤ lb<ub≤1, we define the boundary 
lines u+v=2lb and u+v=2ub (Figure 1e), which intersect the unit 
square on which normalized ranks are plotted. The partial Spearman 
correlation associated with the bounds lb and ub will be the portion of 
the Spearman correlation attributable to the points that fall between 
these boundary lines. The partial Spearman correlation for the band 
between these boundaries and within the unit square is,

Here, sample means and sample variances are computed using 
all T data points, but the sum, 

∑
, is over only the indices t for which 

ut+vt>2lb and ut+vt<2ub. The partial Spearman correlation is not 
defined if there are no points in the band. For positively associated 
(ut, vt), the partial Spearman correlations cor0,b and cor1−b,1 for b≤0.5 
(Figure 1f) measure association in the left and right tails, respectively, 
and can be compared via a difference, cor0,b−cor1−b,1, to measure 
asymmetry of tail association. Positive values (respectively, neg-
ative) of this difference mean stronger left-tail (respectively, right-
tail) association. The sum of cor0,0.5 and cor0.5,1 (or the sum of corlbk ,ubk 
for any other choice of bands (lbk , ubk ) that partition (0, 1)) equals the 
standard Spearman correlation, as long as no points happen to lie 
exactly on the bounds. Notation is summarized in Table S1.

For each sampling location, n, we computed a matrix, Cn, which 
we call the community tail association matrix, which quantifies 
asymmetry of tail association between pairs of aphid species or 
pairs of Ceratium species at n. Denote by sn

i
(t) the aphid first flight 

date or the Ceratium population-density for sampling location n, 
for the ith species that was present in the cleaned data for lo-
cation n, and for year t. We then defined the matrix Cn by defin-
ing Cn(i, j) for two aphid or Ceratium species i,j, as follows. First, 
Cn(i, j) was not defined, or was defined to equal the missing-data 
space holder “NA”, if one of three conditions held true: (a) i = j; 
or if (b) the hypothesis that sn

i
(t) and sn

j
(t) were independent could 

not be rejected (5% level, using a test described by Genest and 
Favre (2007), implemented in the function BiCopIndTest in the 
VineCopula package in R); or if (c) independence was rejected but 
the Spearman correlation of sn

i
(t) and sn

j
(t) was negative. Otherwise 

we defined Cn(i, j)=cor0,b(s
n
i
(t), sn

j
(t))−cor1−b,1(s

n
i
(t), sn

j
(t)), where the 

partial Spearman correlations in this expression were computed 
over the times, t, for which data were available for location n. The 
entry Cn(i, j) was set to NA if independence of sn

i
(t) and sn

j
(t) could 

not be rejected because attempting to quantify tail association 
(or anything else about association) for independent variables is 
pointless. Cn(i, j) was set to NA for negatively associated sn

i
(t) and 

sn
j
(t) because negative association occurred for only one pair of 

species in one location in our data (plankton sampling location 18, 
species C. furca and C. macroceros, see Section 3). Tail association 
for negatively associated variables should be studied, and this 
topic is revisited in the Discussion, but negative associations were 
too rare in our data to study them. The community tail association 
matrix Cn is symmetric. The value b=1∕3 was used for plankton 

(1)corlb ,ub (u, v)=

∑
(ut−mean(u))(vt−mean(v))

(T−1)
√
var(u)var(v)

TA B L E  1   Names of 4 plankton and 20 aphid species for which 
data were used

Species ID Latin binomial

Plankton

1 Ceratium fusus

2 Ceratium furca

3 Ceratium tripos

4 Ceratium macroceros

Aphids

1 Rhopalosiphum insertum

2 Rhopalosiphum padi

3 Aphis fabae

4 Sitobion fragariae

5 Hyperomyzus lactucae

6 Rhopalosiphum maidis

7 Nasonovia ribisnigri

8 Phorodon humuli

9 Sitobion avenae

10 Elatobium abietinum

11 Brachycaudus helichrysi

12 Brevicoryne brassicae

13 Hyalopterus pruni

14 Acyrthosiphon pisum

15 Myzus persicae

16 Macrosiphum euphorbiae

17 Metopolophium dirhodum

18 Myzus ascalonicus

19 Drepanosiphum platanoidis

20 Cavariella aegopodii
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locations, whereas b=1∕2 was used for aphid locations because 
aphid time series were shorter, and larger b reduces sampling vari-
ation for our statistics (Ghosh, Sheppard, Holder, et al., 2020). See 
Appendix S1 for more information on the choice of b.

We also computed a matrix Dn, which we call the commu-
nity-driver tail association matrix, which quantifies tail associa-
tion between aphid or plankton time series and their covariates. 
Denote by dn

k
(t) the value of the kth covariate that operated at 

sampling location n in year t (winter temperature for an aphid 
sampling location, sea surface temperature or C. finmarchi-
cus density for a Ceratium location). We then defined Dn by de-
fining Dn(i, k) for an aphid or Ceratium species i and a covariate 
k, as follows. First, Dn(i, k) was not defined, or was set to NA, if 
the hypothesis that sn

i
(t) and dn

k
(t) were independent could not be 

rejected (5% level, BiCopIndTest). Otherwise, we either: (a) set 
Dn(i, k)=cor0,b(s

n
i
(t), dn

k
(t))−cor1−b,1(s

n
i
(t), dn

k
(t)) if sn

i
(t) and dn

k
(t) were 

positively associated (positive Spearman correlation); or (b) set 
Dn(i, k)=cor0,b(s

n
i
(t),−dn

k
(t))−cor1−b,1(s

n
i
(t),−dn

k
(t)) if sn

i
(t) and dn

k
(t) were 

negatively associated (negative Spearman correlation). For aphid 
first flight time series, for which k was always 1 and dn

k
(t) was win-

ter temperature in location n, associations between sn
i
(t) and dn

k
(t) 

were always negative when they were significant (see Section 3). 
The same was true for Ceratium density time series and sea sur-
face temperature. Thus our practice of using −dn

k
(t) was equiva-

lent, in the case of temperature variables, to using a “coldness” 
index such as the number of degrees colder than an average or 
typical reference temperature, in place of temperature. Aphid and 
Ceratium data were always positively associated with the coldness 
index when they were significantly associated with it. Although 
C. finmarchicus abundance was positively associated with Ceratium 
time series in some sampling locations and negatively associated 
in others, it always showed the same sign of association with all 
Ceratium species within a location. Using −dn

k
(t) in place of dn

k
(t) 

when negative associations with aphid or Ceratium data occurred 
allowed us to study asymmetry of tail association using methods 
developed with positively associated variables in mind. We again 
used b=1∕3 for plankton data and covariates, and b=1∕2 for aphid 
data and winter temperature. For display, we horizontally concat-
enated the matrices Cn and Dn and displayed matrix values using 
color.

We used the community tail association matrix Cn for each sam-
pling location n to answer Q1 from the Introduction, as follows. First, 
we counted the number, Nn

L
, of entries of Cn which were not NA and 

which were greater than 0. These were the “left-tail dominant” spe-
cies pairs, that is, pairs of species for which association was stronger 
in the left rather than in the right tails of the species distributions. 
We also counted the number, Nn

R
, of right-tail dominant pairs, for 

which the corresponding entries of Cn were negative. If Nn

L
 was sub-

stantially greater than (respectively, substantially less than) Nn

R
 for a 

location n, it suggested that left-tail association (respectively, right-
tail association) between species in that location was dominant, an-
swering Q1 in the affirmative. We also calculated An

C,L
, the sum of all 

positive, non-NA entries of Cn; An

C,R
, the sum of all negative, non-NA 

entries of Cn; and An

C
=An

C,L
+An

C,R
, a general measure of asymmetry 

of tail association in location n. We refer to An

C
 as the total commu-

nity tail association. We additionally calculated the normalized quan-
tities Fn

C,L
=An

C,L
∕(An

C,L
+ |An

C,R
|) and Fn

C,R
=An

C,R
∕(An

C,L
+ |An

C,R
|). Because 

0≤Fn
C,L

≤1, 0≤ |Fn
C,R

|≤1, and Fn
C,L

+ |Fn
C,R

|=1, the relative sizes of Fn
C,L

 
and |Fn

C,R
| indicate the relative dominance of left- and right-tail asso-

ciation between species at location n. Together, all these statistics 
provide an answer to Q1.

We used the community tail association matrix, Cn, and the 
community-driver tail association matrix, Dn, to answer Q2 from 
the Introduction for the Ceratium and aphid data, as follows. First, 
we calculated An

D
, the sum of all non-NA entries of Dn. This was 

analogous to An

C
, but calculated using the matrix Dn instead of the 

matrix Cn. We refer to An

D
 as the total community-driver tail asso-

ciation. We then examined whether the values An

C
 and An

D
 were 

correlated across locations, n. This tests the causal hypothesis in 
the Introduction because it tests whether Ceratium or aphid time 
series having stronger right-tail (respectively, left-tail) association 
with environmental covariates in a given location also had stron-
ger right-tail (respectively, left-tail) association with each other at 
that location. Recall that an environmental covariate was reversed 
(its negative was used) when it was negatively associated with a 
Ceratium or aphid species, and that no covariate was ever signifi-
cantly positively associated with some Ceratium or aphid species 
and significantly negatively associated with another such species 
in the same location (see Section 3).

We also answered Q2 for the aphid data as follows. Within a loca-
tion, n, for each species, i, we computed the mean �n

C
(i) of all non-NA 

entries Cn(i, j), for j ranging across all species for which we had data. 
This quantity measures an average tail association of species i with 
other species in the same location, with positive values for greater 
left-tail association and negative ones for greater right-tail associa-
tion. We refer to �n

C
(i) as the species-community tail association for spe-

cies i. We then defined �n
D
(i) as the sum of all non-NA entries Dn(i, k), 

for k ranging across all covariates for which we had data. We refer 
to this as the species-driver tail association for species i. For aphids 
we only had one covariate, winter temperature, so �n

D
(i)=Dn(i, k) for 

k = 1 corresponding to winter temperature. We provide the more 
general definition of �n

D
(i) that applies when more covariates were 

available so the definition can also be considered (briefly, see below) 
for Ceratium data. We then examined, for each location, n, whether 
�
n
C
(i) and �n

D
(i) were correlated across species, i. This tests the causal 

hypothesis in the Introduction because it tests whether aphid species 
which were more right-tail (respectively, left-tail) associated with en-
vironmental covariates (winter temperature) also had time series that 
were more right-tail (respectively, left-tail) associated with the time 
series of other species in the location. Recall that winter temperature 
was always negatively associated with aphid first flight when it was 
significantly associated (see Section 3), and negative temperature (a 
coldness index) was used in computing Dn(i, k). Testing whether �n

C
(i) 

and �n
D
(i) were correlated across species, i, within a location, n, was 

not practical for Ceratium, because we only had data for at most four 
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Ceratium species per sampling location, an insufficient number to pro-
vide much statistical power in testing for a correlation.

3  | RESULTS

Associations between Ceratium species were always positive when 
they were significant, except for one pair of species in one location 
(plankton sampling location 18, species C. furca and C. macroceros). 
Asymmetric tail association was very common between Ceratium 
population-density time series from the same location, answering 
Q1 in the affirmative for Ceratium; for some locations, left-tail as-
sociation between Ceratium species was dominant, and for other 
locations right-tail association was dominant. To show this, we show 
that for some locations, the community tail association matrix, Cn, 
was comprised largely of positive values, indicating a preponder-
ance of left-tail association between Ceratium time series for the 
location (Figure 2a). For such locations, Ceratium population densi-
ties are more likely to be correlated across species at low population 

densities than at high densities. For other locations, Cn had mostly 
negative values, indicating a preponderance of right-tail association 
(Figure 2b). For such locations, Ceratium population densities are 
more likely to be correlated across species at high population densi-
ties than at low densities. To demonstrate the same result in another 
way, we show that the statistics FC,L and FC,R, plotted across all sam-
pling locations (Figure 2c), indicated that most Ceratium sampling 
locations were dominated by either left- or right-tail association, 
with approximately equal numbers of each, with only a few locations 
having more symmetric tail association, on average across pairs of 
Ceratium species.

Associations between aphid time series were always positive 
when they were significant. Asymmetric tail association was also 
very common between aphid first flight time series from the same 
location, answering Q1 in the affirmative for aphids; left-tail associ-
ation was more common for some sampling locations and right-tail 
association dominated for others, but for most sites right-tail asso-
ciation dominated. To show this, we show that for some locations, 
the community tail association matrix, Cn, was comprised of a slight 

F I G U R E  2   Either right- or left-tail association between population-density time series of Ceratium species could dominate, depending 
on the sampling location. (a, b) The community tail association matrix, Cn, and the community-driver tail association matrix, Dn (Statistical 
methods), horizontally concatenated, for example locations n = 12 (a) and n = 26 (b). See Table 1 for species names. All the non-NA values 
in Cn were positive (red) for location 12 (a), indicating left-tail association dominated in that location; but values were largely negative (blue) 
for location 26 (b), indicating right-tail association dominated there. Matrix entries which were NA because time series were independent 
are displayed in yellow. The counts Nn

L
 and Nn

R
 (see Section 2.2) also reflect the distinct tail association characteristics of the two locations. 

C. fin. = C. finmarchicus; Temp. = temperature. Green dots in Dn represent variables which were originally negatively associated, so the 
negative of the environmental covariate was used for calculating tail association. See Figure S3 for analogous figures for the other sampling 
locations. (c) The summary statistics FC,L and FC,R (see Section 2.2) for each site show that association between Ceratium species was either 
substantially dominated by the left or right tails of Ceratium distributions, with the exceptions of a few locations for which tail association 
was closer to symmetric. Site codes are colored red or blue depending on which of FC,L or FC,R had higher magnitude. Values are not plotted 
for site 3 because the hypothesis could not be rejected for that site that dynamics of distinct Ceratium species were independent
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majority of positive values, indicating more left- than right-tail as-
sociation between aphid time series for the location (Figure 3a); 
whereas for other locations, Cn had mostly negative values, indicat-
ing a preponderance of right-tail association (Figure 3b). To demon-
strate the same result in another way, we show that the statistics FC,L 
and FC,R, plotted across all sampling locations (Figure 3c), indicated 
that most aphid sampling locations had a preponderance of right-tail 
association, with only a few locations having more left-tail associa-
tion, and those only slightly more. Thus, for most locations, aphid 
first flights are more correlated across species when first flights are 
later than average.

For the Ceratium data, the total community tail association, An

C

, and the total community-driver tail association, An

D
, were signifi-

cantly correlated across locations, n, validating our hypothesis from 
the Introduction for a cause of tail association between co-located 
species, and helping to answer Q2. In other words, tail association 
between co-located species time series was apparently inherited 
from common tail association of the species on environmental driv-
ers. Across our 15 locations, An

C
 and An

D
 were significantly positively 

correlated (Pearson correlation, two-tailed test, Figure 4a). Thus 
locations for which Ceratium density time series showed greater 
left-tail (respectively, right-tail) association with environmental co-
variates (measured with An

D
) also exhibited greater left-tail (respec-

tively, right-tail) association between density time series for distinct 
species (measured with An

C
).

For the aphid data, the total community tail association, An

C
, 

and the total community-driver tail association, An

D
, were positively 

but nonsignificantly correlated across our 10 sampling locations 
(Figure 4b). Thus locations for which aphid first flight time series 
showed greater left-tail (respectively, right-tail) association with 
winter temperature also showed a nonsignificant tendency toward 
greater left-tail (respectively, right-tail) association between the 
time series of distinct species. The correlation was close to signif-
icant for the aphid data, and may have been nonsignificant simply 
because there were slightly fewer aphid sampling locations than 
there were plankton locations. See also the subsequent results for 
aphids, which were significant and which support the same overall 
conclusions.

Our second analysis using aphids, based on the species-commu-
nity tail associations, �n

C
(i), and the species-driver tail associations, 

�
n
D
(i) (Statistical methods), provided further evidence supporting our 

hypothesis for a cause of tail association between co-located species 
(Introduction). For 8 of 10 sampling locations, �n

C
(i) and �n

D
(i) were sig-

nificantly correlated across species, i (Figure 5). In other words, for 
8 of 10 locations, aphid species with greater left-tail (respectively, 
right-tail) association with winter temperature also had greater left-
tail (respectively, right-tail) association with other aphid species.

4  | DISCUSSION

Our results show that synchronous population-density or pheno-
logical time series of co-located species can very commonly show 

asymmetric tail association. For some sampling locations and spe-
cies, tail association was predominantly in the left tails, and for 
others it was predominantly in the right tails of time series distri-
butions, showing a new kind of ecologically meaningful variation 
among ecosystems. The partial Spearman correlation presented by 
Ghosh, Sheppard, Holder, et al. (2020) is a simple and effective way 
to measure tail association for ecological applications. Our results 
also demonstrate a mechanism by which asymmetric tail association 
between species can arise: It can be inherited by joint tail associa-
tion of the two species on the same environmental variables. This 
mechanism seems likely to apply commonly when co-located species 
are influenced by the same external factors. Our results convincingly 
show that standard correlation approaches omit phenomena that 
seem likely to be important for at least two major topics of interest 
in ecology: synchronous/compensatory dynamics of species within 
a community and their influence on community stability; and shifting 
phenologies and the match–mismatch hypothesis.

The distinct tail association characteristics of Ceratium in differ-
ent sampling areas around the UK may have consequences for the 
stability through time of total Ceratium abundance, which may relate 
to harmful algal blooms because Ceratium species can have a role in 
such blooms (Baek et al., 2009). For locations in which left-tail asso-
ciation between Ceratium density time series is dominant, Ceratium 
species are scarce simultaneously, potentially producing years of 
very low total Ceratium biomass. In contrast, for locations in which 
right-tail association is dominant, Ceratium species are highly abun-
dant simultaneously, which may produce years of very high Ceratium 
biomass, which may sometimes correspond to harmful algal blooms. 
Our results show that the distinction between these two types of 
location relates to the tail association of Ceratium species with their 
environmental covariates, sea surface temperature and C. finmar-
chicus density. It may be useful to study in future work why some 
locations principally have left-tail association with these drivers and 
some principally have right-tail association.

First flight time series for populations of co-located aphid spe-
cies were principally right-tail associated; that is, more strongly cor-
related when first flights were later in the season. Our results show 
this was probably because: cold winters delay aphid first flights, but 
warm winters do not lead to first flights that are any earlier, on av-
erage, than those following moderate winters, producing right-tail 
association between first flights and winter coldness across multi-
ple species; this common association leads to right-tail association 
between aphids. Thus winter temperature fluctuations lead to tem-
porally dispersed early but temporally coordinated late arrival times 
of aphid species on summer hosts (many of which are crops, for the 
species we studied), a fact that may have pest-control significance. 
Winter temperature is known to influence the first flight dates of 
virtually all the aphid species for which we had data (Sheppard 
et al., 2016). Overwintering aphids are sensitive to frost conditions, 
and so winters probably reduce early spring populations on winter 
hosts plants. This then lengthens the time required for populations 
to reach sufficient densities to stimulate the production of winged 
morphs for flight to summer host plants.



12772  |     GHOSH et al.

F I G U R E  3   Either right-tail association between first flight time series of aphid species could dominate, or left-tail association could 
be more common, depending on the sampling location. (a, b) The community tail association matrix, Cn, and the community-driver tail 
association matrix, Dn (Statistical methods), horizontally concatenated, for example locations n = 2 (a) and n = 5 (b). See Table 1 for species 
names. A slight majority of non-NA values in Cn were positive (red) for location 2 (a; see the Nn

L
 and Nn

R
 counts displayed), indicating left-tail 

association was slightly more common than right-tail association in that location. But values were largely negative (blue) for location 5 (b), 
indicating right-tail association dominated there. Matrix entries which were NA because time series were independent are displayed in 
yellow. Temp. = temperature. Green dots in Dn represent variables which were originally negatively associated, so the negative of winter 
temperature was used for calculating tail association (Statistical methods); this happened in all cases for which temperature and first flight 
were significantly associated. See Figure S4 for analogous figures for the other sampling locations. (c) The summary statistics FC,L and FC,R 
(see Section 2.2) for each site show that association was either dominated by the right tails, or, for a few locations, showed slightly more left-
tail association. Site codes are colored red or blue depending on which of FC,L or FC,R had higher magnitude
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If xs,l(t) denotes the population-density of species s (s=1, . . . , S) in 
location l (l=1, . . . , L) at time t, we have here studied the nature and 
causes of tail association among the time series xs,l(t) for a fixed l and 
for s=1, . . . , S; whereas Ghosh, Sheppard, Holder, et al. (2020) studied 

the nature, causes and consequences of tail association among the 
time series xs,l(t) for fixed s and l=1, . . . , L, a distinct ecological con-
text. One of the consequences studied by Ghosh, Sheppard, Holder, 
et al. (2020) relates to and illuminates a potential consequence, 

F I G U R E  4   Tail association with 
environmental covariates was positively 
related to tail association between species 
for aphid and plankton time series. Panels 
show total community tail association, An

C
, 

plotted against total community-driver 
tail association, An

D
 (Statistical methods), 

across locations, n, for Ceratium density 
(a) and aphid first flight (b) data. Pearson 
correlations and associated p-values for 
each panel are in the headers. Points 
are labeled with location numbers (see 
Figures S1 and S2)
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F I G U R E  5   For 8 out of 10 sites, the Pearson correlation (P) between the species-community tail association, �n
C
(i), and the species-

driver tail association, �n
D
(i), across i = 1, 2, …, 20, was significantly positive (p < .05, one tailed test). This supports the hypothesis that tail 

association between species may be inherited from joint tail association of both species on a common environmental driver. See Table 1 for 
species IDs
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mentioned above, of tail association for the ecological context of 
this study. Ghosh, Sheppard, Holder, et al. (2020) showed that the 
skewness, though time, of the spatial-total time series 

∑
lxs,l(t) is sen-

sitive to the nature of tail association between the xs,l(t) (l=1, . . . , L), if 
these time series are positively associated with each other. Right-tail 
(respectively, left-tail) association tended to produce right (respec-
tively, left) skew in the total. Right skew corresponds to a spatial-to-
tal time series with exceptionally large values, that is, to “spiky”, 
unstable dynamics of the total population. Left skew corresponds 
to a spatial-total time series with low values, that is, to dynamics of 
the total population with a tendency to “crash”. The total popula-
tion can be regarded as a landscape-level measure of the stability or 
variability of species s, and is important, for instance, if species s is 
a pest or an exploited species. For the same reasons, the skewness, 
through time, of the community-total time series 

∑
sxs,l(t) is sensitive 

to the tail association between the xs,l(t) (s=1, . . . , S), which we have 
here studied. Right-tail (respectively, left-tail) association again tends 
to produce right (respectively, left) skew in the total time series. In 
this community context, the total is an aggregate property of the 
community, and the variability of this total has been used in an ex-
tensive literature (e.g., Hallett et al., 2014) to characterize commu-
nity stability through time. This literature has explored the effects of 
synchronous versus compensatory dynamics in the xs,l(t) (s=1, . . . , S) 
on the stability of the total community time series, 

∑
sxs,l(t). But our 

results show that, even if all the species time series xs,l(t) (s=1, . . . , S) 
are synchronous with each other, the tail association properties of 
these time series can influence the stability of the community-total 
time series.

Although our results are sufficient to show that tail associations 
are likely to be important for studies of community dynamics and 
stability, many communities show not only synchronous dynamics 
between some species pairs xsi ,l(t) and xsj ,l(t), but also compensatory 
dynamics between other pairs. Our Ceratium time series were almost 
entirely synchronous, so we could not study the importance of tail 
association for compensatory dynamics. Next research steps should 
include the study of tail association between compensatory species 
within a local community. Furthermore, Ceratium is only part of the 
phytoplankton community in UK seas. It may be advantageous for 
future work to use data characterizing an entire competitive commu-
nity. For instance, the data of Hallett et al. (2014) constitute annual 
abundances of all species of plant in an area. In that dataset, some 
species pairs show synchronous and some show compensatory 
dynamics.

Studying asymmetry of tail association for negatively correlated 
species density time series will require slightly modified methods. 
The only negative association between aphid or Ceratium time series 
that occurred in our system was not analyzed. Negative associations 
between species time series and the environmental covariates we 
considered were handled statistically by considering the positive as-
sociation between the species time series and a “reversed” covariate; 
this corresponds to a positive association with a reconceptualized 
covariate, for example, a “coldness” index. But that approach would 
make no sense for negatively associated time series of two aphid or 

Ceratium time series: there is no canonical choice of which variable 
to reverse. Asymmetry of tail association could still be considered, 
however, for negatively associated variables, u, v, in an unsigned 
approach, via the index |cor0,b(u, 1−v)−cor1−b,1(u, 1−v)|. Because 
|cor0,b(u, 1−v)−cor1−b,1(u, 1−v)| = |cor0,b(1−u, v)−cor1−b,1(1−u, v)| 
no choice need be made on which variable to “reverse.” A large value 
of this index indicates that tail association between u and v is asym-
metric, though it does not provide information on whether associ-
ation is stronger between the left tail of u and the right tail of v or 
between the right tail of u and the left tail of v.

Measures of tail association may also reveal useful information 
about freshwater plankton ecosystems and harmful algal blooms, 
in addition to information about marine harmful algal blooms (dis-
cussed above). Because blooms are extreme phenomena involving 
multiple species, monitoring the associations of phytoplankton spe-
cies with each other and their associations with temperature and 
nutrient data in the extremes (this is tail association) could help us 
to better understand harmful blooms. Considering tail association 
may even produce improvements in statistics that have been devel-
oped to serve as early warning signals of impending major changes 
(so-called “tipping points”) in plankton communities and the lakes 
they inhabit (Butitta, Carpenter, Loken, Pace, & Stanley, 2017; 
Carpenter et al., 2011), since some established early warning sta-
tistics make use of skewness of population distributions (Guttal & 
Jayaprakash, 2008). Tail association between phytoplankton species 
is related to skewness of the total phytoplankton biomass time se-
ries, as described in an earlier Discussion paragraph.

Although our aphid results were sufficient to demonstrate that 
tail association can be an important factor in the phenology of co-lo-
cated species, it will be necessary in future work to apply tail asso-
ciation ideas to different datasets to assess whether these ideas can 
improve our understanding of the consequences of changing phenol-
ogy for trophic phenological matching. The aphid species we studied 
have different host plants, so they do not directly interact. Shifts and 
fluctuations in the phenology of one species probably do not directly 
influence other species in our dataset. Future research should apply 
tail association to time series of phenologies of interacting species, 
such as the data on tree budburst dates, caterpillar abundance, and 
breeding phenology of great tits (Parsus major) and blue tits (P. caeru-
leus) collected in Wytham Woods, Oxford, and other locations in 
Europe (e.g., Cole & Sheldon, 2017; Nilsson & Källander, 2006; Savill, 
Perrins, Kirby, & Fisher, 2011), or the extensive data collection from 
multiple trophic levels of Thackery et al. (2010).

One final idea for potentially valuable future research has to do 
with combining our approach, based on tail associations, with other 
recent approaches which emphasize other statistical aspects of the 
synchrony. For instance, research has now showed that synchrony 
and compensatory dynamics in communities have “timescale struc-
ture”; that is, the dynamics of two or more species can be synchro-
nous on some timescales of analysis and compensatory on others 
(Keitt & Fisher, 2006; Vasseur et al., 2015; Zhao et al., 2020). How 
timescale specificity and tail associations interact is unknown, but 
potentially interesting. Multivariate copula approaches (Czado, 2019; 
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Joe, 2014) may be useful in this and other future extensions of the 
work we have begun here.

Our results extend the results of Ghosh, Sheppard, Holder, et al. 
(2020). Those authors argued that considering copulas and tail asso-
ciations can provide insights across the field of ecology. But Ghosh, 
Sheppard, Holder, et al. (2020) did not consider co-located species, 
a context important for community ecology which we considered 
here.
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