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Abstract

Accurately predicting essential genes using computational methods can greatly reduce the

effort in finding them via wet experiments at both time and resource scales, and further

accelerate the process of drug discovery. Several computational methods have been pro-

posed for predicting essential genes in model organisms by integrating multiple biological

data sources either via centrality measures or machine learning based methods. However,

the methods aiming to predict human essential genes are still limited and the performance

still need improve. In addition, most of the machine learning based essential gene prediction

methods are lack of skills to handle the imbalanced learning issue inherent in the essential

gene prediction problem, which might be one factor affecting their performance. We propose

a deep learning based method, DeepHE, to predict human essential genes by integrating

features derived from sequence data and protein-protein interaction (PPI) network. A deep

learning based network embedding method is utilized to automatically learn features from

PPI network. In addition, 89 sequence features were derived from DNA sequence and pro-

tein sequence for each gene. These two types of features are integrated to train a multilayer

neural network. A cost-sensitive technique is used to address the imbalanced learning prob-

lem when training the deep neural network. The experimental results for predicting human

essential genes show that our proposed method, DeepHE, can accurately predict human

gene essentiality with an average performance of AUC higher than 94%, the area under pre-

cision-recall curve (AP) higher than 90%, and the accuracy higher than 90%. We also com-

pare DeepHE with several widely used traditional machine learning models (SVM, Naïve

Bayes, Random Forest, and Adaboost) using the same features and utilizing the same cost-

sensitive technique to against the imbalanced learning issue. The experimental results

show that DeepHE significantly outperforms the compared machine learning models. We

have demonstrated that human essential genes can be accurately predicted by designing

effective machine learning algorithm and integrating representative features captured from

available biological data. The proposed deep learning framework is effective for such task.
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Author summary

Essential genes are a subset of genes. They are indispensable to the survival or reproduc-

tion of a living organism and thus play a very important role in maintaining cellular life.

The identification of gene essentiality is very important for understanding the minimal

requirements of an organism, identifying disease genes, and finding new drug targets.

Essential genes can be identified via several wet-lab experimental methods, but these

methods are often time-consuming, laborious, and costly. As a complement to the experi-

mental methods, some centrality measures and traditional machine learning based

computational methods have been proposed which mainly focused on predicting essential

genes on model organisms. Here, we show that human essential genes can be accurately

predicted by exploring sequence data and protein interaction network based on deep

learning techniques. The ability to accurately and efficiently predict essential genes by uti-

lizing existing biological omics data accelerates the annotation and analysis of essential

genes, advance our understanding of the mechanism of basic life, and boosts the drug

development.

This is a PLOS Computational Biology Methods paper.

Introduction

Essential genes are a subset of genes which are indispensable to the survival or reproduction of

a living organism. The prediction of gene essentiality is very important for understanding the

minimal requirements of an organism, identifying disease genes, and finding new drug targets.

The discovery of essential genes via wet-lab experimental methods are often time-consuming,

laborious, and costly. With the accumulation of gene essentiality data in some model organ-

isms and human cell lines, many computational methods have been proposed to predict essen-

tial genes by exploring the correlations between gene essentiality and all sorts of biological

information.

One focus in this direction is network based centrality measures. Many studies have dem-

onstrated that highly connected proteins in a protein-protein interaction (PPI) network are

more likely to be essential than those of low connections. Although the so-called centrality-

lethality rule has been observed in several species, the prediction accuracy is very low for pre-

dicting gene essentiality solely based on each of these network topological features. One reason

is that the existing PPI networks are not complete and very noisy. The other reason might be

the fact that gene essentiality is expected to be affected by multiple biological factors which

cannot be fully captured by network topological features. To improve the prediction accuracy,

several new centrality measures have been proposed by combining topological properties with

other biological information. For example, CoEWC integrated network topological property

with gene expression data to capture the common features of essential proteins in both date

hubs and party hubs, and showed significant performance improvement compared to methods

only based on PPI networks [1]. Zhang et al. proposed an ensemble framework based on gene

expression data and PPI networks, which can significantly improve the prediction accuracy of

common used centrality measures [2]. Zhang et al. also proposed an integrated method, OGN,

by combining network topological properties, the probability of co-expression with the neigh-

boring proteins, and the orthologs in reference organisms [3]. Li et al. proposed GOS [4] by

integrating gene expression, orthology, subcellular localization and PPI networks to predict

gene essentiality. UDoNC combined the domain features with the topological properties of
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PPI networks to predict protein essentiality [5]. Centrality measure based methods predict

gene essentiality by a scalar score derived whether from biological network or by integrating

multiple data sources, which have limited power for accurately identifying all essential genes.

More details about centrality measures for predicting essential genes/proteins can be found in

a recent review [6].

The other focus is using machine learning to integrate multiple features derived from differ-

ent biological data sources to predict gene essentiality. Zhang et al. provided a comprehensive

review for gene essentiality predicting methods based on machine learning and network topo-

logical features, and pointed out the challenges and potential research directions [7]. As shown

in [7], most of the proposed machine learning based predicting methods were evaluated in

model organisms. In addition, the traditional machine learning methods were used to predict

gene essentiality. In traditional machine learning based essential gene prediction methods, fea-

tures are often selected and extracted manually, which requires researchers to have prior

domain knowledge and keen insights of the relationship between gene essentiality and sorts of

biological data in order to obtain the informative features to train the models. For example,

Guo et al. used SVM (Support Vector Machines) to predict human gene essentiality based on

the λ-interval Z curve derived features from nucleotide sequence data [8]. One limitation of

human extracted features would be the coverage. For example, many topological features are

derived from PPI network, such as degree centrality, betweenness centrality, closeness central-

ity, subgraph centrality, and eigen vector centrality, to name a few. The relationship to gene

essentiality for each of them has been evaluated by many researchers on several organisms.

They have also been used in many machine learning based essential gene prediction methods

as shown in [7]. However, their prediction powers either alone or in integration mode (in

machine learning methods) are still limited compared with those automatically learned by

some deep learning frameworks [9].

In recent years, deep learning has been applied successfully in many bioinformatics fields,

such as medical image segmentation [10], drug-target prediction [11], and essential gene pre-

diction [9, 12, 13]. Convolutional neural network (CNN) has been used to automatically

extract features from images [10] or sequence data [11]. Zeng et al. used CNN to extract useful

patterns from the time-serials gene expression profiles by converting it to an image format

based on the cell cycles [9]. Zeng et al. also used bidirectional long short term memory

(LSTM) cells to extract features from the same time-serials gene expression profiles in their

deep learning framework for predicting gene essentiality by integrating gene expression data,

subcellular localization data, and PPI networks together, and tested it on S. cerevisiae [12].

Hasan et al. used a six hidden-layers neural network to predict gene essentiality in microbes

based on sequence data in which features are extracted manually [13]. In addition, deep learn-

ing based network embedding methods have been proposed to learn a lower dimensional

representation for each node automatically [14]. For example, Zeng et al. used node2vec [14],

a deep learning based network embedding method, to extract network features for each pro-

tein in a PPI network and showed that such low-dimension representation is more informative

than those manually extracted centrality measures [9, 12].

Recently, human essential genes have been identified in several human cancer cell lines

using CRISPR-Cas9 and gene-trap technology [15–17]. These identified essential genes pro-

vided a clear definition of the requirements for sustaining the basic cell activities of individual

human tumor cell types, and can be regarded as targets for cancer treatment [18]. These essen-

tial gene datasets together with other available biological data sources enable us to test one

important and interesting assumption that human gene essentiality might be accurately pre-

dicted using computational methods. Although many previous studies showed that features

derived from experimental omics data are useful to predict gene essentiality, such experimental
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omics data are often unavailable for under studied organisms. That’s why some researchers

have been trying to predict essential genes by only utilizing features extracted from sequence

data like DNA sequences and protein sequences [8, 13]. In this paper, we propose a deep learn-

ing based method to predict human gene essentiality by using features derived from DNA and

protein sequence data, which is therefore easily ready to be used for predicting essential genes

in other organisms. In addition, in order to improve the performance of the proposed method,

we also explore features automatically learned by using a deep learning embedding method

from human protein interaction network. We show that each of the two types of features can

train a classifier with acceptable prediction performance based on the proposed multiple-layers

neural network, and the integration of these features further improves the prediction accuracy.

Methods

Fig 1 gives the overall architecture of the proposed deep learning framework, DeepHE. It

mainly consists of two parts, feature extraction and learning part and classification part. It

takes two types of data as input, the sequence data and PPI network. At the feature extraction

level, several sequence features for each gene are extracted from its nucleotide sequence and

protein sequence data. In addition, an embedding method, node2vec [14], is used to learn the

semantic features for each gene from the PPI network. These two types of feature vectors for

each gene are concatenated together as the input to the classification module. The classification

module is based on multiple-layers neural network which consists of several fully connected

hidden layers and an output layer. All its hidden layers utilize the excellent activation function

for deep learning, ReLU (Rectified Linear Unit), and use dropout technique to prevent overfit-

ting. After the hidden layers, the fully connected output layer uses sigmoid as its activation

function. Considering the skewed distribution nature of human essential gene prediction

problem, we explore a cost-sensitive technique to address the imbalanced learning issue when

training the classifier by using class weight.

Fig 1. The flowchart of DeepHE.

https://doi.org/10.1371/journal.pcbi.1008229.g001
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Features derived from sequence data

We extracted features from gene nucleotide sequences and protein sequences. Several features

derived from sequence data have been validated their usefulness in predicting gene essentiality

in model organisms [13, 19]. In this paper, we used the following sequence derived features:

codon frequency, maximum relative synonymous codon usage (RSCUmax), codon adaptation

index (CAI), gene length, GC content, amino acid frequency, and protein sequence length.

Codon frequency of a gene is computed by sliding a window of three nucleotides along its

DNA sequence. The raw counts of 64 codons for each gene are calculated and normalized.

Unbalanced synonymous codon usage is prevalent in both prokaryotes and eukaryotes. Codon

usage bias in a gene may imply its foreign origin, different functional constraints or a different

regional mutation. RSCU is a simple measure of non-uniform usage of synonymous codons in

a coding sequence, which is defined as the number of times a particular codon is observed, rel-

ative to the number of times that the codon would be observed for a uniform synonymous

codon usage. Given a synonymous codon i that has an n-fold degenerate amino acid, RSCU is

computed as (1), where Xi is the number of occurrence of codon i, and n is 1, 2, 3, 4, or 6

according to the genetic code. In this paper, we use the maximal RSCU of each gene as a fea-

ture.

RSCUi ¼
Xi

1

n

Pn
i¼1

Xi
ð1Þ

Codon adaptation index (CAI) estimates the bias towards certain codon that are more com-

mon in highly expressed genes. The CAI of a gene is defined as (2) where L is the number of

codons in the gene excluding methionine, tryptophan, and stop codon.

CAI ¼ ð
QL

i¼1
riÞ

1=L
; ri ¼

RSCU
RSCUmax

ð2Þ

In addition to the 68 features derived from gene nucleotide sequences (64 codon frequency

and 1 GC content, gene length, CAI, and RSCUmax, respectively), we also use amino acids fre-

quencies and the protein length, that is, 21 features derived from protein sequences. All fea-

tures are scaled to have mean m = 0 and standard deviation std = 1.

Features learned from PPI network

Network embedding methods aim at learning low-dimensional latent representation of nodes

in a network, and these representations can be used as features for classification task. Different

from some common used topological features, such as node degree centrality (DC), between-

ness centrality (BC), and closeness centrality (CC), which usually capture one type of network

topological characteristics, the feature representations learned by embedding methods are

expected to capture the similarity between nodes in a network.

In this paper, we use a network embedding method, node2vec [14], to automatically learn

features for each gene from PPI network. It utilizes a flexible notion of a node’s network neigh-

borhood and a biased random walk procedure to learn richer representations. It aims to learn

a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of

preserving network neighborhoods of nodes. The biased random walk procedure will generate

a corpus which consists of many routes each including multiple nodes. These routes just like

the sentences including multiple words in natural language. Then these routes will be fed to

word2vec framework using a skip-gram technique to learn low-dimensional features for each

node. Each node in a PPI network represents a gene/protein. In this way, we get 64 features for

each gene from the PPI network.
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Deep learning model based on multilayer perceptron

The classification module in our deep learning framework, DeepHE, is based on the multilayer

perceptron structure. It includes one input layer, three hidden layers, and one output layer. All

the hidden layers utilize the rectified linear unit (ReLU) activation function. A ReLU is simply

defined as f(x) = max(0, x), which turns negative values to zero and grows linearly for positive

values. In DeepHE, the output layer uses sigmoid activation function to perform discrete clas-

sification. The loss function in DeepHE is binary cross-entropy.

After each hidden layer, a dropout layer is used to make the network less sensitive to noise

in the training data and increase its generalization ability. The dropout layer randomly assigns

zero weights to a fraction of the neurons in the network. Table 1 gives the parameters used in

DeepHE.

The output y of layer i depends on the input of layer i—1 as shown in (3), where x is the

input, σ is the activation function, b is the bias, and W is the edge weight matrix. During the

training phase, the network learns the weights W and the bias b.

y ¼ sðWixi� 1 þ bi� 1Þ ð3Þ

In order to tackle the imbalanced classification problem, we used class weight to train a

weighted neural network or cost-sensitive neural network. In the weighted neural network, the

backpropagation algorithm will be updated to weigh misclassification errors in proportion to

the importance of the class. This will allow the model to pay more attention to examples from

the minority class than the majority class in datasets with a severely skewed class distribution.

Results and discussion

Data collection

DEG database [20] contains 16 human essential gene datasets, among which 13 datasets are

from [15–17], and the other three datasets are from [21–23]. We downloaded all the 16 human

essential gene datasets for analysis. In total 8,256 human genes are annotated to be essential in

at least one of the 16 datasets. Fig 2 shows the distribution of these essential genes across the

datasets. According to the assumption that about 10% human genes might be essential genes

[16], we select the genes contained at least in 5 datasets as our essential gene dataset, which has

2,024 genes accounting for ~10% of human genes. The DNA sequences and protein sequences

for essential genes were downloaded from DEG. We downloaded the genome DNA sequences

and protein sequences for all annotated genes from Ensembl [24] (release 97, July 2019).

Excluding the 8,256 annotated essential genes in DEG, the other annotated protein coding

genes form our nonessential gene dataset, which has 12,697 genes.

The protein-protein interaction data was downloaded from BioGRID [25] (release 3.5.181,

February 2020). Only physical interactions between human genes are used. After filtering out

Table 1. Parameters of DeepHE.

#nodes Activation function Dropout probability

Input layer 153 - -

Hidden layer 1 128 ReLU 0.2

Hidden layer 2 256 ReLU 0.2

Hidden layer 3 512 ReLU 0.2

Output layer 2 sigmoid -

epochs 100 (early stopping)

optimizer Adam (learning_rate = 0.001)

https://doi.org/10.1371/journal.pcbi.1008229.t001
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self-interactions and several small separated subgraphs, we obtain a protein-protein interac-

tion network with 17,762 nodes and 355,647 edges. This interaction network is used to learn

embedding features for each gene. We use genes having both sequence features and network

embedding features for training and testing the classification model, that is, 2,009 essential

genes and 8,430 nonessential genes are used in the following classification performance

evaluations.

The number of nonessential genes is more than 4 folds of that of essential genes, which

would suffer the class imbalance problem and result in low predictive accuracy issue for the

infrequent class. To address this imbalance issue, class weight is used to train a weighted neural

network. In each experiment, the 2009 essential genes and 2009 � 4 random selected nonessen-

tial genes are used to train, validate and test the model. The class weight is set to 4 for the class

of essential genes, and 1 for that of nonessential genes. We will also test the effect of different

weights to the performance of our model.

Evaluation metrics

The performance of DeepHE is evaluated using the area under the receiver operating charac-

teristic (ROC) curve (AUC). ROC plot represents the trade-off between sensitivity and speci-

ficity for all possible thresholds. We also use the area under the precision-recall curve (AP) to

evaluate its performance. Precision-Recall (PR) curves summarize the trade-off between the

true positive rate and the positive predictive value for DeepHE using different probability

Fig 2. The distribution of essential genes across the 16 datasets.

https://doi.org/10.1371/journal.pcbi.1008229.g002
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thresholds. ROC curves are appropriate for balanced classification problems in which each

class has almost identical number of instances while PR curves are more appropriate for imbal-

anced datasets. Since human essential gene prediction is an imbalanced classification problem,

the area under the PR curve (AP) should be more indicative than AUC-ROC. In addition to

AUC and AP scores, we also give the following performance measures: sensitivity (Sn), speci-

ficity (Sp), positive predictive value (PPV), and accuracy (Ac), which are defined in (4)—(7),

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and

false negatives, respectively.

Sn ¼
TP

TP þ FN
ð4Þ

Sp ¼
TN

FPþ TN
ð5Þ

PPV ¼
TP

TP þ FP
ð6Þ

Ac ¼
TP þ TN

TP þ FN þ TN þ FP
ð7Þ

Performance evaluation

The effect of number of hidden layers and dropout probability. There are several

hyper-parameters in DeepHE, which would affect its performance. In the following experi-

ments, we choose Adam as the optimizer because of its superior performance. Its initial learn-

ing rate is 0.001. The training runs for 100 epochs with early stopping criteria. The batch size is

32. For each run, the 2009 essential genes together with 2009 � 4 nonessential genes which are

randomly selected from the 8430 nonessential genes are used to train, validate, and test the

mode. We use 80% data for training, 10% data for validation, and the other holding out 10%

data for testing. We keep the same ratio between the number of essential genes and that of

nonessential genes in training, validating, and testing data. Each experiment is executed 10

times to get the average performance aka 10-fold cross validation with independent 10% data

as testing data for each run. The average performance on the holding out independent testing

datasets is reported.

Fig 3 and S1 Fig show the performance comparison of DeepHE with different number of

hidden layers and different dropout probability (DP). From Fig 3 and S1 Fig we can see that

the overall performance of DeepHE is very robust to these two parameters. For example, its

best, average, and worst AUC scores are 94.15%, 93.23%, and 92.47% respectively when drop-

out probability takes values from 0.1 to 0.5 and the number of hidden layers takes values from

3 to 5. It achieves the best overall performance with AUC = 94.15% when using HL3 with

DP = 0.2. Its AP scores are also very stable with the best, average, and worst values of 90.64%,

89.4%, and 88.69% respectively. Same with AUC, it achieves the best AP score of 90.64% when

using HL3 with DP = 0.2. In addition to the best AUC and AP scores, it also achieves the best

scores for specificity (94.5%), PPV (77.74%), and accuracy (90.88%) when using HL3 with

DP = 0.2. The best sensitivity score is 87.16% when using HL5 with DP = 0.5. From S1 Fig we

can also see that with the increase of dropout probability, its sensitivity score increases but its

PPV score decreases in most cases.

In a very skewed classification problem, the accuracy and AUC measures can get large val-

ues even when almost all the instances in the minority class are classified into the majority
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class. That’s not what we expected. In most cases of imbalanced classification problems, we are

far more concerned with the classifier’s performance on the minority class. Since the essential

gene prediction problem is often a very skewed classification problem in which the number of

essential genes is much less than that of nonessential genes. Our concerns would be how many

essential genes can be predicted and how many genes are truly essential among those predicted

as essential genes, that is, sensitivity and PPV as well as the comprehensive measure AP are

more important. Based on this point, we think that DeepHE with 3 hidden layers and DP = 0.2

is the best one which will be used in the following experiments. Although the other parameters

in DeepHE would also impact its performance, we only test the impact of dropout probability

and the number of hidden layers while keeping other parameters to fixed values since our aim

is not to find out the best parameters here. It’s possible that DeepHE performs even better after

fine tuning the other parameters.

Fig 4 gives the ROC curves of DeepHE in 10 repetitions when using HL3 and DP = 0.2.

ROC curves summarize the trade-off between the true positive rate and false positive rate of

DeepHE using different probability thresholds. From Fig 4 we can see that DeepHE reached

its best performance at iterations 2, 4, 8, and 10 with AUC = 0.95. In addition, the performance

of DeepHE is quite stable since the difference is only about 0.02 between its best and worst

AUC scores. Guo et al. also used machine learning (SVM) to predict human essential genes

based on sequence data [8]. Their reported best performance is AUC = 0.88. Compared with

[8], DeepHE outperforms their method.

Fig 4 also shows PR curves for 10 iterations of DeepHE with HL3 and DP = 0.2. Similar

with the AUC scores, its AP scores are also very stable since there’s only a very small difference

between its best and worst AP scores (about 0.04). It achieves the best performance in iteration

6 with AP = 93%. The worst AP score is still above 88% which indicates that DeepHE is very

effective for predicting human essential genes.

The effect of class weight. In order to cope with the imbalanced data distributions

between two classes, DeepHE uses class weight to give larger penalty when misclassifying an

Fig 3. Performance comparison of DeepHE with different number of hidden layers and different dropout probability (DP) for two metrics: AUC and AP. HL3 =

[128, 256, 512], HL4 = [128, 256, 512, 1024], HL5 = [128, 256, 512, 1024, 1024]. DP: dropout probability.

https://doi.org/10.1371/journal.pcbi.1008229.g003
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instance in the minority class, that is, the class of essential genes. In the following, we will test

if different class weight values would affect the performance of DeepHE. Note that in each

experiment, the ratio between the number of essential genes and that of nonessential genes is

1:4. The class weight for nonessential genes is always 1. We will vary the class weight for essen-

tial genes from 1 to 10 to see its effect on the performance. DeepHE with 3 hidden layers and

DP = 0.2 is used for the following experiments.

Fig 5 and S2 Fig give the performance comparison of DeepHE with different class weights

for the class of essential genes. From Fig 5 and S2 Fig we can see that DeepHE achieves best

Fig 4. The ROC and PR curves of DeepHE with HL3 and DP = 0.2.

https://doi.org/10.1371/journal.pcbi.1008229.g004

Fig 5. Performance comparison of DeepHE with different class weights for two metrics: AUC and AP. CW: class weight.

https://doi.org/10.1371/journal.pcbi.1008229.g005
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AUC (94.15%), PPV (77.74%), Accuracy (90.88%), and AP score (90.64%) when class weight

equals 4 for essential genes. It gets the best sensitivity score (79.85%) when class weight = 9. In

general, the sensitivity score increases with the increase of the class weight, but PPV score

decreases with the increase of class weight. This accords with our intuition. With larger class

weight for essential genes, misclassifying an essential gene will get larger penalty than misclassify-

ing a nonessential gene. In this situation, more essential genes will be put into the right class, at

the same time, more nonessential genes would also be put into the class of essential genes, which

will result in higher sensitivity score and lower PPV score. When class weight = 4, it mimics the

situation that the number of essential genes equal to the number of nonessential genes, thus it

achieves a balanced point for sensitivity and PPV score. One can set the class weight according to

his preference to whether higher sensitivity or higher PPV or just the balance between them.

Fig 5 and S2 Fig also tell us that the AUC, specificity, AP, and Accuracy of DeepHE are very

robust to the class weight. For example, the best, average, and worst AUC scores are 94.15%,

93.48%, and 93.07% respectively; the best, average, and worst specificity scores are 94.75%,

93.03%, and 90.95% respectively; the best, average, and worst AP scores are 90.64%, 89.69%,

and 89.19% respectively; the best, average, and worst Accuracy scores are 90.88%, 89.69%, and

88.39% respectively. When varying the class weight, sensitivity score and PPV change in oppo-

site directions which makes the overall performance of DeepHE only slightly affected by the

change of class weight.

The contribution of different features. DeepHE utilizes two types of features, sequence

features (S) and network embedding features (N). In the following we will test how each type

of features affect the performance of DeepHE. In the following experiments, DeepHE works

with same configurations (3 hidden layers, DP = 0.2, class weight = 4. Other configurations are

same as before) except the input features.

Fig 6 gives the performance of DeepHE using different type of features. It tells us that

DeepHE with the integration of sequence features and network embedding features works best

which confirms the contribution and complement of the two types of features. DeepHE with

only sequence features works worst which has very low PPV score (53.28%). DeepHE with net-

work embedding features works in between, whose AP score achieves acceptable level

(86.53%). DeepHE achieves the best performance for all the six measures by integrating these

two types of features.

Comparison with centrality measures. In order to demonstrate the effectiveness of

DeepHE, we compare it with several popular centrality measures which are widely used either

alone or as features in machine learning based methods to predict essential genes/proteins.

Four commonly used centrality measures (DC, BC, EC, CC) are used for the comparison in

the following steps. First, each centrality measure is used to compute the values of proteins in

the PPI network (the same PPI network is used as for learning embedding features). Second,

the proteins are ranked by descending order. Third, the top ranked 2009 genes are selected as

candidate essential genes. Based on this partition, we can calculate accuracy, PPV, and sensitiv-

ity according to the true labels of genes. Fig 7 shows the performance comparison of these

methods. From Fig 7 we can see that DeepHE outperforms the other centrality measures

regards to all the three metrics. For example, the accuracy of DeepHE increases about 8.5%,

14%, 5.4%, and 6.6% compared with that of DC, BC, EC, and CC respectively; the PPV of

DeepHE increases about 33.7%, 64%, 20.2%, and 15.5% compared with that of DC, BC, EC,

and CC respectively. The sensitivity of DeepHE has the similar percent improvement with that

of PPV. This demonstrates that DeepHE is superior that the commonly used centrality mea-

sures, which accords with our intuition.

In order to test whether the features automatically learned by network embedding method

are more informative than that of manually designed centrality measures for essential gene
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prediction, we further run several experiments for DeepHE with different features, in which

sequence features are combined with that calculated by one of the four widely used centrality

measures. The performance results are shown in Fig 8. It tells us that DeepHE(N+S) outper-

forms all the other variants by substituting network embedding features with that from one of

the centrality measures regards to the metrics of AUC, AP, accuracy, PPV, and specificity. For

instance, compared with that of DeepHE using S+DC, S+BC, S+EC, and S+CC as features

respectively, the average AUC of DeepHE(N+S) increases about 3.3%, 7%, 1.8%, and 3.2%; the

average AP of DeepHE(N+S) increases about 4.4%, 8.9%, 2.5%, and 4.1%; the average accuracy

of DeepHE(N+S) increases about 5.8%, 6.3%, 3.8%, and 5.2%. From Fig 8 we can also see that

DeepHE with S+BC performs worst for almost all the metrics, which tells us that betweenness

centrality captures less useful information from the PPI network for the task of essential gene

prediction. This can also be confirmed in Fig 7. BC itself performs worst (Fig 7) so that it can-

not provide more complementary information to enhance sequence features.

Comparison with traditional machine learning models. Several machine learning meth-

ods have been used to predict essential genes [7]. In order to demonstrate the superior of our

proposed prediction method DeepHE, we also compare it with several widely used traditional

machine learning models, such as Support Vector Machines (SVM), Naïve Bayes (NB), Ran-

dom Forest (RF), and Adaboost. All the compared machine learning algorithms are imple-

mented by scikit-learn python library with default parameters, unless otherwise specified. For

each model, we either set class weight parameter to 4 or set sample weight parameter to 4 for

Fig 6. Performance comparison of DeepHE with different features. N+S: network embedding features plus sequence features; N:

network embedding features; S: sequence features.

https://doi.org/10.1371/journal.pcbi.1008229.g006
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each essential gene and 1 for each nonessential gene, therefore the two types of weights are

essentially same. The sample weight is only used when class weight is not available. All models

are tested 10 times and the average performance for each measure is used for comparison.

More performance information about these tests can be found from the box plots in Fig 9 and

S3 Fig.

From Fig 9 and S3 Fig we can see that DeepHE (N+S) significantly outperforms the other

machine learning models regarding to three comprehensive measures, AUC, AP, and Accu-

racy. For instance, the AUC score of DeepHE (N+S) is 8.79% higher than that of SVM (N+S),

43.22% higher than that of NB (N+S), 25.38% higher than that of RF (N+S), and 15.39% higher

than that of Adaboost (N+S). The AP score of DeepHE (N+S) increases by 51.24%, 220.77%,

65.95%, and 91.63% compared with that of SVM (N+S), NB (N+S), RF (N+S), and Adaboost

(N+S) respectively. By integrating sequence features and network embedding features, the

overall performance of four models (DeepHE, SVM, RF, Adaboost) gets improved. NB works

slightly better with only network embedding features. Considering the fact that essential gene

prediction is an imbalanced problem, AP is more important than other measures. From Fig 9

we can see that the four compared traditional machine learning models have very low AP

scores (from 27.91% to 59.93%), which tells us that they are not a good choice for such task,

and further confirms the superior of our proposed deep learning model, DeepHE.

Conclusion

We propose a new essential gene prediction framework based on deep learning, DeepHE. It

aims to explore whether deep learning can achieve notable improvements for predicting gene

essentiality, an imbalanced classification problem. DeepHE integrates two types of features,

Fig 7. Performance comparison of DeepHE, DC, BC, EC, and CC.

https://doi.org/10.1371/journal.pcbi.1008229.g007
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Fig 8. Performance comparison of DeepHE with different feature combinations.

https://doi.org/10.1371/journal.pcbi.1008229.g008

Fig 9. Performance comparison of DeepHE, SVM, NB, RF, and Adaboost with different features. N: network embedding features; S: sequence features.

https://doi.org/10.1371/journal.pcbi.1008229.g009
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sequence features extracted from DNA sequence and protein sequence and features learned

from PPI network, as its input. Then a multilayer perceptron was used to train a cost-sensitive

classifier by setting class weight. Although several machine learning based essential gene pre-

diction methods have been proposed, most of them base on the features extracted according to

human domain knowledge. In this paper, we use a deep learning based network embedding

algorithm, node2vec, to automatically learn network features for each gene from the PPI net-

work. The learned embedding features greatly improved the performance of DeepHE com-

pared with it either only using sequence features or using sequence features plus one feature

computed by one of widely used centrality measures. The performance of DeepHE is evaluated

on human datasets, which achieves very good performance for three comprehensive measures

AUC (94.15%), AP (90.64%), and Accuracy (90.88%). We also compare it with four widely

used machine learning models, SVM, Naïve Bayes, Random Forest, and Adaboost, as well as

four popular centrality measures (DC, BC, EC, and CC). DeepHE significantly outperforms all

the four machine learning models and the four centrality measures, which further demon-

strates that DeepHE is an effective deep learning framework for human essential gene

prediction.

In the future, we will explore and integrate other biological data to further improve the per-

formance of DeepHE. Especially we are interested in how to use deep learning to automatically

learn features from biological data rather than manually extracting features heavily based on

domain knowledge. In addition, we are also interested in exploring more useful techniques to

cope with the imbalanced classification problem as well as sparsely labeled classification prob-

lem [26,27], and utilizing membrane computing techniques [28] to enhance the learning pro-

cedure. Exploring deep learning to predict human essential genes across human cancer cell

lines would be also interesting.

Supporting information

S1 Fig. Performance comparison of DeepHE with different hidden layers and dropout

probability for four metrics: accuracy, PPV, sensitivity, and specificity.

(TIF)

S2 Fig. Performance comparison of DeepHE with different class weights for four metrics:

accuracy, PPV, sensitivity, and specificity.

(TIF)

S3 Fig. Performance comparison of DeepHE, SVM, NB, RF, and Adaboost with different

features for four metrics: accuracy, PPV, sensitivity, and specificity.

(TIF)
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