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Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent
years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research.
Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC lines in vitro
from patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations,
pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development
for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity
for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the
approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.

1. Introduction

Human embryonic stem cells (hESCs) are pluripotent cells,
which have remarkable proliferation ability to differentiate
into any cell types of all three germ layers in a defined culture
condition. Hence embryonic stem cells have been regarded as
the most potent tool for experimental studies, drug screen-
ing, and regenerative medicine [1]. However, the ethical
dilemmas regarding the donation or destruction of human
embryos and the immunoincompatibility of hESCs have
impeded its application in cell-based therapy [1]. In order to
overcome these problems, reprogramming techniques have
been introduced where somatic cells can be reversed into a
pluripotent stem cell-like state. It is generally believed that
induced pluripotent stem (iPSC) cells might demonstrate the
potential for alleviating incurable diseases and aiding organ
transplantation [2].

It has been shown that iPSCs can be derived efficiently
from various human cell types [3–8]. An interesting obser-
vation is that the transcriptional and epigenetic features of
iPSCs are reported to be similar to hESCs [9–11]. Never-
theless, further insights into the inherent similarities and
differences between hESCs and iPSCs would be advantageous
in understanding the reasons why the use of hESCs in clinical
and translational applications has been held back [12, 13].

2. Generation of Induced Pluripotent Stem Cells

Induced pluripotent stem cells can be produced by forced
expression of certain genes by reversing them to a pluripotent
state similar to that of embryonic stem cells (ESCs). However,
the generation of iPSC requires extremely safe and efficient
approaches or strategies to decrease the risk of tumors that
may result from the introduction of undifferentiated iPSCs
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into patients. Though such constraints prevail, the approach
of generating patient-specific pluripotent cells will undoubt-
edly benefit regenerative medicine in many ways [14].
The first iPSCs generation was reported by Takahashi and
Yamanaka [15] in 2006. They generated the iPSCs through
simultaneous overexpression of a group of transcription
factors using cell lines derived from mice. A similar genetic
manipulation approach was used to generate pluripotent
stem cells from human fibroblast cells [11, 13, 16]. In addi-
tion to this approach, other modes have also been devised
for iPSCs generation including; single polycistronic vector
[17], nonintegrating adenoviral APS approaches [18, 19], the
PiggyBac transposon system, which removes the transgenes
from established iPSC lines after inducing pluripotency [20,
21], the Cre/lox Precombination system [22], and noninte-
grating “episomal” vectors that create iPSCs free of vector
and transgene DNA [23]. As these methodologies depended
solely on foreign DNA transfer into target cells, protein-
based methods have been introduced to address safety
issues. In these methods various reprogramming proteins
are delivered into cells by conjugating them with a short
peptide that mediates protein transduction, such as HIV
tat and polyarginine [24, 25]. In addition, an alternative
approach has been described which uses synthetic mRNA
to induce pluripotency and differentiation [26]. This new
approach showed superior conversion efficiency and kinetics
than the earlier described protocols. This mode of cellular
reprogramming is a holistic approach as this transfers all the
regulatory components from a target cell to a donor cell.
Moreover, the cellular reprogramming is achieved by manip-
ulating the whole genome system rather than a small set of
master genes.

Therefore finding a safe and efficient mode of iPSCs gen-
eration requires a better understanding of the biology of cel-
lular reprogramming. Even though live cells are the pheno-
typic representations of their genomic state (gene-regulation,
epigenetic modifications, and cellular physiology), they do
not have a steady molecular state [27]. For this reason, it is
possible for the cells to be switched or reprogrammed into a
pluripotent state, even in their differentiated form.

3. Characterization of iPSC Lines

Generation of iPSC lines were always followed up by sub-
sequent characterizations to ensure the purity and quality
of the generated cells and their pluripotency potential. One
of the most convenient and direct methods developed for
detecting and isolating iPSC was by live immunocytochem-
istry [28]. Using this technique the characterization of pluri-
potency can be achieved using intracellular and cell-surface
biomarkers such as SSEA-3, SSEA-4, Tra-1-60, and Tra-1-81
[29]. In addition, flow cytometry analyses helps to quantify
the expression of these markers at the individual cell level.

In addition to live staining, auxiliary identification was
demonstrated using alkaline phosphatase (AP) staining for
the reprogramming factors, as AP is a universal marker in
the identification of iPSCs [29]. Further evaluation of plu-
ripotency is performed through semiquantitative and quan-
titative polymerase chain reactions (PCRs) through the

expression of both endogenous genes and transgenes [30].
This is followed up by the analysis of methylation status of
the promoter region of pluripotent genes by bisulfite sequen-
cing of the CpG islands [29]. Karyotyping analysis is also
carried out using standard G-banding chromosome analysis
to determine chromosome stability of iPS cell lines [29].
Further, in vitro differentiation of pluripotent stem cells is
characterized by the formation of embryoid body followed
by teratoma assays [30]. This assay is used to confirm forma-
tion of all three embryonic germ layers [30].

4. Advances in Disease-Specific iPSCs and
Their Applications

Although most of the human-related disease studies are
undertaken using rodent models, a genetic defect or disorder
produced in human does not necessarily cause the same
symptoms in rodents. Therefore, cell cultures from human
tissues are considered to be the most suitable complement
to animal models. The iPSC technology has made the pro-
duction of disease-specific stem cells that carry the genome
of the donor possible and it mimics the human diseases
more reliably than animal models. Apart from generating an
in vitro model, disease-specific iPS cell lines from different
individuals also allow better understanding of the nature
and complexity of a disease. At present the most immediate
requirement of such a human disease model is to explore
the progression of a disease in different tissues of the human
body and also to compare the variability among patients [2].

5. Existing Types of Disease-Specific iPSC Lines

A number of studies have been conducted on disease-specific
iPSC lines and some of them have provided understanding of
the disease mechanisms. Table 1 summarizes the up-to-date
literature in which human disease-specific iPSC lines have
been generated. The most convincing fact for commencing
these studies using iPSC technology was that disease-specific
pluripotent cell lines could be generated successfully from
patients with a variety of genetic disorders where the iPSC
lines had similar characteristic capacity, equivalent to those
from a normal individual [11]. Moreover, these iPSC lines
were able to differentiate into required cell types of relevant
diseases and recapitulate disease-specific effects in vitro
which may not be detectable in animal models [31, 32].

6. Perspective of iPS Technology in
Dental Research

Initially the concept of utilizing iPSCs technology to model
disease was mostly emphasized in neural degenerative dis-
eases, which was then extended to other genetic disorders
including immune system, muscular, blood, pancreas, skin,
bone marrow, liver, lung, retinal, premature ageing, as well
as other physical and intellectual disorders. However, the
concept of utilizing iPSCs technology is still in its infancy
for orodental disorders and diseases. Chronic degenerative
dental diseases are widespread in human populations and
represent a significant problem for public health. The iPS
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Table 1: Disease-specific-induced pluripotent stem cells (iPSCs) lines from various human genetic disorders.

Disease category Disease References

Neural

Amyotrophic lateral sclerosis [31]

Parkinson’s disease [11, 22, 33, 34]

Huntington’s disease [11, 35]

Lesch-Nyhan syndrome [11]

Rett syndrome [36]

Familial dysautonomia [37]

Angelman syndrome [38]

Prader-Willi syndrome [38, 39]

Friedreich’s ataxia [40]

Rett syndrome [41]

Schizophrenia [42]

Immune system
ADA-SCID [11]

Scleroderma [43]

Primary immunodeficiency [44]

Muscular

Duchenne muscular dystrophy [11]

Becker muscular dystrophy [11]

Spinal muscular atrophy [25]

Duchenne muscular dystrophy [45]

Blood
Thalassemia [46, 47]

Sickle cell anemia [43, 47]

Chronic myeloid leukemia [48]

Heart Long QT syndrome [49, 50]

Pancreas
Juvenile diabetes mellitus [11]

Shwachman-Bodian-Diamond syndrome [11]

Type I diabetes [51]

Skin Leopard syndrome [52]

Recessive dystrophic, Epidermolysis bullosa [53]

Bone marrow Fanconi anemia [54]

Myeloproliferative diseases [54]

Liver
Liver diseases: a1-antitrypsin deficiency, familial
hypercholesterolemia, glycogen storagedisease type 1a, Crigler-Najjar,
tyrosinemia type 1

[55]

Lung Lung diseases: cystic fibrosis, a-1 antitrypsin deficiency-related
emphysema

[43]

Others (physical and intellectual limitations)

Down syndrome [11]

Hurler syndrome [44]

Gaucher disease [11]

Fragile X syndrome [56]

Premature ageing Dyskeratosis congenital [57]

Eye Retinitis pigmentosa [58]

gyrate atrophy [59]

Dental ?

technology and its application in treating orodental diseases
could be a powerful therapeutic tool in dentistry.

Most of the diseases and disorders have a major genetic
component. Human diseases and disorders may result from
single-gene mutations, but more commonly they are com-
plex as a consequence of multiple gene-gene or gene-en-
vironment interactions [60]. The cause of the majority of

orodental diseases could be genetically related if infection
and traumatic effects are not taken into account. The charac-
teristic signs and symptoms of these diseases indicate genetic
origin [61–63], although not all have been clearly identified.

Globally, every year an average of 7% of infants have
some mental or physical defect. Among these, 75% are re-
lated to craniofacial defects or malformations [64]. Again
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it is the dental anomalies that form an integral aspect of
such genetic disorders, often representing important clinical
clues to the true underlying disorders. Specific examples
that are well documented include (1) ectodermal dysplasia
[65] with dental manifestations of oligodontia and conical
shaped teeth and (2) cleidocranial dysplasia with multiple
supernumerary and unerupted teeth [66, 67]. Therefore,
it is necessary for dentists to be aware of the clinical
characteristics and the possible alterations that are part of
the genetic syndromes, so that they can offer patients mul-
tidisciplinary and the best possible treatments. Some of the
documented examples of these types of direct or indirect
genetic alterations causing dental defects are listed in Table 2.

Possibly, iPSC possess the potential for treating such
genetic orodental disorders, confining the availability of
suitable disease-specific iPSCs from the diseased person
which are able to multiply, cooperate and reform the missing
or diseased part. Though, multiple types of stem/progenitor
cells have been identified based on their ability to repair/
regenerate and partially restore organ function in the human
body, growing evidence illustrates that stem cells are primar-
ily found in niches and that certain tissues contain more stem
cells than others [94].

7. Dental Stem Cell Niches as a Potential Source
for Human iPSCs Generation

The foundation of personalized medicine profoundly lies on
procuring the most suitable cell sources. In the human body,
various cell sources have been shown to be reprogrammed
into iPSC. Among these are dermal fibroblasts, the first of the
cell types to be reprogrammed into iPSC, followed by other
sources like amniotic fluid-derived cells, skin keratinocytes,
embryonic stem cell-derived fibroblasts (ESFs), CD34 blood
cells, mesenchymal stem cells (MSCs), and dental pulp [7].
However, studies are showing that it is easier to reprogram
more immature cells than somatic cells. Hence immense
research was carried out to refine the methodology of iPS
technology in terms of techniques, efficiency, and cell type
choice. It has been reported that reprogramming efficiency
for human fibroblasts is relatively low, while the repro-
gramming process for keratinocytes generates iPSC colonies
100-fold more efficiently and 2-fold faster as compared to
human fibroblasts [95]. The probable cause for such efficacy
difference is that keratinocytes have expression levels of stem
cell-related genes more similar to ESC than fibroblasts [95].

A similar comparable study reported that dental tissue-
derived mesenchymal-like stem cells can be reprogrammed
into iPSCs more efficiently, when compared to other mature
somatic cells from human body such as neonatal foreskin
fibroblasts, adult MSCs, and adult dermal fibroblasts [7].
This is probably because of the timing and other factors
required for reprogramming a somatic cell to iPS varies
greatly depending on cellular context. For example, the
reprogramming of MSCs from somatic cell sources men-
tioned above requires the addition of hTERT (telomerase
reverse transferase) and SV40 large-T to turn into iPSCs,
whereas dental tissue-derived cells are not confined the same

way [7]. Perhaps this emphasizes the use of dental pulp as
the most feasible and rich source of mesenchymal stem cells
to be used in regenerative therapy, as they are easily available
when compared to the tedious collection procedure of other
somatic cells.

Dental stem cells can be easily obtained from the pulp of
exfoliated primary teeth (SHED) or extracted primary (SCD)
and permanent (DPSC), apical papilla (SCAP), tooth germs,
and human periodontal ligament. In fact, all these cells can
be successfully reprogrammed into iPS cells [94]. A recent
report further strengthens the potential of dental-derived
stem cells, where reprogramming of human immature dental
pulp stem cells (hIDPSCs) was successful within a short-time
frame as compared to human fibroblasts, SHED, and DPSC.
Furthermore, primary hIDPSC-iPSC colonies were readily
obtained even under feeder-free conditions eliminating the
possibility of contamination from xenoenvironment [95].
The physiologically intact dental pulp stem cells could be
successfully differentiated to advanced derivatives of all
three primary germ layers (odontoblast, osteoblast, chondro-
cyte, myocyte, neurocyte, adipocyte, corneal epithelial cell,
melanoma cell, iPSC) (refer review, [94]). Collectively, its
multipotency, high proliferation rates, and accessibility make
the dental stem cell an attractive source of mesenchymal
stem cells for iPS generation. Hence dental-derived stem cells
should be considered as a strategy in future regenerative
therapies. A schematic representation of the human iPSCs
generation from dental stem cells and its applications in
various therapeutic approaches is shown in Figure 1.

8. Therapeutic Potentials of
Disease-Specific iPSCs for Genetic Orodental
Diseases/Disorders

Mutations have been shown to play a dominant part in
most orodental diseases as tabulated in Table 2 and these
genetically caused diseases are the ones that could benefit
the most from iPS technology. One of the main focuses of
the present stem cell therapy is genetic correction, which
would be a permanent solution. For example the iPSCs
has shown its therapeutic capability to treat diseases by
correcting the underlying genetic defects, which was success-
fully demonstrated in mouse models of sickle cell anemia
[96]. The defective gene was replaced by wild type β-globin
by homologous recombination. Surprisingly, the genetically
corrected iPSC-derived hematopoietic progenitor was effec-
tive in improving and restoring the physiological function
of the diseased animal. This proof of principle was also
introduced in human individuals with Fanconi anemia,
a disease characterized by severe genetic instability [54].
Hence, this approach can be applied to any genetic disease
underlying the human body. Recent studies have also shown
the possibilities of developing human endoderm tissue-
derived iPSC lines. This, along with other established human
iPSCs lines, has provided a base to elucidate the mechanisms
of cellular reprogramming and also to study the safety as
well as efficiency of differentially originated human iPSCs
[27]. Studies on liver pathogenesis using iPSCs technology
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Table 2: Human genetic oral diseases/disorders causing dental defects.

Dental disease/disorder Symptoms Genetic cause References

Orofaciodigital syndrome 1
(OFD1)

Malformations of the face, oral cavity, oral
clefts, underdeveloped nose flaps, finger
abnormalities, hydronephrosis, and variable
involvement of the central nervous system.

Mutations in OFD1 gene; mutations in
the Cxorf5 gene, located in the Xp22

[68–70]

Oculofaciocardiodental
(OFCD)

Canine radiculomegaly; oligodontia, delayed
eruption of the dentition, malocclusion, root
dilacerations, macrodontia, and enamel
defects; microphthalmia and, congenital
cataracts with secondary glaucoma

Mutations in the BCOR gene located in
the chromosome Xp11.4

[71, 72]

Amelogenesis imperfecta
(AI)

Developmental abnormalities in the quantity
and/or quality of tooth enamel, occasionally in
conjunction with other dental, oral, and
extraoral tissues

Mutations in any of the six genes
AMELX, ENAM, MMP20, KLK4,
FAM83H, and WDR72

[73]

Cherubism
Bilateral bone enlargement of the jaws in
childhood; displacement or aplasia of teeth and
tooth-germs

Mutations in the gene encoding the
binding protein SH3BP2 on chromosome
4p16.3

[74]

Disorders of human dentin:
(a) dentinogenesis
imperfectas (DI, types
I–III)
(b) dentin dysplasias (DD,
types I and II)

Discoloured teeth (brown-blue or opalescent
brown) and structural defects such as bulbous
crowns and small pulp chambers

Mutation in dentin sialophosphoprotein
gene (DSPP, 4q21.3)

[75]

Periodontal disease
Inflammatory as well as recessive alterations of
the gingiva and periodontium

Mutation in interleukin-1 (IL-1) gene [76, 77]

Hypodontia
Missing one to six teeth (excluding the third
molars)

Mutations in transcriptions factors of
MSX1 gene in chromosome 4 or another
transcription factor gene PAX9 in
chromosome 14

[78, 79]

Cleidocranial dysplasia
(CCD)

Affects the bones of the face causing a wide
skull, a prominent forehead, a flat nose and a
small upper jaw; delayed resorption and
shedding of primary teeth, delayed maturation,
and partial or absent eruption of the
permanent teeth combined with ectopic
position and development of cysts around the
nonerupted molar

Mutation in the RUNX2 (CBFA1) gene
found on chromosome six, 6p21.1

[80–82]

Some dermatological syndrome causing oral and dental manifestation

Congenital erythropoietic
porphyria

Hemolytic anemia, photosensitivity
(manifested as blistering of the skin), skin
fragility, mutilating scarring, hypertrichosis
and hyperpigmentation, and deposition of
red-brown pigment in the bones and teeth;
oral mucosa is pale and the teeth have a red to
maroon color

Mutations in the UROS gene which is
located in the locus 10q25.2–q26.3

[83]

Ectodermal dysplasias

Characterized by the observation of anodontia
and hypodontia of the temporal and
permanent dentition, impacted teeth, pin-type
dental malformations, enamel hypoplasia,
multiples diastemas, and underdeveloped
alveolar ridges

Mutation of Xq12–q13.1 (XLHED-gene)
and also mutations in the TP63 gene

[84, 85]

Epidermolysis bullosa

Repeated blistering, the formation of scars,
limitation of oral aperture, ankyloglossia,
disappearance of the oral and vestibular sulci,
perioral stenosis, severe periodontal disease
and bone reabsorption, atrophy of the upper
maxilla with mandibular prognathism, an
increased mandibular angle, and a
predisposition to oral carcinoma

Mutations in either the keratin 5 (KRT5)
or keratin 14 (KRT14) gene

[86, 87]
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Table 2: Continued.

Dental disease/disorder Symptoms Genetic cause References

Gardner syndrome

Epidermoid cysts, desmoid tumors, and other
benign tumors; supernumerary teeth,
compound odontomas, hypodontia, abnormal
tooth morphology, and impacted or unerupted
teeth

Mutation in the APC gene located in
chromosome 5q21. High-resolution
banding analysis showed an interstitial
deletion of the long arm of chromosome
5 (q22.1→q31.1)

[88]

Incontinentia pigmenti

Distinctive swirling pattern of the skin; defects
of teeth, hair, and nails; ophthalmic, central
nervous system, and musculoskeletal
abnormalities

Mutations in the NEMO gene that
completely abolishes expression of
NF-kappaB essential modulator

[89]

Naegeli-Franceschetti-
Jadassohn syndrome

Affects the sweat glands, skin, nails, and teeth;
reticulated hyperpigmentation, hypohidrosis,
palmoplantar hyperkeratosis, abnormal teeth,
and nail dysplasia; abnormally shaped teeth,
polydontia, yellow spotted enamel, caries, and
early total loss

Mutations in the keratin 14 (KRT14)
gene, located on chromosome
17q11.2–q21

[90]

Papillon-Lefevre syndrome
Palmoplantar hyperkeratosis and rapid
periodontal destruction

Mutations of a gene that regulates
production of an enzyme known as
cathepsin C, located on the long arm (q)
of chromosome 11 (11q14–q21)

[91]

Sjogren-Larsson syndrome

Congenital ichthyosis, spastic diplegia or
quadriplegia, and mental retardation; white
dots in the fundus, speech defects, epilepsy,
dental problems, and skeletal abnormalities

Mutations in the FALDH (ALDH3A2)
gene on chromosome 17p11.2

[92, 93]

have provided a more amenable system to generate liver
disease-specific cell lines. The ability to develop such disease-
specific stem cell models can be utilized for disease modeling
which helps in the study of the complicated pathogenesis
and drug screening purposes [27]. Similarly, studies have
also been undertaken for neural degenerative diseases like
Parkinson’s disease and retinal disease (Retinitis pigmentosa;
gyrate atrophy) (Table 1).

Most clinical therapies and treatments on disorders of
neural, retinal, hepatic, diabetic, bone, and tissue aberrations
are mostly focused on only particular tissue aspects of human
body. However, some of these disorders have orodental
manifestations. Moreover, most of the identified genetic oro-
dental diseases are also encountered with similar problems
as those of other disorders. In this context, the use of iPSC
therapy for treating such disorders that were applied earlier
can also be considered for orodental diseases. The promise
of regenerative medicine in orodental disease is reinforced
with the potential applicability of stem cell therapy in
dentistry, which could provide an ideal solution to certain
prevailing problems. For example, an immature tooth with
extensive coronal and pulp damage could be reversible
through regeneration of tooth tissues. Similarly, regeneration
of resorbed root, cervical, or apical dentin, periodontal re-
generation, whole-tooth regeneration, repair and replace-
ment of bone in craniofacial defects can facilitate restoring
the physiologic structural integrity [97]. For instance, the
successful regeneration of periodontal tissue, alveolar bone,
cementum, and periodontal ligament has been achieved
using autologous periodontal ligament mesenchymal stem
cells (PDL-MSCs), with no adverse effect when transplanted
[98]. Considering the success of such attempts using tissue

engineering techniques, by applying the advanced iPS cell
technology, more fruitful advantage can be expected for their
use in cell transplantation therapies and gene corrections in
orodental disorders.

The regeneration of orodental tissues is dependent on
four basic components. The appropriate signals, cells, blood
supply, and scaffold that are needed to target the tissue at the
site of defect [99]. These four elements play a fundamental
role in the reconstruction and healing of lost tissues. The
cells provide the machinery for new tissue growth and differ-
entiation, whereas the growth factors modulate the cellular
activity and stimulate the cells to differentiate as well as
produce tissue matrix [99]. The new vascular tissues provide
the nutritional base for tissue growth and the scaffolds
guide and create a template structure in three-dimensions
to facilitate the tissue regeneration process [99]. Tissue
engineering strategies using this basic cell transplantation
approach can be successfully applied for a wide variety of
oral structures such as bone, periodontal ligament, oral
mucosa, skin, and teeth. In addition, such cells can also
be genetically modified ex vivo by using iPS technology
and thereby merging stem cell technology and precision
gene therapy, a new therapeutic approach for oral genetic
disorders is possible. This impulses the possibility of their
use in iPS technology, since they can be utilized not only for
dental associated problems, but may facilitate the repair of
nondental tissues such as bones and nerves [61, 100, 101].

Hence, if we could attempt the real possibility of ex
vivo genetic manipulations, iPSCs will be the most powerful
therapeutic tools for a variety of dental pathologies which
have yet to be investigated. In this regard, it is valuable to
establish disease-specific iPSC lines, preferably for the genetic
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Figure 1: A schematic representation of the human iPSCs generation.

dental disorders to comprehensively evaluate their disease
modeling potentials. Therefore fundamental research pro-
gram is needed to ascertain the application of iPS technology
in genetic orodental disorders, which requires extensive
programs that can be directed to each aspect of dental
diseases and its genetic cause.

9. Conclusion

Though studies have reported the successful generation of
disease-specific iPSC lines from individuals with different
diseases, effective disease modeling has been demonstrated
only by a few studies. The development of iPSC models
for orodental diseases is still a new concept. The availability
of such iPSC models will lead to better understanding of
the nature and behavior of orodental diseases. Possibly the
opportunities for the exploration of iPS technology in treat-
ing orodental diseases will lead to a significant benefit for the
population at large.
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