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ABSTRACT
Background. Parasitic plants have the ability to obtain nutrients from their hosts and
are less dependent on their own photosynthesis or completely lose this capacity. The
reduction in plastid genome size and gene content in parasitic plants predominantly
results from loss of photosynthetic genes. Plants from the family Orobanchaceae
are used as models for studying plastid genome evolution in the transition from
an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the
Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In
this study, we sequenced the plastid genome of Diphelypaea coccinea and compared
it with other Orobanchaceae, to elucidate patterns of plastid genome evolution.
In addition, we used plastid genome data to define the phylogenetic position of
Diphelypaea spp.
Methods. The complete nucleotide sequence of the plastid genome of D. coccinea was
obtained from total plant DNA, using pyrosequencing technology.
Results. The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged;
however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA
genes and 25 protein-coding genes, being one of the most highly reduced plastomes
among the parasitic Orobanchaceae. All genes related to photosynthesis, including the
ATP synthase genes, had been lost, whereas most housekeeping genes remain intact.
The plastome contains two divergent, but probably intact clpP genes. Intron loss had
occurred in some protein-coding and tRNA genes. Phylogenetic analysis yielded a fully
resolved tree for theOrobanchaceae, withDiphelypaea being a sister group toOrobanche
sect. Orobanche.

Subjects Genomics, Plant Science
Keywords Parasitic plant, Plastid genome, Orobanchaceae, Diphelypaea

INTRODUCTION
About 1% of all angiosperm species can parasitize other flowering plants or mycorrhizal
fungi (Nickrent et al., 1997). Facultative or obligatory hemiparasites still carry out
photosynthesis to some extent, while holoparasites have completely lost the ability
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to perform photosynthesis, and obtain nutrients from their host. Transition from an
autotrophic to heterotrophic lifestyle is associated with a relaxation of selection pressure
on photosynthesis-related genes, both in the nuclear and the plastid genomes. Most
evident is a functional and physical reduction of the plastid genome (plastome), which
correlates with a loss of genes encoding the photosyntheticmachinery and related functions,
increased substitution rates, and structural rearrangements (DePamphilis & Palmer, 1990;
Wolfe, Morden & Palmer, 1992; Barrett et al., 2014). Since the plastome contains both
photosynthesis-related and housekeeping genes, gene loss is not random and follows
a particular pattern (Barrett & Davis, 2012; Barrett et al., 2014; Graham, Lam &Merckx,
2017). The NAD(P)H dehydrogenase (ndh) genes are usually lost first, followed by
photosynthesis-related genes (psa, psb, pet, rbcL and atp) and plastid-encoded RNA
polymerase. Housekeeping genes encoding rRNAs, ribosomal proteins and tRNAs are
the last to be lost. Extensive studies of parasitic plants have revealed different levels of
plastome degradation and their correlation with the types of parasitism, ranging from
minimal in hemiparasitic members of Orobanchaceae (Wicke et al., 2013) and Viscaceae
(Petersen, Cuenca & Seberg, 2015) to extreme in someholoparasitic species, such asPilostyles
aethiopica (Bellot & Renner, 2015), and even possibly complete loss of the plastome, as in
Rafflesia lagascae (Molina et al., 2014).

The broomrape family, Orobanchaceae, is an ideal lineage to study plastid genome
evolution in the course of transition to heterotrophy, since it comprises about 2000
hemiparasitic and holoparasitic species (Bennett & Mathews, 2006; McNeal et al., 2013),
along with three autotrophic genera, Lindenbergia, Rehmannia and Triaenophora.
Within Orobanchaceae, holoparasitism has evolved independently at least three
times (Young, Steiner & dePamphilis, 1999; McNeal et al., 2013). Complete sequences of
plastid genomes have been reported for Lindenbergia philippensis (Wicke et al., 2013),
Triaenophora shennongjiaensis (Xia & Wen, 2018), six Rehmannia species (Zeng et al.,
2017), and photosynthetic hemiparasitic species of the genera Schwalbea (Wicke et al.,
2013), Pedicularis (Cho et al., 2018), Castilleja (Fan et al., 2016), Aureolaria, Buchnera, and
Striga (Frailey et al., 2018), as well as for numerous holoparasites, including Aphyllon
(Myzorrhiza), Epifagus, Boulardia, Cistanche, Conopholis, Orobanche, Phelipanche and
Lathraea (Wicke et al., 2013; Samigullin et al., 2016; Schneider et al., 2018). Analysis of
these plastid genomes has allowed reconstruction of the history of gene loss and genome
reconfiguration in this family, in the course of transition to a holoparasitic lifestyle,
revealing a limited set of commonly retained genes (Wicke et al., 2013; Wicke et al., 2016).

The genus Diphelypaea (Nicolson, 1975), also known as Phelypaea, is phylogenetically
close to Orobanche sect. Orobanche (Schneeweiss et al., 2004a) and comprises two species,
Diphelypaea coccinea (M.Bieb.) Nicolson and Diphelypaea tournefortii (Desf.) Nicolson,
which occur in the Caucasus, Crimea andWestern Asia (Turkey and Iran).D. coccinea is an
achlorophyllous obligately parasitic perennial herbaceous plant up to 30–50 cm in height.
The stem is unbranched, red to reddish brown, ending in a single flower of a bright red
color (Fig. 1). D. coccinea parasitizes the roots of plants of the genus Psephellus. In order
to further explore plastome evolution in the course of transition to holoparasitism, and to
clarify the phylogenetic position of Diphelypaea, we determined the complete sequence of
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Figure 1 General view ofDiphelypaea coccinea plants. Source credit: Vitaly V. Kadnikov.
Full-size DOI: 10.7717/peerj.7830/fig-1

the plastid genome of D. coccinea and compared it to previously sequenced plastomes of
Orobanchaceae.

MATERIALS & METHODS
DNA extraction, genome sequencing and sequence assembly
The above ground portion of a single D. coccinea plant growing in a mountain region near
the town of Kislovodsk, North Caucasus, Russia (43◦50′59.8′′N, 42◦38′38.7′′E) was used
for the extraction of total genomic DNA, by a CTAB-NaCl method (Murray & Thompson,
1980). The extracted DNAwas sheared using a g-TUBE device (Covaris Ltd., Brighton, UK)
to obtain an average fragment size of 8 kb. The sheared DNA was then electrophoresed on
a 0.5% agarose gel, and a portion of gel containing fragments of 6–9 kb was excised. The
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DNA was purified with a QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), and
then used to prepare a long paired-end library according to the manufacturer’s instructions
(Roche, Risch-Rotkreuz, Switzerland). The library was sequenced with a Roche GS FLX
Genome Sequencer, using the Titanium XL+ protocol. About 329 Mb of sequence, with
an average read length of 414 nts was generated. De novo assembly was performed with
a Newbler Assembler v.2.9 (454 Life Sciences, Branford, CT, USA) with default settings,
which yielded six plastid DNA contigs with an average coverage of 56-fold, ordered in
a single scaffold. These contigs were identified based on sequence similarity to plastid
genomes of Orobanchaceae and high coverage. The complete plastid genome sequence was
obtained through generation of appropriate polymerase chain reaction (PCR) fragments
spanning the junctions of the contigs and their sequencing by the Sanger method, using an
ABI PRISM 3730 analyzer (Applied Biosystems, Waltham, MA, USA). The list of primers
is available in Table S1. Reads spanning junctions between single copy regions and inverted
repeats were used to infer contiguous sequences. To verify the correct assembly of the
reconstructed plastid genome, raw reads were mapped against the reconstructed sequence
with GS Reference Mapper (454 Life Sciences, Branford, CT, USA).

The raw reads were deposited in the Sequence Read Archive (SRA) under the accession
number SRR9665263. The sequence of the plastid genome of D. coccinea was submitted to
GenBank under accession number MK922354.

Plastid genome annotation and analysis tools
Plastid genome annotation was performed using the Dual Organellar GenoMe Annotator
(DOGMA;Wyman, Jansen & Boore, 2004), with further manual correction using similarity
searches against previously annotated plastid genomes. The tRNAscan-SE server was also
used to locate tRNA genes (Lowe & Chan, 2016). A circular map of the plastome was drawn
using OrganellarGenomeDRAW software (Lohse et al., 2013).

Phylogenetic analysis was performed using concatenated nucleotide sequences of
17 conserved protein-coding genes (matK, rpl14, rpl16, rpl2, rpl20, rpl33, rpl36, rps11,
rps12, rps14, rps18, rps19, rps2, rps3, rps4, rps7, rps8) from plastid genomes of 30
species of Orobanchaceae: Aphyllon uniflorum var. uniflorum (MH580290), Aphyllon
fasciculatum (MH580292.1), Aphyllon epigalium subsp. epigalium (MH050785), Aphyllon
californicum (syn.Myzorrhiza californica, NC_025651), Boulardia latisquama (HG514460),
Castilleja paramensis (KT959111), Cistanche deserticola (KC128846), Cistanche phelypaea
(HG515538), Conopholis america (HG514459), Epifagus virginiana (M81884), Lathraea
squamaria (KM652488), Lindenbergia philippensis (HG530133), Orobanche rapum-
genistae (KT387725), Orobanche californica (HG515539.2), Orobanche cernua var.
cumana (KT387722), Orobanche crenata (HG515537), Orobanche pancicii (KT387724),
Orobanche austrohispanica (KT387721), Orobanche densiflora (KT387723), Orobanche
gracilis (HG803179), Pedicularis ishidoyana (KU170194), Pedicularis hallaisanensis
(NC_037433), Phelipanche purpurea (HG515536), Phelipanche ramosa (HG803180),
Rehmannia piasezkii (KX636160), Rehmannia elata (KX636161), Rehmannia glutinosa
(KX636157), Rehmannia solanifolia (KX636159), Schwalbea americana (HG738866), and
Triaenophora shennongjiaensis (MH071405). The plastid genome of Nicotiana tabacum
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Table 1 Summary of genes identified in theD. coccinea plastome.

Function Genesa

Ribosomal proteins (large subunit) rpl2i, rpl14, rpl16 , rpl20 , rpl22, rpl33, rpl36
Ribosomal proteins (small subunit) rps2, rps3, rps4, rps7 , rps8, rps11, rps12i, rps14, rps16 , rps18, rps19
Other protein-coding genes infA,matK , clpP (2 genes), accD, ycf1, ycf2
rRNAs rrn16, rrn23b, rrn4.5, rrn5
tRNAs trnC-GCA, trnD-GUC , trnE-UUC , trnF-GAA, trnG-GCC, trnG-UCC i, trnH-GUG, trnI-CAU , trnL-

CAA, trnL-UAAi, trnL-UAG, trnM-CAU , trnfM-CAU , trnN-GUU , trnP-UGG, trnQ-UUG, trnR-
UCU, trnS-GCU , trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnW-CCA, trnY-GUA

Pseudogenes ψrpl32, ψrps15, ψtrnI-GAU i, ψtrnfM-CAU, ψtrnM-CAU

Notes.
aGenes duplicated in inverted repeats were counted once, i denotes intron-containing genes, including trans-spliced rps12. Genes present in all Orobanchaceae species analysed in
(Wicke et al., 2016) are shown in bold.

brrn23 gene contains 259-bp intervening sequence.

(Z00044) was used as an outgroup. Nucleotide sequences were extracted from GenBank,
concatenated for each of the genomes and aligned using MAFFT v.7.055b (Katoh &
Standley, 2013), with default parameters. Poorly aligned regions were excluded using
trimAl v.1.2rev59 software with the -gappyout option (Capella-Gutiérrez, Silla-Martínez &
Gabaldón, 2009). A maximum likelihood phylogenetic tree was constructed using PhyML
v.3.3 (Guindon et al., 2010). The Hasegawa-Kishino-Yano nucleotide substitution model
with the gamma model of rate heterogeneity (HKY+0) was selected using jModeltest v.
2.1.10 (Posada, 2008).

Verification of the presence of two copies of clpP)
To verify the presence of two copies of the clpP gene, we designed primer pairs flanking each
copy (Table S1). Appropriate PCR fragments obtained using DNA samples extracted from
two individualD. coccinea plants were analyzed by agarose gel electrophoresis (Fig. S1) and
sequenced by the Sanger method.

RESULTS AND DISCUSSION
Plastid genome structure and gene content
The plastome of D. coccinea was assembled into a circular sequence of 66,616 bp from
approximately 1.3million paired-end reads (∼6 kb fragments). It has a typical quadripartite
structure with a 37,964 bp large single copy (LSC) region, a 5,220 bp small single copy
(SSC) region and a pair of inverted repeats (IRs), each of 11,716 bp (Fig. 2).

The D. coccinea plastome was predicted to contain 54 presumably intact unique genes
(Table 1), which was fewer than its fully autotrophic relative Lindenbergia philippensis
(113 genes), but comparable to that of holoparasitic Orobanchaceae (42–74; Wicke et al.,
2013). Consistent with the inability to photosynthesize and the holoparasitic lifestyle of
D. coccinea, its plastome lacks all genes coding for the NAD(P)H dehydrogenase complex
and photosynthesis-related proteins. In particular, the D. coccinea plastome lacks the ATP
synthase genes that are retained intact in most parasitic Orobanchaceae (Wicke et al., 2013).
The genes for plastid-encoded RNA polymerase are also missing.
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Figure 2 Gene map of theD. coccinea plastid genome. Genes shown inside the outer circle are tran-
scribed clockwise, and those outside the circle are transcribed counter clockwise. Differential functional
gene groups are color-coded. Pseudogenes are marked by ψ . GC content variation is shown in the middle
circle.

Full-size DOI: 10.7717/peerj.7830/fig-2

Most of the retained genes are involved in protein synthesis: four rRNA genes, 25
tRNA genes, seven genes coding for the small subunit ribosomal proteins and 11 for
the large subunit ribosomal proteins. Most ribosomal protein genes usually found in
plastid genomes of photosynthetic angiosperms were also in the plastome of D. coccinea
(Table 1). Exceptions are rps15 and rpl32, which are retained as truncated pseudogenes,
and rpl23, which could not be identified. The loss of these genes has also been reported
in other holoparasitic Orobanchaceae (Wicke et al., 2013). While the plastid genome of D.
coccinea contains genes for 25 tRNA species (Table 1), it lacks the tRNA genes trnA-UGC,
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trnI-GAU, trnK-UUU, trnR-ACG and trnV-UAC, which are usually present in the plastomes
of photosynthetic flowering plants. The loss of essential tRNA genes has been observed
in parasitic plant plastomes showing an advanced stage of degradation (DePamphilis &
Palmer, 1990; Delannoy et al., 2011; Wicke et al., 2013; Ravin et al., 2016). Analysis of the
plastomes of holoparasitic Orobanchaceae revealed that up to 13 of 30 conserved tRNA
genes, including those mentioned above, could be lost or pseudogenized (Wicke et al.,
2013).

Besides genes involved in protein synthesis, the D. coccinea plastid genome contains
genes infA, matK, accD, clpP, ycf1 and ycf2, all of which were lost in some lineages of
angiosperms, both parasitic and autotrophic. The most frequently lost gene is infA,
encoding a translation initiation factor, the loss of which has been described in at least
24 separate lineages of angiosperms (Millen et al., 2001). The AccD protein, the beta
subunit of acetyl-CoA carboxylase involved in fatty acid synthesis and leaf development
(Kode et al., 2005), is essential for plastome maintenance (Krause, 2012). The gene for this
protein is preserved even in the plastomes of most parasitic plants, although loss from
the plastome and functional relocation to the nucleus occurs in some photosynthetic
species (Rousseau-Gueutin et al., 2013). Among the Orobanchaceae, it has a 5′ truncation
in the hemiparasite Schwalbea americana and holoparasitic species Phelipanche purpurea
and Phelipanche ramosa (Wicke et al., 2013). Although ycf1 and ycf2 are considered to be
essential for plastid maintenance (Drescher et al., 2000), multiple instances of loss of these
genes, without transfer to the nuclear genome, have been reported in plant plastids (e.g.,
Wakasugi, Tsudzuki & M, 2001;Cai et al., 2008), but not in parasitic Orobanchaceae (Wicke
et al., 2013). The functionality of the ycf1 and ycf2 genes in the D. coccinea plastome might
be questioned, since their deduced protein products have long repeat-containing internal
insertions contrary to typical Ycf1 and Ycf2 proteins, e.g., from N. tabacum. However,
these insertions did not interrupt the open reading frames, suggesting that the proteins
could retain functionality.

An interesting finding was the detection of two likely functional copies of the clpP gene
in the D. coccinea plastome. clpP encodes a proteolytic subunit of Clp protease involved
in protein metabolism within the plastid (Krause, 2012), and was proposed to be essential,
being present even in highly reduced plastomes of parasitic plants (Delannoy et al., 2011;
Ravin et al., 2016). Among the Orobanchaceae, a presumably functional clpP was found in
all species (Wicke et al., 2013). In the D. coccinea plastome, two copies of clpP with 86%
nucleotide sequence identity were found (Fig. 1). This duplication of the clpP gene was
confirmed by PCR for two individual D. coccinea plants (Fig. S1). Notably, both genes
lacked the introns usually present in clpP of photosynthetic angiosperms, but often absent
in parasitic species. Their deduced protein products showed 75% amino acid sequence
identity, but <35% identity with other plastidial ClpP proteins. It should be noted, that
fast evolution of ClpP has been observed in several parasitic and photosynthetic lineages
(Wicke et al., 2013; Sloan et al., 2014). Both gene copies contained intact reading frames;
therefore, they probably remain functional.

Reduction of the size and gene content of theD. coccinea plastome is also reflected in the
loss of introns in the remaining genes. Introns are only present in rpl2, rps12 (trans-spliced),
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trnG-UCC and trnL-UAA, and appeared to be lost in clpP, rpl16, rps16 and rps12 (cis-spliced
intron). The presence of matK correlates with the retention of a group IIA intron in the
rpl2 gene, which requires maturase activity for splicing (Zoschke et al., 2010).

As in most angiosperms, the D. coccinea plastome contained an rrn gene cluster within
an IR region. Although the gene order is typical (rrn16-rrn23-rrn4-rrn5), two tRNA genes
located in the rrn16-rrn23 spacer were lost (trnA-UGC) or truncated as a pseudogene (trnI-
GAU ). Interestingly, the rrn23 gene contains a 259 bp intervening sequence, absent from
any other plastidial rrn23 sequence available in the GenBank database. A BLASTn search
against GenBank found no sequences with high similarity to this insert. The insert occurred
in the side hairpin of the H38 helix region of domain II of the rrn23 gene (Fig. S2). Introns
in rrn23 genes have been found in the plastomes of the charophytes Chlorella (Wakasugi et
al., 1997) and Chlamydomonas (Turmel et al., 1993), and the hornwort Anthoceros formosae
(Kugita et al., 2003); however, they have not been reported in other land plants. The site of
insertion in the D. coccinea rrn23 gene did not match the positions of intron insertions in
the charophytes and Anthoceros formosae. It is possible that this intervening sequence is not
an intron but an insertion that is still compatible with the final structure of the ribosome.
RNA-seq analysis would help to clarify this issue.

Structural rearrangements and duplications in the D. coccinea
plastome
Plastid genomes of most angiosperms are highly conserved, not only in terms of overall
quadripartite structure and gene content, but also in the gene order. Although deviation
from a conserved gene order due to plastid genome rearrangements occurred in some
photosynthetic lineages, e.g., cereals, geranium and clover (Chumley et al., 2006; Cai et al.,
2008), numerous translocations, duplications, inversions and deletions are most frequently
observed in the plastomes of parasitic species (Wicke et al., 2013). Among Orobanchaceae,
the plastome of autotrophic Lindenbergia philippensis is colinear with that of tobacco,
and limited deviations are observed in the hemiparasitic species Schwalbea americana
(Wicke et al., 2013). In addition, no major rearrangements are observed in the plastome of
Lathraea squamaria, belonging to the Rhinantheae clade of Orobanchaceae (Samigullin et
al., 2016). However, gene deletions, duplications, inversions, shifts of IR boundaries and
even complete loss of one IR are observed in the plastomes of holoparasitic species of the
Orobancheae clade (Wicke et al., 2013; Schneider et al., 2018).

Comparison of the order of genes in the plastome of D. coccinea with the standard for
angiosperms showed that the D. coccinea plastome, in addition to gene losses, experienced
multiple rearrangements, including inversion, translocation and duplication of genes
(Fig. 2). The gene order differs from that in other species of Orobanchaceae reported by
Wicke et al. (2016). However, the D. coccinea plastome retains the highly conserved S10
operon (rpl2, rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11) and the rrn gene
cluster. These operons are conserved in all plastomes of Orobanchaceae, but appear to be
deconstructed in some of the most highly reduced genomes of parasitic plants (Bellot &
Renner, 2015; Ravin et al., 2016).
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Figure 3 Phylogenetic tree of 30 taxa ofOrobanchaceae. The tree was inferred by the maximum like-
lihood approach. Bootstrap support values are provided at the nodes. The scale bar corresponds to 0.02
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Phylogenetic position of D. coccinea
Relatively little is known about the phylogenetic position of the genus Diphelypaea, and
only two ∼600 bp-long nuclear internal transcribed spacer (ITS) sequences of D. coccinea
and D. tournefortii are available in GenBank (accessed on May 3, 2019). Phylogenetic
analysis of the nuclear ITS region revealed that the genus Orobanche, as defined by Beck-
Mannagetta (1930), divided into two genus-level groups, the Orobanche group (Orobanche
sect. Orobanche and Diphelypaea) and the Phelipanche group (Schneeweiss et al., 2004a).
This split is also supported by karyological features, since the chromosome base number
in the Orobanche/Diphelypaea group is x = 19, while in the Phelipanche group it is x = 12
(Schneeweiss et al., 2004b). In the ITS phylogeny, two Diphelypaea species formed a basal
lineage in the Orobanche group. However, these molecular phylogenetic implications were
based on a limited sequence dataset and need to be clarified.

In this current study, we took advantage of availability of the complete plastid
genome sequence of D. coccinea to define the phylogenetic position of this genus in
the Orobanchaceae. Analysis of the concatenated nucleotide sequences of 17 conserved
genes from 30 species of Orobanchaceae yielded a fully resolved phylogenetic tree (Fig. 3).
D. coccinea appeared to be included in a cluster also comprising Boulardia latisquama and
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species of Orobanche sect. Orobanche. By contrast, the Phelipanche group, comprising
Phelipanche and Aphyllon, formed a distinct lineage.

CONCLUSIONS
Being only 66,616 bp in size and containing 54 presumably intact unique genes, the plastome
of D. coccinea is one of the most highly reduced among the parasitic Orobanchaceae.
Plastome rearrangements, gene duplications and the loss of introns are associated with
gene loss and genome reduction. More pronounced gene loss has only been reported in
the plastomes of Conopholis americana (45,673 bp, 42 genes), Epifagus virginiana (70,028
bp, 42 genes) and Boulardia latisquama (80,361 bp, 49 genes). In particular, the D. coccinea
plastome lacks all genes of the photosynthetic apparatus, including ATP synthase genes
that are retained intact in most Orobanchaceae. However, all 16 protein-coding genes, 14
tRNA genes and 4 rRNA genes commonly present in the plastid genomes of all hemi- and
holoparasitic Orobanchaceae species (Table 1) are present in D. coccinea, suggesting that
further gene loss is unlikely in this lineage. Phylogenetic analysis confirmed thatD. coccinea
belongs to the Orobanche group of the family Orobanchaceae.
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