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Abstract

The aim of this systematic review was to evaluate the ability of magnetic resonance

elastography (MRE) to identify significant changes in brain mechanical properties dur-

ing normal and pathological aging. PubMed, Web of Science and Scopus were

searched for human studies using MRE to assess brain mechanical properties in cog-

nitively healthy individuals, individuals at risk of dementia or patients diagnosed with

dementia. Study characteristics, sample demographics, clinical characterization and

main MRE outcomes were summarized in a table. A total of 19 studies (nine aging,

10 dementia), comprising 700 participants, were included. The main findings were

decreased cerebral stiffness along aging, with rates of annual change ranging from

�0.008 to �0.025 kPa per year. Also, there were regional differences in the age

effect on brain stiffness. Concerning demented patients, differential patterns of stiff-

ness were found for distinct dementia subtypes. Alzheimer's disease and

frontotemporal dementia exhibited decreased brain stiffness in comparison to cogni-

tively healthy controls and significant declines were found in regions known to be

affected by the disease. In normal pressure hydrocephalus, the results were not con-

sistent across studies, and in dementia with Lewy bodies no significant differences in

brain stiffness were found. In conclusion, aging is characterized by the softening of

brain tissue and this event is even more pronounced in pathological aging, such as

dementia. MRE technique could be applied as a sensible diagnostic tool to identify

deviations from normal aging and develop new brain biomarkers of cognitive

decline/dementia that would help promote healthier cognitive aging.
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1 | INTRODUCTION

Normal aging is characterized by functional and structural changes in

the brain with concomitant changes in cognition. Conventional neuro-

imaging techniques, such as magnetic resonance imaging (MRI), have

identified some recurrent patterns of alterations occurring in the brain

during aging. These include gray (GM) and white matter (WM) atrophy

accompanied by increases in cerebrospinal fluid and ventricular vol-

umes (Fjell et al., 2014; Good et al., 2001; Resnick et al., 2003; Shaw

et al., 2016; Storsve et al., 2014; Thambisetty et al., 2010; Vinke
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et al., 2018), increases in prevalence and severity of WM lesions

(Breteler et al., 1994; Prins & Scheltens, 2015; Zupan, 2016),

decreased WMmicrostructural integrity (Coelho et al., 2021; de Groot

et al., 2015; de Lange et al., 2016; Lebel et al., 2012; Salat et al., 2005;

Sexton et al., 2014; Vinke et al., 2018; Westlye et al., 2010) and func-

tional dedifferentiation (Eyler et al., 2011; Koen & Rugg, 2019; Spreng

et al., 2010; Turner & Spreng, 2012). Importantly, all these brain

changes have been associated with alterations in cognition. The cog-

nitive trajectories in aging present high inter-individual variability, with

several factors (e.g., genetic, lifestyle, environmental) contributing to

this differential response (Barter & Foster, 2018; Josefsson

et al., 2012; Paulo et al., 2011; Santos et al., 2014). Thus, understand-

ing the neural mechanisms which lead to either cognitive preservation

or decline is of relevance to promote healthier cognitive aging and

prevent the increased burden of neurodegenerative diseases, such as

dementia.

Recently, magnetic resonance elastography (MRE) has emerged

as a noninvasive imaging technique that quantitatively evaluates tis-

sue stiffness. In comparison to traditional palpation it has the advan-

tages of providing quantitative measures and allowing measurement

of tissues that cannot be reach by hand (Murphy et al., 2019). It has

been applied to study the mechanical properties of different tissues,

namely the human brain in healthy and pathological conditions

(Hiscox et al., 2016; Hiscox et al., 2021; Murphy et al., 2019). Alter-

ations in the viscoelastic properties of the brain were proven to be

representative of the composition and organization of the underlying

microstructure (Guo et al., 2019; Sack et al., 2013; Yin et al., 2018).

Prior to the neuronal loss typical of neurodegenerative diseases and

the manifestation of symptoms, histopathological processes, such as

amyloid depositions in Alzheimer's disease (AD), take place (Reiman

et al., 1996; Selkoe, 2001). One neuroimaging technique which allows

the non-invasive and in-vivo detection of amyloid plaques is amyloid-

PET (Chételat et al., 2020; Kolanko et al., 2020). Although it has very

high sensitivity and specificity, its cost is relatively high, its cost-

effectiveness is currently under study, and there are also some side

effects and radiation risk associated with the tracer (Chételat

et al., 2020). In the MRI field, some techniques have been developed

to image indirectly amyloid plaques through susceptibility effects.

These acquisitions use either changes in relaxation times or in mag-

netic susceptibility of tissues, which are affected by the focal iron

deposition accompanied with plaques (Yu et al., 2021). However, MRI

imaging of amyloid plaques have not been applied to the living human

brain yet, due to the long acquisition time. MRE could help circumvent

these issues, since it is sensitive to changes in microstructural proper-

ties, which might be useful to detect amyloid aggregates. Moreover, it

has a shorter acquisition time in comparison to most MRI imaging

approaches to study amyloid plaques and, unlike PET, it has no radia-

tion exposure. Therefore, MRE might potentially lead to the develop-

ment of new in vivo brain biomarkers that could help identify, at

earlier stages, individuals at risk of cognitive impairment. As an exam-

ple, MRE metrics could be applied in a brain age prediction frame-

work, in conjunction with other neuroimaging metrics, to identify

individuals with high-risk of cognitive decline or neurodegenerative

diseases (Hiscox et al., 2021). However, the predictive value of MRE

has not been evaluated yet.

The main goal of this review was to evaluate the ability of MRE

to identify significant changes in brain mechanical properties during

normal aging and in patients with dementia. Thus, this systematic

review aimed to answer the following questions:

i. Are there significant differences in brain mechanical properties,

measured with MRE, during healthy aging?

ii. Are there significant differences in brain mechanical properties,

measured with MRE, in pathological aging, such as dementia?

2 | METHODS

This systematic review was conducted in accordance with the Pre-

ferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (Page et al., 2021).

2.1 | Literature search

PubMed, Web of Science and Scopus databases were searched using

the following terms: (“Magnetic Resonance Elastography” OR “MRE”)
AND (“Brain”) AND (“Ageing” OR “Aging” OR “Dementia”). The sea-

rch was conducted across the entire time span until February 3, 2022.

Two reviewers independently performed the literature search, and

any disagreement were solved by consensus.

2.2 | Eligibility criteria

The included studies met the following inclusion criteria: i) cognitively

healthy individuals, individuals at risk for dementia, patients diagnosed

with mild cognitive impairment or dementia; ii) reporting imaging find-

ings on MRE; iii) categorically comparing young and older adults or

cognitively healthy and cognitively impaired patients on MRE imaging

parameters or correlating MRE imaging parameters with age as a con-

tinuous variable. The exclusion criteria were the following: i) reviews,

editorials or letters; ii) non-human studies; iii) articles not written in

English; iv) other neurological diseases than dementia; v) studies not

including older adults. Two reviewers independently determined eligi-

bility and any discrepancy were solved by consensus. First, duplicates

were removed and the title and abstract of the records were

screened. Next, the full text of the remaining articles was retrieved,

and studies were selected based on their evaluation against the inclu-

sion and exclusion criteria.

2.3 | Data extraction

The following data was extracted from the selected studies: i) study

characteristics: first author, year of publication, journal name and
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sample size; ii) sample's demographic and clinical characterization:

age, sex, cognitive function, MRE acquisition protocol and parameters;

iii) outcomes: MRE imaging findings. One reviewer extracted the data,

and the second reviewer confirmed the data's validity.

3 | RESULTS

3.1 | Search results

A flow chart of the studies selection process is presented in

Figure 1. The initial literature search identified 213 articles. After

removing duplicates, the titles and abstracts of 141 articles were

screened for eligibility. From this, 120 were excluded as they did

not meet the inclusion criteria (21 reviews/letters/editorials/con-

ference abstracts, 23 non-human studies, six studies not including

older adults, 57 studies with irrelevant content, for example, other

diagnoses, other organs than the brain, technical developments,

12 studies not reporting MRE imaging findings and one case

report). The full texts of 21 studies were retrieved and reviewed,

which resulted in the exclusion of two articles (one study did not

include older adults and one study did not perform categorical com-

parisons between age groups or cognitive status nor correlations

with age). Hence, a total of 19 studies were included in this system-

atic review. These consisted of nine aging studies (Arani

et al., 2015; Delgorio et al., 2021; Hiscox et al., 2018; Hiscox, John-

son, McGarry, Schwarb, et al., 2020; Kalra et al., 2019; Lv

et al., 2020; Sack et al., 2009; Sack et al., 2011; Takamura

et al., 2020) and 10 dementia studies (four with Alzheimer's disease

[Gerischer et al., 2018; Hiscox, Johnson, McGarry, Marshall,

et al., 2020; Murphy et al., 2011; Murphy et al., 2016], four with

normal pressure hydrocephalus [Fattahi et al., 2016; Freimann

et al., 2012; Perry et al., 2017; Streitberger et al., 2011], one with

frontotemporal dementia [Huston et al., 2016] and one with multi-

ple types of dementia [ElSheikh et al., 2017]), which altogether, and

taking into account overlapping participants in some studies, com-

prised 700 participants (158 cognitively impaired or demented

patients and 542 cognitively healthy controls).

F IGURE 1 PRISMA flow diagram
describing article screening and
selection process.
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3.2 | Aging studies

Table 1 provides a description of the nine MRE studies exploring the

changes in brain mechanical properties during healthy aging. We

observe some heterogeneity in terms of study design, MRE protocol

and the brain structures investigated. Regarding study design, most of

the studies used a sample with ages ranging from young to late adult-

hood. On the other hand, Hiscox and colleagues (Hiscox et al., 2018)

performed group comparisons between a group of young adults (age

range: 19–30 years) and a group of older adults (age range: 66–73),

while in a later study from the same authors (Hiscox, Johnson,

McGarry, Schwarb, et al., 2020) only the group of older adults was

investigated. Similarly, Arani and colleagues (Arani et al., 2015)

included only older adults in their analyses. Concerning MRE protocol,

three studies (Lv et al., 2020; Sack et al., 2009; Sack et al., 2011) used

multifrequency MRE and the remaining used single frequency MRE

with the vibration frequency being 50 or 60 Hz. The MRE final resolu-

tion was very distinct between the studies and the most common

inversion algorithms used were direct and nonlinear inversion. Finally,

in terms of the brain structures investigated, with the exception of

(Sack et al., 2009) that only examined the whole brain and (Delgorio

et al., 2021; Hiscox, Johnson, McGarry, Schwarb, et al., 2020) which

focused on the hippocampus, all the studies inspected both global and

regional age-related changes in the mechanical properties of the brain

by computing MRE parameters for the whole cerebrum and for differ-

ent brain regions.

The common pattern across all studies is a decrease in global

brain stiffness along aging, with the reported rate of annual change

ranging from �0.008 to �0.025 kPa per year (Table 1). Regarding

regional changes, significant age-related decreases in brain stiffness

were found in frontal, temporal, occipital and parietal lobes, cortical

GM and WM (Arani et al., 2015; Lv et al., 2020; Sack et al., 2011;

Takamura et al., 2020), while no significant changes were found in the

cerebellum (Arani et al., 2015; Takamura et al., 2020). Arani and col-

leagues (Arani et al., 2015) did not find a significant effect of age on

brain stiffness in sensory motor regions and deep GM/WM, which

could be explained by the sample being limited to older adults (age

range: 56–89). In fact, Takamura and colleagues (Takamura

et al., 2020) reported a significant age-effect of brain stiffness in these

areas and a multiple comparisons test showed that the stiffness of

sensory motor regions was significantly decreased in subjects in their

40s, 50s and 60s in comparison to subjects in their 20s, while for deep

GM/WM, no significant decrease was found in the comparison

between any age group (30s, 40s, 50s and 60s) and subjects in their

20s. Thus, the differences in the age range of the samples of the two

studies might explain the different results obtained for these regions.

In fact, we observe a shift in the rates of annual change in regional

stiffness during aging. According to (Takamura et al., 2020), from

20 to 60 years old, the most prominent changes occur in sensorimotor

regions, while the temporal and occipital lobes exhibit the smaller

annual changes (Figure 2a). On the other hand, (Arani et al., 2015)

demonstrate that from 60 to 90 years old there is an increased rate of

softening of temporal and occipital lobes, while the sensorimotor

regions show smaller annual rates (Figure 2b). Concerning subcortical

GM, Lv, and colleagues (Lv et al., 2020) found a significant negative

correlation between age and stiffness in subcortical GM as a whole.

When considering the individual subcortical structures, significant

associations between age and brain stiffness were found in the cau-

date nucleus, putamen and thalamus, while no significant correlations

were found in the hippocampus, amygdala and globus pallidum. Two

other studies focused their analyses on the hippocampal region. His-

cox and colleagues (Hiscox, Johnson, McGarry, Schwarb, et al., 2020)

did not find significant associations between age and hippocampus

stiffness, which is in accordance with (Lv et al., 2020). On the other

hand, Delgorio and colleagues (Delgorio et al., 2021) found a signifi-

cant age-effect on the stiffness of hippocampal subfields; this signifi-

cant result may be due to the high resolution MRE protocol adopted

in this study, which was not used in any work before.

Hiscox and colleagues (Hiscox et al., 2018) used a different

study design (i.e., comparisons between a group of young adults and

a group of older adults) but reported similar results to the other stud-

ies. Namely, a significant effect of age in the stiffness of the whole

cerebrum, with older subjects having lower cerebral stiffness than

younger subjects, and a significant age-effect in the stiffness of all

subcortical structures except for the hippocampus. The amygdala

also lost the significant difference between age groups after control-

ling for volume size of the region. These results of lower global stiff-

ness in older participants and no significant age effect in the

stiffness of the hippocampus and the amygdala replicate the previ-

ously mentioned studies.

Finally, Kalra and colleagues (Kalra et al., 2019) only found a sig-

nificant association between age and stiffness in the GM. The rela-

tively low maximum age of 62 and the low sample size for a study

spanning four decades of age might explain the lack of significant

results for the other regions and the whole brain. This study also tried

to measure anisotropic stiffness in the brain but once again only

found significant results in GM and not in WM as it was expected.

3.3 | Dementia studies

A description of the 10 MRE studies investigating brain's mechanical

properties changes in patients with dementia can be found in Table 2.

Once again, there is heterogeneity in the MRE protocol as well as in

the brain structures examined. Three studies used a MRE multi-

frequency protocol (Freimann et al., 2012; Gerischer et al., 2018;

Streitberger et al., 2011), while the others applied single frequency

MRE with 50 or 60 Hz as the vibration frequency. Regarding MRE

resolution, half of the studies had isotropic 3-mm resolution and the

remaining had varying resolutions. The most common used inversion

algorithm was direct inversion. In terms of the brain structures investi-

gated, except for (Freimann et al., 2012; Murphy et al., 2011;

Streitberger et al., 2011) that only examined global changes and

(Gerischer et al., 2018) which only analyzed the hippocampus, thala-

mus and WM, all the studies examined both global and regional

changes of MRE parameters in demented patients.
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The two studies exploring differences in brain stiffness between

healthy controls and patients with frontotemporal dementia (FTD)

reported decreased global brain stiffness for FTD patients, with the

percentage of difference being �6.6% (Huston et al., 2016) and � 7.0%

(ElSheikh et al., 2017). Regarding Alzheimer's disease (AD), the included

studies also report decreased brain stiffness in patients in comparison

to controls, with values of the difference ranging from �4.6% to �11%

(ElSheikh et al., 2017; Hiscox, Johnson, McGarry, Marshall, et al., 2020;

Murphy et al., 2011; Murphy et al., 2016). The other cause of dementia

examined was normal pressure hydrocephalus (NPH) and in this case,

the studies describe conflicting results. While some (Freimann

et al., 2012; Streitberger et al., 2011) report decreased stiffness in NPH

patients, others (Fattahi et al., 2016; Perry et al., 2017) found increased

stiffness in NPH patients and (ElSheikh et al., 2017) also found

increased stiffness although it did not reach statistical significance.

These contrasting results may be due to differences in MRE protocol

and in the delineation of the regions of interest. Lastly, the only study

examining dementia with Lewy bodies (DLB) found no significant dif-

ferences in cerebral stiffness between patients and controls (ElSheikh

et al., 2017).

Concerning regional changes, FTD studies showed decreased

brain stiffness in frontal and temporal lobes of FTD patients, as

expected (ElSheikh et al., 2017; Huston et al., 2016). ElSheikh and col-

leagues (ElSheikh et al., 2017) also reported decreased stiffness of

deep GM/WM in the FTD group.

In AD studies, consistent significant decreases in brain stiffness

of AD patients were found in frontal, temporal and parietal lobes

(ElSheikh et al., 2017; Hiscox, Johnson, McGarry, Marshall,

et al., 2020; Murphy et al., 2016). Changes in other brain regions are

less coherent, with some (ElSheikh et al., 2017; Hiscox, Johnson,

McGarry, Marshall, et al., 2020) reporting decreased brain stiffness in

sensorimotor regions, while another (Murphy et al., 2016) describes

non-significant differences in these regions. Deep GM/WM also dis-

plays challenging results, with (ElSheikh et al., 2017) showing signifi-

cant softening of these regions in AD participants, while (Hiscox,

Johnson, McGarry, Marshall, et al., 2020) reports only significant dif-

ferences in WM and (Gerischer et al., 2018) in both WM and hippo-

campus, and in (Murphy et al., 2016) the differences did not reach

statistical significance. Murphy and colleagues also showed that AD

patients show decreased brain stiffness that is significantly different

from amyloid-negative and amyloid-positive healthy controls, but the

two control groups did not differ from each other (Murphy

et al., 2011; Murphy et al., 2016). Moreover, they also demonstrated

that brain stiffness was correlated with AD severity, as measured by

hippocampal volume and amyloid load, and with functional connectiv-

ity within the default mode network (Murphy et al., 2016).

Regarding NPH studies, the common pattern observed is

decreased brain stiffness in the periventricular region (Perry

et al., 2017; Streitberger et al., 2011) and increased brain stiffness in

parietal and occipital lobes in NPH patients (ElSheikh et al., 2017;

F IGURE 2 Annual changes in brain stiffness of the different lobes of the brain (frontal, occipital, parietal, temporal, and sensorimotor regions).
Color bar indicates the annual change in stiffness in kPa/year. It is possible to observe a shift in the pattern of annual stiffness changes in the two
studies, where study (a) comprises subjects between 20 and 60 years old and study (b) includes subjects between 60 and 90 years old.
(a) Significant differences were found for all regions, with the most prominent changes occurring in sensorimotor regions and the least prominent
occurring in temporal and occipital lobes (data from Takamura et al., 2020); (b) Significant differences were found for frontal, occipital, parietal
and temporal lobes, with the most prominent changes occurring in temporal and occipital lobes. No significant differences found for sensorimotor
regions (data from Arani et al., 2015).
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Fattahi et al., 2016; Perry et al., 2017). Temporal and frontal lobes and

deep GM/WM display distinct results. Fattahi and colleagues (Fattahi

et al., 2016) report increased stiffness of the temporal lobe of NPH

patients, while ElSheikh and colleagues (ElSheikh et al., 2017) found

no significant differences in this region. Frontal lobe and deep

GM/WM were found to be significantly softened in the NPH group in

(ElSheikh et al., 2017), while Fattahi and colleagues (Fattahi

et al., 2016) did not find statistically significant differences. Further-

more, Friemann and colleagues (Freimann et al., 2012) found a signifi-

cant increase in the connectivity parameter in NPH patients after

shunt treatment, with values within the range of the healthy control

group. The connectivity parameter reflects brain tissue geometry or

structure (Hiscox et al., 2016). On the other hand, stiffness remained

unaltered after shunt placement and continued significantly different

from healthy control values, which supports the hypothesis that the

two parameters reflect two independent processes. Lastly, Perry and

colleagues (Perry et al., 2017) investigated associations between brain

stiffness and clinical outcomes. They reported associations between

urinary incontinence and increased stiffness in cerebrum, frontal lobe

and cerebellum, and decreased stiffness in periventricular region. Par-

kinsonism was found to be associated with increased occipital stiff-

ness, while Mini-Mental State Examination (MMSE) score was

inversely associated with parietal stiffness. Moreover, they show that

postoperative failure was associated with decreased deep gray stiff-

ness and increased stiffness of the temporal lobe.

A summary of the main findings regarding regional stiffness of

the different causes of dementia is present in Figure 3.

4 | DISCUSSION

This review aimed at summarizing evidence of brain mechanical prop-

erties alterations, as measured with MRE, in normal and pathological

aging. The available evidence revealed that normal aging is character-

ized by a decrease in brain stiffness spanning the different lobes (fron-

tal, temporal, parietal and occipital) but not affecting the cerebellum.

Regarding disorders causing dementia, distinct patterns of alterations

were observed. AD and FTD patients showed decreased brain stiff-

ness in comparison to cognitively healthy controls with significant

decreases in regions known to be affected in each disease. NPH was

characterized by decreased brain stiffness in the periventricular region

and increased stiffness in parietal and occipital lobes, while the results

for the whole brain were contradictory. The only study examining

DLB found no significant differences in brain stiffness.

Another systematic review by Hiscox and colleagues (Hiscox

et al., 2016), reviewed the alterations in brain mechanical proper-

ties in dementia caused by AD, FTD and NPH. The studies

encompassed in their work were also part of the present review,

but we additionally included recent studies, some with high resolu-

tion MRE, that reinforced previous results. Furthermore, we also

investigated the available evidence regarding alterations in brain

stiffness during normal aging, which despite having already been

addressed in other reviews (Arani et al., 2021; Hiscox et al., 2021;

Yin et al., 2018), it was not the subject of any previous systematic

review.

The exact biological mechanism behind the decreased brain stiff-

ness in aging is not completely clarified. Several mechanisms were

proposed as potential neuropathological correlates of the brain stiff-

ness declines observed in aging. One of them is decreasing neuron–

glia ratio (Kalra et al., 2019; Sack et al., 2009), since glia cells are softer

than neurons (Lu et al., 2006) and with aging there is an increase in

the glia/neuron ratio (Terry et al., 1987) leading to a softer brain.

Another suggestion is GM composition (Arani et al., 2015; Delgorio

et al., 2021; Sack et al., 2011; Takamura et al., 2020). In fact,

Takamura and colleagues (Takamura et al., 2020) report that the age

at which GM volume started significantly decreasing was the same

age at which brain stiffness significantly declined. Thus, they hypothe-

sized that these results possibly indicate that changes in cortical com-

position related to neuronal degeneration/volume loss contribute to

the alterations observed in brain stiffness. Finally, Hiscox and col-

leagues (Hiscox et al., 2018) state that decreased brain stiffness is a

result of the microstructural and metabolic changes occurring in the

aging brain, given that stiffness reflects degree of myelination and

neuronal density. In sum, all the different proposed mechanisms are

related to brain tissue composition, which is in accordance with previ-

ous studies demonstrating that brain stiffness might reflect processes

such as, neuronal density, myelination, mechanical matrix integrity,

among others (Freimann et al., 2013; Guo et al., 2019; Klein

et al., 2014; Munder et al., 2018; Sack et al., 2013).

Another important finding from elastography studies in aging is

the larger effect sizes of MRE-derived parameters in comparison to

volumetric measures from MRI. Previous studies found that decreases

in brain stiffness during aging were 2 to 3 times greater than volumet-

ric declines (Lv et al., 2020; Sack et al., 2011). This suggests that MRE

may have higher sensitivity for detecting certain aging effects, and it

can measure geometry-independent viscoelastic parameters which

are related to intrinsic tissue structure (Hiscox et al., 2021; Sack

et al., 2011). Furthermore, Hiscox and colleagues (Hiscox et al., 2018)

found significant age-related decreases in brain stiffness even after

controlling for the volume of the region, which demonstrates the addi-

tive value of MRE-derived parameters in elucidating changes in the

aging brain not captured by standard neuroimaging methods. Lastly,

Delgorio and colleagues (Delgorio et al., 2021) examined stiffness

changes in hippocampal subfields and showed that the entorhinal cor-

tex had the highest rate of annual change. However, this region

showed low age-related variability of its volume in adulthood

(Daugherty et al., 2016), which confirms the sensitivity of MRE to

microstructural changes and that it can be used to identify earlier

stages of age-related neurodegeneration.

Regarding pathological aging such as dementia, we observe pro-

nounced changes in brain stiffness that distinguish them from the

course of normal aging. For example, in AD, the reported stiffness

reduction, found in both humans and animal models, is thought to

reflect microstructural processes characteristic of the disease, such as

disruption of the extracellular matrix due to amyloid deposition, loss

of normal cytoskeletal architecture due to Tau hyper-phosphorylation
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or altered synaptic connectivity (Munder et al., 2018; Murphy

et al., 2012; Murphy et al., 2019). Furthermore, as in normal aging

studies, Hiscox and colleagues (Hiscox, Johnson, McGarry, Marshall,

et al., 2020) showed that alterations in brain volumes and stiffness

had different spatial patterns in AD patients and stiffness changes

remained significant after controlling for regional volume. Additionally,

Gerischer and colleagues (Gerischer et al., 2018) demonstrated

increased diagnostic accuracy of AD when hippocampal stiffness was

incorporated with two other MRI-based hippocampal parameters

(mean diffusivity and hippocampal volume). Also, different patterns of

brain stiffness changes were observed between distinct subtypes of

dementia (ElSheikh et al., 2017). In sum, all these findings show that

MRE could be used to derive potentially new brain biomarkers of

dementia and distinguish between its different types. Moreover, since

it is sensitive to microstructural changes (Guo et al., 2019; Sack

et al., 2013; Yin et al., 2018) and has some advantages over conven-

tional neuroimaging techniques (e.g., no radiation exposure, short

acquisition time, lower cost relatively to PET), it could help identify

brain changes that occur at early stages of disease and thus help iden-

tify individuals at risk of dementia and evaluate the efficacy of new

drugs or intervention therapies.

One limitation of this review is that we did not report results on

viscosity. This is because not every study report results of this

parameter. In fact, of the included studies only 10 (six aging, four

dementia) have incorporated the viscosity parameter in their

analyses. Furthermore, the results are not robust as in brain stiffness,

with some studies not finding significant effects of age or dementia

(Hiscox et al., 2018; Hiscox, Johnson, McGarry, Marshall,

et al., 2020; Hiscox, Johnson, McGarry, Schwarb, et al., 2020; Sack

et al., 2009), while others find contradictory results, for example,

increases with age (Delgorio et al., 2021) versus decreases with age

(Lv et al., 2020; Sack et al., 2011). Future study employing high reso-

lution MRE and larger sample sizes should investigate the age and

dementia effects on this parameter to try to clarify if there exists an

effect.

The field of MRE has gained recent interest and thus the number

of studies is still very low. Future studies would benefit from using

the latest technological developments (e.g., high-resolution MRE and

improved inversion algorithms) and larger sample sizes in order to rep-

licate previous findings and clarify some conflicting results. Addition-

ally, to date there is no longitudinal study with MRE, which could help

establish some causal relationships. In conclusion, this review demon-

strated that MRE could be used as a sensitive diagnostic tool to iden-

tify deviations from normal aging. Additionally, it might help develop

new brain biomarkers to identify individuals at risk of dementia and

new intervention strategies to help promote a healthier cognitive

aging.
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F IGURE 3 Summary of main findings of MRE studies investigating brain stiffness changes in different dementia subtypes. Color bar indicates
percentage difference in FTD, AD, or NPH patients compared with healthy controls. FTD is characterized by decreased brain stiffness in frontal
and temporal lobes (study [a]: Huston et al., 2016; study [b]: ElSheikh et al., 2017). Studies investigating AD display very similar patterns, with
decreased brain stiffness occurring in frontal, temporal and parietal lobes. Regarding sensorimotor regions, although the percentage difference
was similar in the two studies, in (c) it was not statistically significant (study [c]: Murphy et al., 2016; study [d]: ElSheikh et al., 2017). NPH studies
also exhibit similar patterns of brain stiffness changes, with increased brain stiffness found in parietal and occipital lobes. Temporal and frontal
lobes have similar percentage difference, but differences in frontal lobes were only significant in study (f), while for the temporal lobe, only study
(g) found significant differences. Study (f) also investigated differences in sensorimotor regions and found increased stiffness of these regions in
NPH patients (study [e]: Perry et al., 2017; study [f]: ElSheikh et al., 2017; [g]: Fattahi et al., 2016)
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