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Interference of power line (PLI) (fundamental frequency and its harmonics) is usually present in biopotential measurements.
Despite all countermeasures, the PLI still corrupts physiological signals, for example, electromyograms (EMG), electroencephalo-
grams (EEG), and electrocardiograms (ECG). When analyzing the fetal ECG (fECG) recorded on the maternal abdomen, the
PLI represents a particular strong noise component, being sometimes 10 times greater than the fECG signal, and thus impairing
the extraction of any useful information regarding the fetal health state. Many signal processing methods for cancelling the PLI
from biopotentials are available in the literature. In this review study, six different principles are analyzed and discussed, and their
performance is evaluated on simulated data (three different scenarios), based on five quantitative performance indices.

1. Introduction

The fetal heart rate (fHR) and the morphological analysis
of the fetal electrocardiogram (fECG) are two of the most
important tools used nowadays in clinical investigations to
examine the health state of the fetus during pregnancy. The
fHR is the mostly used parameter in fetal monitoring, since
1818 [1]. While the fHR track shows a predictive value of
almost 99% for the fetal well being investigation, an abnormal
fHR has a predictive value of only 50%. Hence, it provides
relatively poor specificity in detecting the fetal distress [2].
Additional information about the fetal well being can be
obtained by analyzing the morphology of the fECG signal,
which was recently introduced in clinical practice for fetal
monitoring. Its clinical relevance was demonstrated by a
series of clinical studies [3], randomized controlled trials [4–
8] and prospective observational studies [9–18], which prove
that clinical fetal monitoring based on both fHR and fECG
morphology analysis, especially the ST waveform analysis,

leads to the reduction in the number of operative vaginal
deliveries, smaller rate of metabolic acidosis at birth, less
blood samples performed during labor, and fetal morbidity
reduction.

The standard procedure to record the fHR is the car-
diotocography (CTG), sometimes known as electronic fetal
monitoring [19]. When necessary to investigate both the
instantaneous fHR and the fECG morphology, an invasive
fetal monitoring method that uses a wire electrode attached
to the fetal scalp [20], after the membrane rupture, is pre-
ferred. However, both methods have important drawbacks:
(i) the fHR obtained via CTG has the potential problems
of reliability and accuracy [21, 22]; in addition, the beat-to-
beat variability of fHR is not present in the CTG traces [23,
24]; hence, rapid variations of the fHR cannot be detected;
(ii) the second recording technique is invasive [20]; thus,
it can put the life of both the mother and the fetus in
danger (e.g., possible infections can lead to different compli-
cations).
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Figure 1: Abdominal signal affected by PLI including harmonics.

An alternative method to obtain the instantaneous fHR
and the fECG morphology is the abdominal recording of the
fECG which considers an array of electrodes placed on the
maternal abdomen. This recording procedure overcomes the
main drawbacks of the methods used in clinical routine for
fetal monitoring. However, the limitation of this technique
is the very low signal-to-noise-ratio (SNR) of the available
recorded fECG. This is mainly due to the fact that the fECG
signal is generated by a small source (fetus heart). In addition,
it has to propagate through different attenuating media to
reach the maternal belly surface. Hence, the fECG signals
contained in abdominal signals (ADSs) provide an amplitude
of about 10𝜇V [24] which becomes still smaller around 28th
until 32nd weeks of gestational age due to the appearance of
the insulating layer called vernix caseosa.

Furthermore, the signal of interest, that is, the fECG, is
only one (weak) component of the ADS mixture; other (dis-
turbing) signals with higher power that also exist are the
electromyogram (EMG) of the abdominal muscles, the elec-
trohysterogram (EHG), the maternal ECG (mECG), the
baselinewander basically due to thematernal respiration, and
the power line interference (PLI). Among them, the PLI, with
the fundamental PLI component of 50Hz/60Hz, and its har-
monics is one of the most disturbing noise sources, because it
can reach amplitudesmuch greater than the abdominal fECG
signal, making its analysis almost impossible (see Figure 1).

The PLI is determined by the power supply network, and
its appearance in the abdominal recordings is explained by (i)
the electrostatic induction and parasitic capacitance coupling
between the body and the ground; and (ii) the electromag-
netic induction through loops of the recording cables, where a
time-varying magnetic field generates a voltage proportional
to the loop area (depending on its orientation) and to the
strength of the magnetic field [25]. If the cables are twisted,
the induced voltage is reduced [25], but still significant for
the fECG analysis.

The fundamental PLI is definitely a problem in fECG
analysis, and its harmonics, usually present, make the PLI
cancelling problem even more complex. The harmonics are
usually generated by connected nonlinear loads: neon lamps,
TVs, microwaves ovens, fridges, air conditioning devices,
computers, and basically almost any power electronics device
connected to a single-phase distribution system. The dis-
turbing sources are in fact the rectifiers and semiconductor

switches present in almost all of these nonlinear loads which
introduce distortions in the power supply waveforms [26, 27].
Surprisingly, the 3rd harmonic, that is, 150Hz/180Hz, is the
most powerful PLI harmonic [28].

Although there aremany practical solutions to reduce the
PLI, for example, the cable twisting and shielding, the use of
differential recording involving an instrumentation amplifier
with high common mode rejection ratio (CMRR) at power
line frequency, and the proper skin preparation to reduce
the electrode imbalance, the PLI still affects the biopotential
measurements. For example, the advantage of high CMRR
instrumentation amplifiers is limited in real life applications,
since a slight imbalance in the electrode-skin impedance
leads to the divider effect [25]; thus, the PLI is partly trans-
formed into a differential signal [25, 29, 30] which passes
through the amplifier together with the signal of interest,
when no notch filter is available in the amplifier circuit to
suppress the PLI components. However, the spectrum of the
ECG signal for neonates ranges between 0.01Hz and 250Hz
[31], while the abdominal fECG frequencies are supposed
to be up to 500Hz; thus, such a notch filter affects also
the signal of interest. Finally, any PLI disturbance, even if
much attenuated, impairs the morphological analysis of the
abdominal fECG due to its very low amplitude.

There are many processing methods available in the liter-
ature, addressing the PLI suppression in biopotential record-
ings. The main PLI cancelling techniques are (i) fixed-fre-
quency digital notch filters [32–36], (ii) adaptive filters [37–
42], (iii) time-frequency processing of nonstationary signals
(wavelet transform) [43–45], (iv) time-frequency nonlinear
analysis of nonstationary signals [46–48], (v) Kalman filters
[49, 50], (vi) neural networks [51, 52], (vii) blind source
separation [53–55], (viii) spectral Hampel filter [56], and (ix)
subtraction procedure [57, 58]. These nine categories can be
further grouped into nonmodel techniques (a) (iii, iv, vii, and
viii) and model based techniques (b) (v, vi, and ix).

From this large variety of PLI suppression methods, six
representative approaches are selected in this review study:
digital notch filters (DNF), adaptive filters (AF), Hilbert
Huang transform (HHT), wavelet transform (WT), blind
source separation (BSS), and neural networks (NN); they are
briefly described in the following sections which discuss their
advantages and disadvantages. A recent and representative
algorithm is implemented for each PLI cancelling approach
and is evaluated using simulated data. The signal processing
method with the best performance in PLI reduction, con-
sidering the minimal distortion of the original signal as the
evaluation criterion, is identified.

2. Materials and Methods

2.1. PLI Cancellation Using Digital Fixed Notch Filters. Notch
filters are used to cancel narrow band interferences, one com-
mon application being the PLI suppression in biopotential
measurements. Digital fixed notch filters can be designed to
remove multiple frequencies, having the advantage of being
designed to remove the fundamental frequency and also its
harmonics (multiple-notch filters or comb filters [34, 59]).
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However, the main problem of multiple-notch filters,
when used for cancelling the PLI signal from fECG signals, is
the fECG and PLI spectral overlapping. Thus, the notch filter
should have a very narrow bandwidth in order to suppress
mainly the 50Hz and its harmonic components, and not
the useful information contained in the fECG spectrum.
But this requirement comes into conflict with the fact that
actually the real PLI signal does not have a fixed fundamental
frequency, but rather a frequency that varies around the value
of 50Hz which requires a wide bandwidth of the multiple-
notch filter. Moreover, the transient time introduced by the
notch filter can be too long, in which case the fECG can be
considerably distorted. Hamilton [60] has investigated the
effect of the transient time of the notch filters, which increases
much when the bandwidth is decreased. They observed
the ringing effect appearing near the QRS complex and
ST segment when narrow bandwidth notch filters are used.
This distortion decreases when the transient time increases
[60, 61]. However, in practice, a long transient time reduces
the capacity of the filter to track the noise level changes
[60]. The latest available international standards for ECG
acquisition, American National Standard Association for the
Advancement of Medical Instrumentation (AAMI) [62] and
International Standard IEC 60601 [63], do not specify any
requirements for the transition band of the notch filters. The
only specification present in the IEC 60601 standard states
that “notch filters for line frequency interference suppression
shall not introduce on the ECG record more than 25 𝜇V peak
ringing noise” [63]. Nevertheless, the notch filter should have
a short transient time, minimal distortion, and very narrow
bandwidth.

Pei and Tseng [64] propose a method to decrease the
transient time of multiple IIR notch filters. This technique
uses the vector projection in order to find better initial values
for the IIR notch filter. A more recent paper [32] reports
better results in suppressing the transient time than the ones
obtained when applying the method introduced in [64].
Piskorowski proposes a time-variantmultiple-notch IIR filter.
The transient time is reduced by varying the pole radius
with time and thus the filter is able to cancel the fixed
frequencies PLI components as fast as possible, with no long-
term selectivity impairment [32].This type of filter should not
be confused with adaptive filters, which are varying the notch
central frequency, as is explained in the next section.

The time-varying multiple-notch IIR filter (TVMNF) pro-
posed in [32] is chosen as representative for this category
of power line PLI suppression methods. Thus, the general
transfer function of the multiple-notch filter is
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Figure 2: The block diagram of the TVMNF.

is a symmetrical polynomial, and 𝑟 is the pole radius. The
selectivity of the filter increases when 𝑟 is increased, but this
results also in a longer transition. Thus, the transition time is
influenced by the radius 𝑟 and in order to improve the time
domain filter response, the 𝑟 is varying in time.The difference
equation of the IIR multiple-notch filter with a time-varying
parameter 𝑟 is

𝑦 (𝑛) = 𝑏0𝑥 (𝑛) + 𝑏1𝑥 (𝑛 − 1) + ⋅ ⋅ ⋅ + 𝑏2𝐾𝑥 (𝑛 − 2𝐾)

− 𝑟 (𝑛) 𝑏1𝑦 (𝑛 − 1) − ⋅ ⋅ ⋅ − 𝑟
2𝐾
(𝑛) 𝑏2𝐾𝑦 (𝑛 − 2𝐾) ,

(2)

where the variation of the pole radius varies is described by
[65]

𝑟 (𝑛) = 𝑟 (1 + (𝑑𝑟 − 1) 𝑒
−𝑛/V𝑓

𝑠) , 𝑛 ≥ 0, (3)

with variation range 𝑑
𝑟
= 𝑟(0)/𝑟 and 𝑟 = lim

𝑛→∞
𝑟(𝑛); V

includes the exponential variation of 𝑟(𝑛) in (3), and 𝑓
𝑠
is the

sampling frequency [32]. The value chosen for 𝑟 is critical; a
very high value generates narrow notches, but their transition
time is increased, while a small 𝑟 value leads to a decreased
transition time, but less selective notches are obtained, which
results in filtering out important fECG frequency compo-
nents.Thus, 𝑟(𝑛) has an exponential variation, from an initial
value, 𝑟(0), to the desired one, 𝑟 [32].

The filter is implemented with one notch frequency and
three notch frequencies, respectively, choosing 𝑑

𝑟
= 0.9 and

V = 2, as suggested in [32]. In Figure 2 a block diagram is used
to describe the TVMNF algorithm.

2.2. Adaptive Filtering in PLI Cancellation. As previously
described, fixed notch filters have the main drawback that
the central frequency of the notch cannot be modified. This
makes the PLI cancellation difficult when the PLI funda-
mental frequency has slight variations, which is often the
case in real applications. To overcome this problem adaptive
filters are introduced, which have the ability to adapt their
notch frequency, tracking the changes in the PLI fundamental
frequency.The first adaptive filter was introduced byWidrow
et al., [41] and according to the review [60], this type of filters
introduces less distortion than the fixed notch filters, having
also a shorter transition time. The adaptive noise cancellers
assume simultaneous recording of the noise source by an
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Figure 3: The block diagram of the general adaptive interference
canceller [40].

additional channel, that is, the reference signal.The reference
is supposed to be uncorrelated with the signal of interest,
but correlated with the disturbing signal. The filter adapts its
parameter in order to make the reference signal as close as
possible to the noise that disturbs the signal of interest, by
minimizing the output error, considering the least mean
square (LMS) criterion.

Many adaptive filters that suppress the PLI in ECG
recordings are available in the literature. Wan et al. [67]
propose a LMS adaptive algorithm with variable step size
and suggest that faster convergence rate and smaller mean
square error are obtained, as compared to the traditional
approach. Costa and Tavares [68] comewith an improvement
of the basic adaptive canceller by providing also harmonics’
suppression, with a minimal increase in computational com-
plexity.Thus, the algorithm is suitable for low cost acquisition
systems. Liangling et al. [42] exploit the capability of the
adaptive filters to cancel the PLI component and baseline
wander from ECG tracings [67].

However, these adaptive filters have a practical drawback.
They all need an additional recording of the disturbing signal,
that is, the reference signal. That is not always possible (e.g.,
in abdominal fECG recording using portable devices). Thus,
adaptive filters with no reference signal are more suitable
for practical applications. Ziarani and Konrad [69] propose
a filter which is able to estimate the amplitude, the phase,
and the frequency of the PLI components. An improved
version of these adaptive filters is presented by Martens et
al. [39] (ImprovedAdaptive Canceller—IAC), who developed
an algorithm able to suppress both the PLI fundamental fre-
quency and its harmonics. The algorithm considers the fact
that large QRS amplitudes can distort the estimation of the
PLI components and produce large transient segments and
thus the adaptive process is blocked in such situations. The
algorithm is compared with the classical adaptive filter and
two notch filters with large and narrow bandwidth, respec-
tively. The algorithm proposed by Martens et al. outperforms
the other techniques, showing a stable behavior even in the
worst conditions. This algorithm is chosen as representative
for the adaptive filtering PLI cancellation approach and is
implemented in the current study.

In Figure 3 a general scheme of the adaptive notch filter is
presented.

2.3. Blind Source Separation Applied in PLI Suppression. This
PLI cancellingmethod is based on a completely different con-
cept than digital filters, considering the statistical properties

Sources A
Independent 
components 

(unmixed signals)
W, unmixing 

system

Cost function
Adjust the W

Multichannel 
ADS

Figure 4: The general block diagram of the ICA algorithm.

of a mixture of signals. Each signal source is extracted from
the mixture, as long as they satisfy some conditions.

Many approaches to estimate the ICA parameters exist:
maximization of nongaussianity [65, 70], maximum likeli-
hood estimation [71, 72], tensorialmethods [73], and so forth.
Different research groups use ICA algorithms to extract the
fECG from abdominal recorded signals: Zarzoso and Nandi
2001 [74], Vrins et al. [75], Sameni et al. [76, 77], Lathauwer
et al. [73], Camargo-Olivares et al. [78], Cardoso [79], and
so forth. All ICA studies report that the used ICA methods
perform reasonably well in extracting the fECG signals from
ADS, that is, separating the abdominal fECG fromother types
of noise signals, including the PLI component, present in
the ADSs. It should be noticed that the interpretation of the
abdominal fECG obtained via BSS methods does not have
a clear physical explanation, since ICA does not take into
account the position of the electrodes and other physical
parameters.

The algorithm proposed in [65], FastICA, is chosen as
representative for this PLI cancelling approach and is con-
sidered in the current study. In Figure 4 the general block
diagram of the ICA concept is depicted.

2.4. Hilbert Huang Transform Applied in PLI Reduction. The
Hilbert Huang Transform (HHT) is a powerful method for
analyzing nonlinear and nonstationary time series and it was
introduced by Huang et al. [80]. The method overcomes the
shortcomings of the Fourier transform which is valid just
for stationary time series. It is proven that Fourier transform
offers a wrong energy-frequency distribution with no physi-
cal meaning when applied on nonstationary time series [80].
Taking into account that most real signals, and especially the
biopotentials, are nonstationary, the HHT is suitable for their
analysis.

The method has two steps: (i) generation of Intrinsic
Mode Functions (IMFs) through Empirical Mode Decom-
position (EMD); (ii) Hilbert analysis [80]. IMFs are fully
generated from the data set and must satisfy two conditions:
(a) the number of zero crossing and the number of extrema
have to be equal or to differ at maximum by one; (b) the
mean value of the envelope including the local maxima and
the envelope defined by the local minima is zero at any point.

The generation of IMFs is fully data driven and is
obtained by decomposing the time series (the process is called
“sifting”) using the EMD; high frequency components are
decomposed into the first IMFs, while the low frequency
components are found in the higher order IMFs.

This method is reported to cancel the PLI signal from the
ECG [81–83].The basic idea is to discard the IMFswhich con-
tain noise and to reconstruct the signal from the remaining
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IMFs. The main problem is to identify which IMFs contain
just the PLI signal. In conventional EMD the first IMF is
considered to be related to the PLI signal since it contains the
higher frequency and is therefore discarded, which is not nec-
essarily true, since the sifting process is not perfect, allowing
high frequency ECG components in the first IMF. Moreover,
if the PLI contains harmonics, then the number of IMFs
containing PLI components is higher, since the harmonics are
decomposed into different IMFs.

Pal and Mitra [66] propose an algorithm that identifies
the IMFs containing the PLI components. It computes the
IMFs’ cumulative mean and their powers, and using these
parameters identifies which IMFs contain PLI components,
on a threshold basis. However, the algorithm is not robust
when the power of the PLI signal is high as compared to
the signal of interest, the fECG. Therefore, the current study
improves the original HHT based PLI cancelling method,
by a more precise identification of the noise IMFs being
obtained. The Hilbert transform is computed for each IMF
and the instantaneous frequency is derived thereafter. The
IMFs containing the PLI components are then discarded; as
already mentioned, these IMFs can still contain information
about the high frequency ECG components, that is, the QRS
complex. In order to recover theQRS complex, the IMFs with
QRS complex are firstly detected, based on the instantaneous
frequency, and then the algorithm described by Kabir and
Shahnaz [47] is applied as follows:

(a) the QRS complex boundaries are identified:

(a.1) the 𝑅 peak locations are detected;
(a.2) two nearest local minima, located on both sides

of 𝑅 peak are found;
(a.3) one zero-crossing point on the left-hand side of

its leftminimum and the other one on the right-
hand side of the right minimum are detected.
The boundaries of the QRS complex are
assumed to be between these two points;

(b) a Tukeywindow centered on the𝑅 peaks, which spans
to cover the QRS complex, is applied, that is, multi-
plies the selected IMF. This window offers a flat gain
at the𝑅wave and decreases gradually to zero ensuring
a smooth transition with minimal distortion. Thus,
the information of the QRS complex is preserved,
allowing the estimation of the fECG. In Figure 5 the
block diagram of the algorithm is depicted.

2.5. PLI Cancellation by Applying Neural Networks. The
classical application of NN in cardiac signals processing is
the classification of ECG signals, pattern recognition [84, 85],
and fECG extraction from ADS [86]. Methods for fECG
SNR improvement are described in [87] where a Functional
Link Artificial Neural Network (FLANN) is proposed to

fECG

Noise

Normalization

Normalization DWT ANC

fECG

∑

∑
−

+

Denormalization

Figure 6: The block diagram of the WNN algorithm.

remove the Gaussian and baseline wander noise. Zhang
and Benveniste [88] and Poungponsri and Yu [89] use NN
combinedwithWavelet transform for better results.However,
in a recent article Poungponsri and Yu [51] come with an
improvement of the method in [89] and the algorithm is
tested also on PLI cancellation (Wavelet Neural Network—
WNN). The NN based adaptive filtering approach proposed
in [51] for ECG signal noise reduction removes the PLI signal
by applying firstly the wavelet decomposition. The wavelet
coefficients are further applied to a neural network trained to
reconstruct the denoised ECG (see Figure 6). The algorithm
was initially developed by the authors to cancel all the noise
sources overlapping the ECG signal recorded at 360Hz (the
PLI fundamental frequency is 60Hz).

The algorithm presented by Suranai et al. is chosen as
representative for this category of methods and its steps are
as follows:

(a) A real signal, not affected by the PLI, is applied to
a feed-forward NN with 64 inputs, 2 hidden layers,
and 1 output corresponding to the denoised ECG
signal. The inputs of the NN are obtained by applying
the Wavelet Packet Decomposition (WPD) using the
Debauchies 4 wavelet; the thresholding (soft thresh-
old) is then applied to reduce the high frequency
noise. The resulting 64 wavelet coefficients are the
inputs of the NN having 56 hidden neurons on the
first hidden layer and 12 neurons on the second one.
The hyperbolic tangent activation function is used for
all the neurons:

𝑓 (𝑥) =
1 − 𝑒
−𝑥

1 + 𝑒𝑥
. (4)

The first 3350 samples of the “clean” selected sig-
nal resampled at 300Hz (record 220 from the
Massachusetts Institute of Technology (MIT-BIH)
database [90]) are used for this training phase involv-
ing the back propagation algorithm (4000, for the
raw signal, recorded at 360Hz). In order to allow
the NN to remove the PLI from signals recorded
with different amplifier gains, the signals are initially
normalized as follows:

𝑠norm (𝑡) =
2

𝑠max − 𝑠min
⋅ 𝑠 (𝑡) −

𝑠max + 𝑠min
𝑠max − 𝑠min

, (5)

where 𝑠max and 𝑠min are the maximum, and, respec-
tively, the minimum values of the signal.
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The training is then continued for the same segment,
affected by the PLI, so that the NN learn to cancel the
PLI noise.

(b) The noisy signals are then applied to the network
(i.e., their wavelet coefficients, after thresholding); the
denoised signal is considered as the output of the
network.

It should be noticed that the algorithm presented above is
adapted in this study to remove the PLI signal with the fun-
damental frequency of 50Hz and for a sampling frequency of
1000Hz.

2.6. PLI Reduction by Applying the Wavelet Transform. In the
recent years, discrete wavelet transforms and thresholding
techniques have been used for ECG denoising [91]. Wavelet
based noise cancelling techniques became very popular
because they are able to decompose the signal into time-
frequency domain which is appropriate for the analysis of
nonstationary signals. It is reported in the literature that
discrete wavelet transform does not introduce any artificial
information to the original signals; the threshold is generated
based on the attributes extracted from the signal [92, 93].

The main problem is the identification of the mother
wavelet, the level of decomposition, and the optimal thresh-
old. Garg et al. [94] compare different mother wavelet func-
tions for ECGdenoising and conclude that the recovery of the
ECG with minimal artifacts is obtained when using Sym10
decomposition at level 5 and hard shrinkage function with
either rigorous SURE or heuristic SURE threshold [94]. More
recently, Galiana-Merino et al. [43] use the discrete stationary
wavelet packet transform (DSWPT) to suppress the PLI
signal and its harmonics from electromyographic (EMG)
signals (theDSWPTalgorithm). Basically it is a shift invariant
transform to isolate the 50Hz and its harmonics, with the
disturbing sine signals being reconstructed thereafter using
the DSWPT coefficients. In Figure 7 the steps of the DSWPT
algorithm are described as follows.

(a) The linear trend is removed from the signal.
(b) DSWPT is applied to the detrended signal using the

Meyerwavelet and considering themaximumdecom-
position level fixed to 3, to allow the identification of
50Hz and of its harmonics.

(c) The amplitude and the phase of the sine noise signals
are roughly estimated by dividing the DSWPT coeffi-
cients associated with the disturbing frequencies into
segments of 20 samples which are then averaged to
obtain templates for the sinewave disturbances. Based
on this template some pure sine signals are generated

having the amplitudes equal to the maximum values
of the sine templates. The correlation between these
pure sine signals and the corresponding templates
allow the roughly determination of the phase shift of
the PLI.

(d) The amplitude and the phase of the sine disturbances
are further adjusted, for a better estimation of the PLI.
Firstly, the best phase shift is computed by varying
the phase shifts in the range [−10, 10] samples around
the roughly estimated phase shifts. Secondly, the com-
putation of the correlation between the shifted pure
sine and the signal is performed.Then, the amplitudes
are refined by analyzing the correlation between the
signal and the pure sine waves with the amplitudes
varying in the range [0.6, 1.4] around the roughly
estimated amplitudes. The variation step is equal to
0.01% of the roughly estimated amplitude.

(e) The refined sine disturbances are subtracted from the
signal that has to be denoised.

The main results regarding the performance of the
selected algorithms are summarized in Table 1.

2.7. Data Simulation and Performance Measurements. The
simulated data, used to quantitatively estimate the perfor-
mance of the proposed algorithms are generated in two steps.
Firstly, the fECG is simulated using the dynamic model
introduced in [95, 96]:

𝑥̇ = 𝛼𝑥 − 𝜔𝑦,

̇𝑦 = 𝛼𝑦 − 𝜔𝑥,

𝑧̇ = −∑

𝑖

𝑎
𝑖
Δ𝜃
𝑖
𝑒
−(Δ𝜃
𝑖
)
2

/2(𝑏
𝑖
)
2

,

(6)

where 𝜔 is the angular velocity of the time vector as it moves
around the limit circle (representing the period 𝑇), 𝛼 = 1 −

√𝑥2 + 𝑦2, 𝜃 = 𝑎 tan(𝑦/𝑥), Δ𝜃
𝑖
= 𝜃 − 𝜃

𝑖
, 𝑎
𝑖
contains the

amplitudes of the peaks, 𝑏
𝑖
contains the width of each peak,

and 𝜃
𝑖
are the angles which specify the 𝑃-, 𝑄-, 𝑅-, 𝑆-, 𝑇-

waves/peaks.
Secondly, the PLI components, simulated as sinusoids, are

added. Usually the PLI fundamental component is supposed
to be constant. However, there are some deviations from
the fundamental frequency in real applications, mainly due
to unstable power sources. Thus, the PLI components can
exhibit significant frequency deviation, up to 3% [30, 97–100]
(the deviation differs from country to country, depending on
the available power supply technologies).
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Three data sets are therefore constructed, considering
three PLI scenarios (7): (i) the PLI contains just the funda-
mental power line interference component, of 50Hz, (ii) the

PLI includes both the power line fundamental frequency and
its 3rd harmonic (150Hz), and (iii) the PLI is a sinusoidwhose
frequency slightly varies in time around 50Hz. Consider

PLI (𝑡)

=

{{

{{

{

𝐴
1
⋅ sin (2𝜋𝑓

1
⋅ 𝑡) , 𝑓

1
= 50Hz, ideal case

𝐴
1
⋅ sin (2𝜋𝑓

1
𝑡) + 𝐴

3
⋅ sin (2𝜋𝑓

3
⋅ 𝑡) , 𝑓

1
= 50 Hz, 𝑓

3
= 150Hz, 𝐴

3
= 𝑘𝐴
1
,

𝐴
1
⋅ sin (2𝜋𝑓

1 (𝑡) ⋅ 𝑡) , 𝑓
1 (𝑡) = 50Hz ± rand (𝑡) , 𝑓1 (𝑡) exhibits stepwise changes,

(7)

where 𝑘 = 20%.
It is clear that theworst scenario is the third one, assuming

that the power line fundamental frequency is time-varying.
For each scenario, the SNR defined by (8) is varied; five

noise levels are considered: −2 dB, 0 dB, 2 dB, 4 dB, and 5 dB:

SNR = 10 log
10
(
𝑃fECG
𝑃PLI

) = 10 log
10
(
∑
𝑛

𝑖=1
fECG (𝑖)

∑
𝑛

𝑖=1
PLI (𝑖)

) . (8)

For the qualitative evaluation of the implemented algorithms,
the following performance indices are considered as follows.

(a) Normalized root mean square error, expressed in
percentage:

RMSD = √
∑
𝑁

𝑖=1
(orig fECG(𝑖) − est fECG(𝑖))2

∑
𝑁

𝑖=1
orig fECG(𝑖)2

∗ 100.

(9)

(b) Noise retention, expressed in percentage:

NR =
𝑃orig fECG − 𝑃est fECG

𝑃orig fECG
∗ 100, (10)

where 𝑃 is the power of the signal computed with

𝑃orig fECG = 10 ∗ log
10

𝑁

∑

𝑖=1

orig fECG(𝑖)2. (11)

(c) SNR improvement [47]:

SNRimp

= 10 ∗ log
10
{

∑
𝑁

𝑖=1
[signal (𝑖) − orig fECG(𝑖)]2

∑
𝑁

𝑖=1
[est fECG(𝑖) − orig fECG(𝑖)]2

} ,

(12)

where signal is the input signal containing both the
fECG and the PLI.

(d) Cross-correlation coefficient, considering the original
and the denoised fECG signal:

𝑝 =
∑
𝑁

𝑖=1
(est fECG (𝑖) ∗ orig fECG (𝑖))

√∑
𝑁

𝑖=1
est fECG(𝑖)2 ∗ ∑𝑁

𝑖=1
orig fECG(𝑖)2

. (13)

3. Results

The results obtained when applying the five selected algo-
rithms are organized as follows. (i) For each performance
index a table is constructed. The columns correspond to the
evaluated algorithms and the rows to the scenarios, assuming
that the SNR is −2, 0, 2, 4, and 5 dB. The best result obtained
for the performance index is emphasized in bold for each
case and for each scenario. The scenarios for which some
algorithms are not working by principle are represented by
empty gray cells. (ii) The performance indices for scenario 2,
when the SNR is −2 dB, are illustrated for each algorithm (see
Figures 8, 9, 10, and 11).The second scenario is chosen instead
of theworst case scenario (scenario 3) because two algorithms
are not working by principle in this case. Furthermore, if
the algorithmswithworst performance have the performance
indices very far from the other values (i.e., are outliers), they
are excluded from the graphical representation, in order to
offer a meaningful comparison of the algorithms. (iii) The
results obtained for the selected BSS method (FastICA) are
considered apart from the others, because this method has
a totally different working principle, assuming that more
recorded channels are available. Thus, for each scenario,
the FastICA algorithm is evaluated by considering that the
available ICA inputs are the five simulated signals, with
different SNRs.

4. Discussion

InTables 2, 3, 4, and 5, it can be observed that theworst overall
performance is obtained when the WNN is applied. The
algorithm is able to reduce the noise if its level is very low, but
the QRS complex, containing high frequencies, is disturbed,
impairing the fECGmorphology analysis. When the signal is
hidden by the noise, that is, low level of SNR, themethod fails
to extract the denoised signal, which can be explained by the
thresholding step.Themain advantage of the algorithm is the
computation time of the testing (denoising) phase, assuming
that the neural network is already trained. Because of the
overall bad performance the algorithm is excluded from the
following discussion.

The TVMNF method proposed by [32] shows good
results for scenarios 1 and 2 having a RMSDof 2.11%, Figure 8,
and a SNR improvement, SRNimp = 76 dB for the scenario
2 (see Figure 11), SNR = −2 dB (worst scenario). No ringing
effect is observed near the QRS complexes. However, despite
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Table 2: The RMSD (%) obtained for each algorithm and for each data set.

Data set SNR (dB) Algorithm
TVMNF HHT DSWPT WNN IAC FastICA

1

−2 2.003515 0.292652 0.195444 77.31631 1.77611

0,073811
0 2.003515 1.740565 0.018847 70.02215 0.667624
2 2.003515 1.197345 0.001283 33.19379 0.666902
4 2.003515 1.624253 0.000778 5.631514 0.666882
5 2.003515 2.09266 0.000883 3.244183 0.666879

2

−2 2.112907 0.292852 0.60503 72.03313 3.822223

0,001657
0 2.112907 1.743529 0.059846 68.07016 0.669611
2 2.112907 1.205285 0.005355 33.1956 0.666898
4 2.112907 1.603147 0.000589 5.626975 0.666882
5 2.112907 2.109169 0.00079 3.230891 0.666879

3

−2 38.81253 64.46775 655.1273

1,269908
0 1.884043 49.6627 396.5219
2 1.185072 47.70798 394.4479
4 1.62743 38.65239 393.3756
5 1.221664 43.60649 393.305

Table 3: The NR (%) obtained for each algorithm and for each data set.

Data set SNR (dB) Algorithm
TVMNF HHT DSWPT WNN IAC FastICA

1

−2 0.03426 0.038749 0.023308 6.295244 1.628744

0,010982
0 0.03426 1.022943 0.000225 4.176215 1.705774
2 0.03426 0.333364 6.54E − 06 10.28646 1.711423
4 0.03426 0.033125 8.93E − 06 3.873963 1.711467
5 0.03426 0.435546 8.96E − 06 2.62773 1.711466

2

−2 0.098402 0.038435 0.040232 4.781289 1.577947

0,000112
0 0.098402 1.006355 0.000395 3.559141 1.699513
2 0.098402 0.338354 4.81E − 06 10.28173 1.71136
4 0.098402 0.032068 8.91E− 06 3.874016 1.711466
5 0.098402 0.529579 8.95E − 06 2.628339 1.711466

3

−2 38.94626 3.701535 95.16797

0,024024
0 0.926928 0.853499 42.01306
2 0.320873 1.394364 38.06225
4 0.032029 7.147367 37.07462
5 0.228292 5.364868 37.0534

Table 4: The SRNimp obtained for each algorithm and for each data set.

Data set SNR (dB) Algorithm
TVMNF HHT DSWPT WNN IAC FastICA

1

−2 66.88941 83.59046 87.09688 0.995959 67.90879

89,90204
0 46.88941 48.10367 87.41253 0.457028 56.40755
2 26.88941 31.35309 90.75301 −0.97771 36.41695
4 6.889411 8.704401 75.09279 −2.46131 16.41721
5 −3.11059 −3.4965 63.99507 −7.4033 6.417252

2

−2 76.16926 93.32959 87.0233 7.64809 70.99347

132,618
0 56.16926 57.83398 87.11819 7.199378 66.12334
2 36.16926 41.04077 88.08339 7.304312 46.15861
4 16.16926 18.5631 87.25321 7.064304 26.15881
5 6.169261 6.180338 74.70329 2.304354 16.15886

3

−2 41.20189 2.384226 16.90442

65,2529
0 47.44316 3.811226 4.910191
2 31.48669 5.564842 0.575438
4 8.713179 7.955288 0.242613
5 1.236451 7.002494 0.220137
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Table 5: Cross-correlation coefficient, 𝑝, obtained for each algorithm and for each data set.

Data set SNR (dB) Algorithm
TVMNF HHT DSWPT WNN IAC FastICA

1

−2 0.997565 0.999947 0.999343 0.000708 0.607869

0,999997
0 0.997565 0.994679 0.999996 0.002489 0.992365
2 0.997565 0.99794 1 0.348027 0.987873
4 0.997565 0.996368 1 0.976249 0.999875
5 0.997565 0.990019 1 0.987159 0.999987

2

−2 0.997018 0.999947 0.998855 0.000667 0.464252

1
0 0.997018 0.992789 0.999991 0.002342 0.984898
2 0.997018 0.997911 1 0.347902 0.999995
4 0.997018 0.996415 1 0.976263 0.999999
5 0.997018 0.989539 1 0.987179 1

3

−2 0.313497 −0.00072 0.00938

0,999191
0 0.992068 −0.00131 0.073122
2 0.997936 0.005998 0.187229
4 0.996377 0.004007 0.205138
5 0.997482 0.010274 0.237579
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Figure 8: The RMSD (%) for scenario 2 (WNN is excluded).
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Figure 9: The NR (%) for scenario 2 (WNN is excluded).
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Figure 10: The SRNimp for scenario 2.
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Figure 11: The cross-correlation coefficient for scenario 2 (WNN
and IAC are excluded).
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the good results, the main drawback is that the filter cannot
be applied when the fundamental frequency is varying, as
expected in real applications. Thus, this type of filter is of
limited usage.

As expected, the adaptive methods are able to follow the
changes in the frequencies of the PLI components; hence,
they can be successfully applied in scenario 3. According to
the computed performance indices, the IAC is able to obtain
good estimates of the fECG signal when the fundamental
frequency is fixed, even when the harmonics are present.
However, for the worst SNR, that is, −2 dB, the obtained per-
formance is slightly worse as compared to the performance
of the other algorithms (see Figures 8–11). For scenario 3
the algorithm has the worst performance (RMSD = 655%
and a noise retention factor of NR = 95%). This is due to
the fact that the algorithm needs very long adaptation time
(approximately 10 s) when step variations in the PLI funda-
mental frequency appear. Thus, IAC is of limited use in real
applications.

The HHT method implemented in this study shows also
good results. However, at small SNR values, small oscillations
appear near the QRS complex, suggesting that some very
low PLI components can be found in the low order IMFs.
Moreover, when the method is applied in scenario 3, outliers
appear when the PLI fundamental frequency is changing.The
main advantage of this method is that it is suitable for nonsta-
tionary signals like the biopotentials and that it is fully data
driven; that is, no a priori knowledge is necessary. The main
disadvantage is that the decomposition does not fully separate
the oscillations; thus, some useful information can be found
in the IMFs containing the PLI components; in addition,
it does not have, by now, a complete mathematical evalu-
ation. However, recent papers present some improvements
to the basic method claiming a better decomposition (e.g.,
Ensemble EmpiricalModeDecomposition (EEMD) [101] and
Complete Ensemble Empirical Mode Decomposition [102]).

The BSS algorithm is able to separate the fECG from the
PLI showing the same performance no matter how the SNR
is varying, because by principle it exploits the independence
between any two signal sources. However, it should be noted
that the comparison with the othermethod is not quite fair in
the current study; in order to have the same simulations, the
same signals used for the other algorithmswere fed to the Fas-
tICA. In real application, the input of ICA algorithm is signals
obtained from different channels, meaning different fECG
waveforms, which can lower the performance of ICA in fECG
extraction. Moreover, the physical relevance of the fECG
independent components obtainedwhen applying ICA is still
a subject of discussion among researchers. Thus, the method
has limited usage in real application, but it can be successfully
combined with the adaptive filtering techniques, improving
the estimation provided by the PLI reference block.

As theoretically expected, the best performance is
obtained when using the DSWPT, if the PLI is stationary and
includes exactly the 50Hz and its harmonics. However, the
method does not work in the worst scenario. Since the algo-
rithm estimates the PLI interference assuming that the power
line frequency is 50Hz (in step 2, templates of the sine distur-
bances are constructed, averaging the segmented signal, using

a window of 20 samples), it is expected that the algorithms
fail in cancelling the PLI when the frequency is more or less
different from 50Hz, or even worse, when the power line
frequency is varying, which is supported by the obtained
results.

5. Conclusions

In this paper a review of PLI cancelling methods applied in
fECG signal processing is proposed, revealing the main
concepts provided in the literature for suppressing the
50Hz/60Hz component and its harmonics from biosignals.
The selected algorithms are quantitatively analyzed, using dif-
ferent performance criteria and practical considerations are
providedwhen discussing the PLI cancelling from abdominal
fECGs.Three sets of simulated data are constructed and used
in the quantitative evaluation of the algorithms, considering
the 50Hz PLI fundamental frequency, the 50Hz combined
with the 150Hz PLI component, and a varying PLI funda-
mental frequency.Thequantitative performance ismonitored
using five different indices, corresponding to different SNRs.

While some methods, like WNN, show very bad perfor-
mances, most of the algorithms have good results, especially
in scenarios 1 and 2. The DSWPT has the best performance
in scenarios 1 and 2, as depicted in the Figures 8–11, but its
main drawback is that it is not suitable for the most realistic
scenario, scenario 3. The HHT based algorithm shows the
best performance overall, considering the implemented sce-
narios.Thus, further studies should concentrate on exploiting
the capabilities of the HHT method.
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