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Abstract: Background and objectives: The biological treatment is a promising therapeutic option
for ulcerative colitis (UC) patients, being able to induce subclinical and long-term remission.
However, the relatively high costs and the potential toxicity have led to intense debates over
the most appropriate criteria for starting, stopping, and managing biologics in UC. Our aim was to
build a machine learning (ML) model for predicting disease activity at one year in UC patients treated
with anti-Tumour necrosis factor α agents as a useful tool to assist the clinician in the therapeutic
decisions. Materials and Methods: Clinical and biological parameters and the endoscopic Mayo score
were collected from 55 UC patients at the baseline and one year follow-up. A neural network model
was built using the baseline endoscopic activity and four selected variables as inputs to predict
whether a UC patient will have an active or inactive endoscopic disease at one year, under the same
therapeutic regimen. Results: The classifier achieved an excellent performance predicting the disease
activity at one year with an accuracy of 90% and area under curve (AUC) of 0.92 on the test set and an
accuracy of 100% and an AUC of 1 on the validation set. Conclusions: Our proposed ML solution may
prove to be a useful tool in assisting the clinicians’ decisions to increase the dose or switch to other
biologic agents after the model’s validation on independent, external cohorts of patients.

Keywords: inflammatory bowel diseases; artificial intelligence; biological therapy; predictive model;
disease activity

1. Introduction

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with recurrent and remissive
evolution. Although the induction of a complete resolution of the disease is not currently possible,
UC patients can benefit from the new biological therapies. Anti-Tumor Necrosis Factor α (anti-TNF)
agents and other modern biological regimens ensured the success of the “treat to target” approach in
UC [1] by their ability to achieve subclinical (endoscopic and histologic) remission [2], corticosteroid
therapy discontinuation, reduction in hospitalization and surgery rates, long-term remission, and a
good quality of life [3,4].

However, the high costs of biological agents and their potential side effects (mostly related to
opportunistic infections and malignancies) [5] have led to intense debates over the most opportune
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timing for starting or discontinuing the therapy, increasing the dose, or switching to another biological
regimen and deciding on the most appropriate management of the lack or loss of response [6–8].

Recent studies proved that anti-TNF antibodies are a practical approach for inducing clinical
remission in UC [9]. Although promising results, evidence shows that long-term remission is
only achieved in a certain proportion of the patients that initially responded to the treatment [10,
11]. Besides, there is insufficient evidence to be sure of the ideal duration of the treatment [12].
The current “status quo” urges further research on optimizing the administration of anti-TNF antibodies.
Additional studies for UC patients receiving biological therapy are needed to establish objective criteria
for therapeutic decisions.

Modern artificial intelligence/machine learning (ML) solutions may fill this knowledge gap by
in-depth investigation of the large clinical datasets available. To date, several innovative ML-based
approaches [13] were proposed for various medical topics concerning IBD, such as endoscopic
image analysis for the detection of inflammation [14], dysplasia [15], histologic disease activity [16],
and disease subtype classification [17,18].

Various studies described ML methods for predicting IBD prognosis. Transcriptomic analyses
on purified CD8 T cells and/or whole blood successfully predicted poor prognosis with earlier need
for treatment escalation [19]. Other multi-omics ML approaches have been described for predicting
IBD treatment outcomes with good performance [20,21]. However, multi-omics techniques are based
on costly investigations that are not widely available, making them hardly applicable for routine use.
Promising ML solutions for predicting disease outcome after treatment with Vedolizumab [22] or
Azathioprine [23] based on standard clinical parameters have been proposed in IBD.

To date, no study based on routinely available clinical data has described ML models for predicting
anti-TNF response in UC patients.

We aim to build a machine learning model for predicting disease activity and risk of relapse at
one year follow-up in UC patients treated with anti-TNF agents using only standard clinical variables.
After the model’s validation on independent, external, and sufficiently large cohorts of patients,
the proposed ML solution may prove useful in assisting the clinicians’ decisions to increase the dose or
change the biological agent.

2. Materials and Methods

2.1. Study Design and Participants

An observational retrospective single-centre cohort study was conducted on a sample of 55 UC
patient records. All patients were admitted to the Institute of Gastroenterology and Hepatology,
“Sf. Spiridon” Hospital Ias, i—Romania, between January 2012 and November 2018. Confirmed UC
patients under maintenance therapy with an anti-TNF agent (Infliximab/Adalimumab) who underwent
a colonoscopy for disease assessment at the initial evaluation and one year follow-up were considered.
Only patients in clinical remission at the initial evaluation were included. Patients were excluded if
they were in evidence with concurrent disorders (infections, autoimmune and inflammatory conditions,
cirrhosis, neoplasia, and hemodialysis) capable of influencing medical parameters, if they presented
clinical relapse at the initial evaluation or if changes were made to the therapeutic regimens between
the two visits.

All patients provided written informed consent. The study has full ethical approval from
the Research Ethics Commission of the “Gr. T. Popa” University of Medicine and Pharmacy
(no. 15308/07.2019) and “St. Spiridon” Regional Hospital Ethics Committee (no. 54/10.2019).
No sex-based or racial/ethnic-based differences were present.

2.2. Clinical Protocol

UC patients were hospitalized for treatment monitoring. According to the European consensus
guidelines, UC diagnosis is established by clinical, biochemical, stool, endoscopic, cross-sectional
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imaging, and histological investigations [24]. Patients underwent a medical history interview,
physical examination, routine laboratory tests, and colonoscopy to diagnose or assess already diagnosed
UC, following the European standard protocols.

All included patients were in clinical remission and under maintenance therapy with an anti-TNF
agent: Infliximab (5 mg/kg every eight weeks) or Adalimumab (40 mg every two weeks). No patient
received other concomitant immunomodulatory treatment.

2.3. Data Collection

The following data were collected both at the initial evaluation and the one year follow-up.
Laboratory parameters documented were: red blood cells (RBC), white blood cells

(WBC), platelets (PLT), hemoglobin (HGB), hematocrit (HCT), mean corpuscular hemoglobin
concentration (MCHC), plateletcrit (PCT), platelet distribution width (PDW), mean platelet volume
(MPV), platelet large cell ratio (PLCR), neutrophils (NEUT), lymphocytes, monocytes (MONO),
C reactive protein (CRP), erythrocyte sedimentation rate/1 h (ESR), fibrinogen, serum iron (SI),
ferritin, total proteins (TP), albumin, alpha one globulins (A1G), alpha two globulins (A2G), beta one
globulins, beta two globulins, and gamma globulins.

Colonoscopy with biopsy was performed on the EVIS EXERA II endoscopy system (Olympus
America). Specialist physicians carried out the procedures from Gastroenterology and Hepatology
Institute, Ias, i, Romania. According to the colonoscopy findings, the Mayo subscore used to classify
endoscopic disease activity [25,26] was documented. A patient was considered to have endoscopic
remission if the Mayo score was 0 or 1. Similarly, active disease was considered for Mayo scores 2 or 3.

2.4. Preprocessing and Management of Missing Values

Documented continuous variables (biological parameters) were standardized in the range (0–1).
Values of HGB, HCT, SI, and ferritin were processed to resolve the differences between sexes.

Missing values were assigned using multivariate imputation by chained equations (MICE) method
implemented by the MICE package in R Studio Version 1.2.1335© 2020–2019 RStudio, Inc. Build 1379
(f1ac3452). Missing variables were assigned by applying the Bayesian regression built-in method.

2.5. Standard Statistics for Feature Selection

ANOVA with Holm adjustments in R Studio was used to determine the continuous baseline
variables for significant differences between the one year endoscopic remission and active groups.
Statistical significance was considered for p < 0.05. If any two of the selected continuous variables had
high intercorrelation with a Pearson coefficient ≥0.9, one of them was removed.

2.6. Neural Network Model—Construction and Evaluation

Initial data of 50 UC patient records were randomly divided into a training set of 40 records
(80%) and a test set of 10 records (20%), such that variables distributions in each set were similar to
those in the original dataset. The other five patient records from the same medical centre were added
independently to be used as a validation set. Endoscopic activity classes (active/inactive) were not
equally represented in the train and test set. However, the validation set had a balanced distribution of
the disease activity classes.

One multilayered perceptron classifier was developed based upon the training set. The classifier
was constructed using the caret: train function in R Studio. A 10-fold cross-validation was used
to reduce overfitting. Synthetic minority over-sampling technique (SMOTE) was used with caret:
train function to overcome imbalanced data.

The classifier was built to predict whether a UC patient will present endoscopic remission or
active disease at the one year follow-up if the therapeutic strategy is left unchanged.

The developed neural network was evaluated on the test set and validation set according
to the classification accuracy (ACC). The area under the receiver operating characteristic curve
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(AUC), sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV) were
also determined.

3. Results

3.1. Patient Characteristics

Of all 55 patient records, 40 (72%) were males and 15 (28%) females. The age range of the
participants was 22–62. The distribution of active/inactive endoscopic classes at the one year follow-up
was imbalanced: 42 UC patients were reported with endoscopic remission and 13 with active disease.

3.2. Feature Selection

Using ANOVA with Holm adjustment, the feature selection step initially included six continuous
baseline variables with a significant difference between the active disease group and the remission
group at one year: NEUT, PDW, MPV, PLCR, CRP, and A1G. Significance was established at p < 0.05.
Next, highly intercorrelated features were identified and removed. Three strong correlations with a
Pearson coefficient ≥0.9 were identified between PDW and MPV, PDW, and PLCR, MPV, and PLCR
(Figure 1). Thus, the following parameters were removed from the analysis: MPV and PLCR.
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Figure 1. Correlation heatmap showing the Pearson coefficients between all parameters nominated
by the feature selection method. NEUT (neutrophils), PDW (platelet distribution width), MPV (mean
platelet volume), PLCR (platelet large cell ratio), CRP (C reactive protein), alpha one globulins (A1G).

As a result of the feature selection stage, four parameters (NEUT, PDW, CRP, and A1G) were
included in further analysis.

Selected clinical characteristics and laboratory findings for all patient records and each activity
class are summarized in Table 1.
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Table 1. Baseline parameters for all patient records and each endoscopic activity class at one year.

Baseline Parameters All
Endoscopic Activity at One Year

Inactive Active

Number of records 55 42 13
Gender (male:female) 40:15 32:10 8:5

Age (years) 44.3 ± 10.5 43.7 ± 11.4 46 ± 6.4

Baseline endoscopic activity Inactive 39 35 4
Active 16 7 9

NEUT * 103/µL 4.59 ± 2 3.32 ± 1.13 5.7 ± 2.37
PDW fL 12.9 ± 1.9 13.2 ± 2.1 11.8 ± 1

CRP mg/dL 0.35 ± 0.4 0.3 ± 0.32 0.55 ± 0.4
A1G % 2.1 ± 0.33 2 ± 0.32 2.31 ± 0.27

* signifies “multiplied by”.

3.3. Handled Missing Values

UC patient records had a total of 18 (8.2%) missing values, which were imputed using the MICE
package as follows: PDW-4, CRP-2, A1G-12.

3.4. Results of the Neural Network Models Construction and Evaluation

Based on the results produced by the feature selection method, a neural network model was
trained. The initial dataset of 50 UC patient records was randomly divided into a training set (40 records)
and a test set (10 records) to build the classifier. Five patient records were added independently to
constitute the validation set. Unlike in the training and test set, endoscopic activity classes were
balanced in the validation set.

The neural network model was developed using the baseline endoscopic activity and all four
selected variables as inputs to predict whether a UC patient will have an active or inactive endoscopic
disease at one year, under the same therapeutic regimen. Model performance metrics are shown in
Table 2. ROC curves proving model performance on the train, test, and validation sets are shown in
Figure 2.

Table 2. The classifier’s performance metrics.

Train Set Test Set Validation Set

Predictions Predictions Predictions
Actual Remission Activity Remission Activity Remission Activity

Remission 27 0 6 1 3 0
Activity 6 7 0 3 0 2

ACC 85% 90% 100%
95% CI (0.70, 0.94) (0.56, 0.99) (0.48, 1.00)
p value <0.001 <0.001 <0.001

SE 82% 100% 100%
SP 100% 75% 100%

PPV 100% 86% 100%
NPV 54% 100% 100%
AUC 0.91 0.92 1.00

ACC (Accuracy); CI (Confidence Intervals); AUC (Area under the receiver operating characteristic curve);
SE (Sensitivity); SP (Specificity), PPV (Positive predictive value); NPV (Negative predictive value).
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4. Discussion

Our study is the first neural network developed for UC patients treated with anti-TNF agents
for predicting endoscopic disease activity and risk of relapse at one year using standard baseline
parameters. We demonstrated that it is possible to accurately predict anti-TNF response at one year in
UC patients using machine learning methods. Present-day guidelines [25–27] indicate that the best
future activity prediction is based on current endoscopic activity. Our solution brings a new perspective
by incorporating additional parameters besides baseline endoscopy to predict future disease outcomes.

Measuring endoscopic disease activity is the “gold” standard for disease monitoring in UC
according to current guidelines [25–27]. Indeed, strong evidence shows that targeting endoscopic
healing is superior to tailing only clinical remission (concerning relapse rates, hospitalization rates,
and the need for surgery) [28]. The advent of biological therapy in UC paved the way for achieving more
profound, subclinical remission degrees (mucosal and histological healing). However, the inadequate
response to biologics delays the disease’s resolution, exposes patients to unnecessary toxic drug effects,
and wastes medical resources. Therefore, the growing interest in monitoring the therapy aims to
identify appropriate end-points for successful treatment and timely discontinue or switch the therapy
in those likely to relapse or unlikely to respond [29]. The proper therapeutic decision is essential,
even more so as inopportune discontinuation may trigger the development of anti-drug antibodies
that can lead to future response loss [30].

We aimed to develop a machine learning tool capable of predicting the endoscopic disease activity
at one year. Comparing the baseline activity with the predicted one and acknowledging the risk of
relapse, the clinician may decide whether increasing the dose, switching to other biologic agents,
or discontinuing the therapy is the most appropriate decision. Our model achieved an ACC of 85%
with 82% SE, 100% SP and an AUC of 0.91 on the trainset. On the test set, the classifier obtained an
excellent performance with an ACC of 90%, SE of 100%, SP of 75%, and AUC of 0.92. On the validation
set, the model predictions achieved the maximum performance with a 100% ACC, SE, and SP and an
AUC of 1.

A few other studies aimed to predict endoscopic remission at one year. One paper used faecal
calprotectin (FC) assay measured after the induction of anti-TNF therapy (infliximab) to predict the
mucosal healing after one year of treatment [31]. A cut-off of ≤121 µg/g used for the post-induction
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faecal calprotectin achieved 70% SE and 70% SP for predicting mucosal healing at one year in 50 patients
with UC colonic or ileal-colonic Crohn’s disease. Our model obtained higher performance metrics on
all tested sets.

A particular aspect worth mentioning is that, in our study, baseline CRP levels differed significantly
in patients developing an active disease versus patients in endoscopic remission at one year. Our result
is consistent with the findings of other studies. CRP was shown to be a clinically relevant biomarker of
response to infliximab [32] and an independent predictor of colectomy-free survival in patients treated
with infliximab [33].

Limitations and Future Perspectives

Firstly, our dataset’s minimal size and the fact that the independent validation set is from the
same centre entails rigorous external validation with data from other centres. Secondly, the imbalanced
distribution of endoscopic activity classes at one year predisposes to calculation biases, although the
SMOTE function in R was used to reduce these biases significantly. Thirdly, the retrospective nature of
our study may introduce further bias.

In the future, these drawbacks could be overcome by employing prospective studies on broader,
more diverse, and comprehensive datasets in a centre with greater accessibility that would permit
organizing a cohort with a balanced distribution of endoscopic activity classes both at baseline and at
one year. The next trials would improve models’ performance using different ML algorithms as our
patient’s database extends.

5. Conclusions

Our proposed ML solution proved to accurately predict disease activity at one year in UC patients
treated with anti-TNF agents using routinely available clinical parameters. Acknowledging the risk
of relapse could lead to increasing the dose or switching to other biological agents. After rigorous
validation on large, external datasets, our ML approach could significantly impact clinical practice by
helping the physician decide on the most appropriate therapeutic option concerning the management
of anti-TNF biologics.
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