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Abstract

The best methods to manage tibial bone defects following total knee arthroplasty remain

under debate. Different fixation systems exist to help surgeons reconstruct knee osseous

bone loss (such as tantalum cones, cement, modular metal augments, autografts, allografts

and porous metaphyseal sleeves) However, the effects of the various solutions on the long-

term outcome remain unknown. In the present work, a bone remodeling mathematical

model was used to predict bone remodeling after total knee arthroplasty (TKA) revision.

Five different types of prostheses were analyzed: one with a straight stem; two with offset

stems, with and without supplements; and two with sleeves, with and without stems. Alter-

ations in tibia bone density distribution and implant Von Mises stresses were quantified.

In all cases, the bone density decreased in the proximal epiphysis and medullary chan-

nels, and an increase in bone density was predicted in the diaphysis and around stem tips.

The highest bone resorption was predicted for the offset prosthesis without the supplement,

and the highest bone formation was computed for the straight stem. The highest Von Mises

stress was obtained for the straight tibial stem, and the lowest was observed for the stem-

less metaphyseal sleeves prosthesis.

The computational model predicted different behaviors among the five systems. We

were able to demonstrate the importance of choosing an adequate revision system and that

in silico models may help surgeons choose patient-specific treatments.

1. Introduction

The aim of revision knee arthroplasty is to obtain a stable articulation with an acceptable level

of pain-free range of motion, by preserving remaining viable bone structures, reconstructing

existing bone defects and restoring the joint level [1, 2]. The osseous defects observed in revi-

sion total knee arthroplasty (TKA) are challenging to manage and can be underestimated
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preoperatively. Because the number of the total knee arthroplasties increases in younger and

more active patients, the need for revision will continue to increase. There are several classifi-

cation systems for bone defects. The most commonly used system is the Anderson Orthopae-

dic Research Institute (AORI) [3]. For the tibia, there are different fixation techniques for

bone defects of type 2 (defects in the metaphyseal tibial plateau bone) and type 3 (deficient

metaphyseal plateau bone) [3]. These fixation techniques include diaphyseal stem fixation,

metal augments, tantalum cones, custom-made implants, allograft reconstruction, and offset

tibial stems. [4–8]. However, there is no optimal method for the management of these types of

bone defect. Autografts and allografts have been successful with small bone defects [3], but in

cases of large bone defects, high failure rates were observed with this solution [9]. Augments or

supplements attached to the tibial tray could be a good solution, although wear debris and cor-

rosion has been observed in the short term [10]. Offset stems can solve three problems found

in the revision of TKA: gap balancing, anatomical mismatch and malalignment [11]. Finally,

metaphyseal sleeves and tantalum cones are good alternatives for large bone defects [10, 12].

Most of these procedures have shown promising early outcomes [6, 7, 12–14] and mid-term

results [15, 16] but the long-term effect of bone resorption of the tibia remains unknown.

Several computational studies based on the finite element (FE) method have focused on the

bone remodeling effects of femoral [17–20] and tibial prostheses [21–23], but these studies

addressed only primary surgeries. Completo et al. [24] developed an FE analysis and an experi-

mental (strain gauge) model of intact and implanted synthetic tibias and experimentally vali-

dated their computational approach. Chong et al. [22] analyzed the cementing technique used

for tibial fixation and predicted changes in bone apparent density after prosthesis implantation

and they concluded that using a hybrid fixation induced the least amount of bone resorption.

Cawley et al. [23] investigated the stress and strain distribution in the proximal tibia for full

cementation and surface cementation of a primary tibial component. Their computational and

experimental results confirmed that surface cementation resulted in less proximal bone resorp-

tion, reducing the possibility of aseptic loosening. Completo et al. [24] experimentally and

computationally studied the strain distribution generated by two femoral stems in revision

TKA. They concluded that different stem extensions affected the strain behavior of cancellous

bone under the tibial tray.

The purpose of this study was to conduct an FE analysis of revision knee tibial implants.

The main objectives were to analyze the changes in the tibial bone density and implant Von

Mises stresses of five different tibial implant designs and to compare the biomechanics of the

metaphyseal sleeves with and without a short stem. Although this topic has been extensively

studied, bone remodeling models have not previously been applied to compare different revi-

sion knee systems.

2. Materials and methods

2.1. FE models

The scheme showing all the steps followed for the complete reconstruction of the prosthesis

modelling until the final FE bone remodeling analysis is presented in Fig 1. First, a human

male (56 years old) left tibia and different prostheses were scanned, and the images were stored

in Dicom format. Institutional Review Board approval was obtained for this study. The images

were acquired using a 64-detector multidetector computerized tomography (MDCT) system

(Brilliance 64, Philips Healthcare, Amsterdam, The Netherlands) using a tube current of 257

mA and a voltage of 120 kV. The spatial resolution was 0.65 x 0.65 mm, with a reconstructed

matrix of 768 x 768. The slice thickness was 2 mm. All the images were checked to validate

their quality and ensure the absence of artifacts in the area of interest. Five different types of
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prostheses were analyzed: a prosthesis with a straight stem; two prostheses with sleeves, with

and without stems (PFC SIGMA TC3, Depuy, Johnson & Johnson, Warsaw, USA); and two

prostheses with offset stems, with and without supplements (NexGen Legacy Constrained

Condylar Knee-LCCK, Zimmer, Indiana, USA). The five prostheses were manufactured from

Cobalt Chromium Molybdenum Alloy (CoCrMo), the stems were uncemented, and the tibial

baseplate were fixed with a superficial cement layer.

Fig 1. Process followed for the reconstruction and final FE analysis starting with the medical images. (A) Straight stem, (B) offset stem without

supplement, (C) offset stem with supplement, (D) sleeves with stem and (E) stemless sleeves.

https://doi.org/10.1371/journal.pone.0184361.g001
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Mimics v. 17 (Materialise, Leuven, Belgium) was used to segment and reconstruct the geo-

metrical models. Using 3-matic (Materialise, Leuven, Belgium), prostheses were introduced

into the healthy tibia and the FE meshes were generated, as shown in Fig 1. Models were

meshed using 4-node tetrahedral elements, which were used to reproduce the complex geome-

try of the bone with sufficient accuracy. The element size used (2 mm) was within the asymp-

totic region of convergence and represents a good tradeoff between numerical accuracy and

computational cost. A linear elastic analysis was performed.

Using Mimics and a calibration phantom, we were able to compute the bone apparent den-

sity distribution through the Hounsfield units (HU) obtained from the CT scan. This informa-

tion was used to validate the results from the bone remodeling simulations. CoCrMo material

properties were assigned for the prostheses. A Young’s modulus of 200 GPa was assigned, and

the Poisson’s ratio was established at 0.32 [25]. The bone-prosthesis interface was assumed and

simulated as completely bonded, and the cement used for proximal tibial plate fixation was

neglected because a negligible thickness is used clinically.

2.2. Bone remodelling model

A previously developed bone remodelling model was used [26]. Briefly, a damage-based

remodeling model was used in which damage was understood as a measure of bone porosity.

A no-damage situation corresponds to an ideal situation of null porosity and isotropic condi-

tions, but a damage state is related to bone resorption and an increase in void ratio. Bone for-

mation leads to a decrease in porosity (damage reduction). Additionally, directional mass

distribution was considered (Cowin fabric tensor) [27, 28], which considered the porosity and

directionality of the trabeculae. Therefore, anisotropic and non-homogeneous bone apparent

density distribution was computed. More details on the bone remodeling mathematical model

can be found in Pérez et al [29] and Garijo et al [26]. The Young’s modulus and the Poisson’s

ratio were related to the bone apparent density, ρ [30]:

E ¼
2014r2:5 if r � 1:2g=cm3

1763r3:2 if r > 1:2g=cm3

(

ð1Þ

n ¼
0:2 if r � 1:2g=cm3

0:32 if r > 1:2g=cm3

(

ð2Þ

For cortical bone, ρ = 1.92g/cm3, and the Young’s modulus equals 10,287 MPa.

2.3. Loads and boundary conditions

Loading conditions for the tibia were previously used by Pérez et al. [29]. Therefore, a sum-

mary of them is presented below. Distally, the tibial diaphysis was fixed in the vertical and hor-

izontal directions. Physiological-like loading conditions were simulated. Loading conditions

were simulated through the joint reaction force at the condylar surface [31, 32]. Specifically,

walking movement was considered to be represented by three main load cases, which were

iteratively repeated (Fig 2). The first load case corresponded to the joint reaction force equally

distributed in the two tibial condyles (vertical direction) (Fig 2A). In the second load case, the

joint reaction force was distributed across the medial and lateral condyles at 70% and 30%,

respectively. Finally, in the third load case, the joint reaction force was distributed across the

medial and lateral condyles at 30% and 70%, respectively. In the second and third load case,

the force was inclined 5˚ from the vertical direction, so a horizontal force appeared medially
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(Fig 2B and 2C). The load values corresponded to a body weight of 70 kg. Loads were applied

through a rigid surface covering the lateral and medial condyles. Therefore, the loads were uni-

formly distributed over the condyles. The load values considered for the tibia are represented

in Table 1.

Fig 2. Boundary and loading conditions (M: medial and L: lateral).

https://doi.org/10.1371/journal.pone.0184361.g002
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2.4. Numerical simulation

The FE analyses were performed using Abaqus v6.13 (Dassault Systemes Simulia Corp., Provi-

dence, RI, USA, 2006) for the tibia (Fig 1), with the bone material properties assigned using a

user routine containing a previously described numerical model described previously (section

2.2). Most of the bone remodeling simulations started from an initial situation where the

whole bone apparent density distribution was 0.5g/cm3 and was isotropically distributed.

Then, the loading conditions (section 2.3) were iteratively applied, changing the bone apparent

density distribution (value and directionality in every integration point). Finally, a non-homo-

geneous and anisotropic bone apparent density distribution was predicted. The non-uniform

final density distribution was generally considered to have been achieved (i.e., the bone remod-

eling analysis was finished) when the total change in the bone apparent density in the whole

tibia, e, was lower than a threshold limit, elim.

e ¼

ð

ðDrÞdV
ð

dV
� elim ð3Þ

where Δρ is the change in the bone apparent density and V is the tibia volume. We set elim =

2x10-4 [33]. After convergence, we compared the bone apparent density distribution predicted

with that computed based on the CT data. For this comparison, the following relationship was

used to compute the bone apparent density from the CT data (HU) (ρ = 1+7.185 x 10−4 HU).

This relationship originated from the calibration phantom used. This comparison will validate

the bone remodelling model used.

3. Results

3.1. Validation of the bone remodeling model

Bone remodeling predictions before prosthesis implantation are shown in Fig 3A. Using the

calibration phantom relationship (section 2.4), the bone apparent density was obtained from

the HU values for the tibia. The predicted bone apparent density and the value obtained from

the HU were compared and the relative error between them was computed and presented in

Fig 3B. Pérez et al. [29] performed a similar validation. For each bone apparent density range,

the relative error between the predicted bone apparent density and the value computed from

the HU was calculated, and then the percentage of bone volume with this specific relative error

was presented (Fig 3B). The cortical regions were accurately predicted, and most of the cortical

bone volume was under a relative error lower than 25%. In contrast, the most important differ-

ences were estimated for the trabecular bone (Fig 3B).

The results allowed us to validate the bone density predictions and, thus, compute the long-

term bone behavior after prosthesis implantation.

Table 1. Values of applied forces (N) at the tibia (with permission of Pérez et al., 2010).

Medial condyle Lateral condyle

Case Cycles/day X-axis Z-axis X-axis Z-axis

1 3000 0.0 -1062.08 0.0 -1062.08

2 500 -129.6 -1353.28 -55.68 -634.88

3 500 55.68 -634.88 129.6 -1353.28

https://doi.org/10.1371/journal.pone.0184361.t001
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3.2. Long-term bone density predictions after prosthesis implantation

The bone density distributions predicted after prosthesis insertion are presented in Fig 4 (after

400 days). In all cases, the bone density decreases in the proximal epiphysis, and an increase in

the bone density is predicted in the diaphysis and at the bone around the stem tips. Qualita-

tively, the sleeves with stem prosthesis generated high bone resorption in the proximal epiphy-

sis, followed by the stemless methaphyseal sleeves prosthesis (Fig 4E and 4F). The prosthesis

with both sleeves and a stem produced the highest value of bone formation around the stem.

The predicted bone density distribution presented in Fig 4 was quantified in Fig 5, and the

bone density ratio (BMD) was computed for the five prostheses. The BMD ratio was calculated

at every time increment as the difference between the actual bone density distribution and the

bone density distribution just after prosthesis implantation (time = 0). Three regions of interest

(ROIs) were selected for measurements of the BMD of the tibia [34] (Fig 5): the epiphysis, the

metaphysis and the diaphysis (the area around the stem tip). High bone resorption was pre-

dicted at the epiphysis for the five prostheses (Fig 5). The highest bone resorption was com-

puted for the sleeves with stem prosthesis, followed by the stemless sleeves prosthesis. The

lowest bone resorption was computed for the straight stem, followed by the two offset stem

prostheses. At the metaphysis region, all five prostheses generated bone resorption, although in

the short term, small formation was predicted for the straight and stemless sleeves prostheses.

In the long term, the highest bone resorption was obtained for both offset stems. The lowest

bone resorption was computed for the straight stem, followed by the stemless sleeves and the

sleeves with stem prostheses. At the diaphysis region, bone formation was predicted for all pros-

theses. An important difference was observed between the two prostheses with sleeves

Fig 3. Results obtained from the comparison of HU based on CT data and bone apparent density distribution predicted using the bone

remodeling model. (A) Bone apparent density distribution predicted using the bone remodeling model. (B) Percentage of bone volume with a certain

error level for four different density ranges in the tibia (with permission of Pérez et al., 2010).

https://doi.org/10.1371/journal.pone.0184361.g003
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compared with the other tested prostheses. After 400 days, the highest bone formation was pre-

dicted for the stemless sleeves and sleeves with stem prostheses, whereas the lowest bone forma-

tion was computed for the straight stem, offset stem with supplement and offset stem without

supplement prostheses. Globally, the highest bone resorption (-6.1%) was predicted for the off-

set prosthesis without supplement, followed by the offset prosthesis with supplement (-4.3%);

2.4% bone resorption was predicted for the sleeves with stem prosthesis. Bone formation was

globally predicted for the stemless sleeves (0.7%) and for the straight stem (2.8%) (Fig 5).

Maximum values of implant Von Mises stress are shown in Table 2. None of the prostheses

reached the material yield strength (450 MPa). The distribution of Von Mises stress is pre-

sented in Fig 6. The highest value was obtained for the straight stem prosthesis, and the lowest

was obtained for the stemless sleeves prosthesis. The peak Von Mises stress was located along

the stem, mainly at the stem tip.

4. Discussion

Innovations in the implant systems designed for revision TKA have provided surgeons with

many tools to address the complex challenges associated with revision surgery. Implant selec-

tion should be based on the severity of bone loss and the status of the ligamentous and soft tis-

sue stabilizing structures [14]. Biomechanical studies based on the FE method, such as the one

developed here, may be an innovative tool to predict the long-term behaviors of TKA revision

systems as it has been used for total hip arthroplasty (Exeter and metal-on-metal hip resurfac-

ing prostheses) [19, 20]. We also need to further understand the biomechanics of revision

TKA. In vitro tibial models [35], experimental studies and FE studies [21, 24, 36–38] may help

us achieve this goal. Additionally, studies such as the one presented here can be complemen-

tary to short-term or mid-term clinical results [3, 6–8, 10–12, 14–16, 39–41]. Different recon-

struction techniques of bone defects can be used in TKA revisions [3, 10–12, 41]. Vasso et al.

reviewed previous studies of revision TKA suing different solutions and the mean clinical fol-

low-up was 4.7 years [41]. Barnett et al followed up 51 who had received stepped porous

Fig 4. Axial cross-sectional views of the bone density distribution (gr/cm3) at 10, 40, 80 and 120 mm from the top of the tibial tray, 400 days

after analysis. (A) Before implantation. After prosthesis implantation: (B) straight stem, (C) offset stem with supplement, (D) offset stem without

supplement, (E) sleeves with stem, and (F) stemless sleeves. (See the various prosthesis models in Fig 1).

https://doi.org/10.1371/journal.pone.0184361.g004
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titanium metaphyseal sleeves for 4 years. Therefore, long-term results are needed in addition

to the short- and mid-term results in order to form conclusions.

Long stems seemed to work very well in the long-term (Fig 5). The straight stem globally

predicted a positive BMD ratio (bone formation) and in the diaphysis. Haas et al reported

excellent mid-term results in 84% of patients using long stems [42]. However, bone loss

increased proximally in most of the reconstruction techniques (Fig 5). Our computational

study estimated bone resorption at the epiphysis in the five systems analyzed (Figs 4 and 5).

For the sleeves with stem and stemless metaphyseal sleeves prostheses, the highest bone resorp-

tion at the epiphysis was predicted because although sleeves improve the rotational stability,

they off-load the epiphysis [41].

Fig 5. Bone mineral density ratio variation in different regions of interest (ROIs).

https://doi.org/10.1371/journal.pone.0184361.g005

Table 2. Maximum values of Von Mises stress of the prostheses.

Prosthesis Straight stem Offset stem with supplement Offset stem without supplement Sleeves with stem Stemless sleeves

VM Stress (MPa) 166.3 119.1 104.0 125.7 49.22

https://doi.org/10.1371/journal.pone.0184361.t002
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Among other advantages, the use of an offset stem seems to facilitate implant alignment.

However, no long-term clinical results in terms of bone resorption and bone formation have

been reported in the literature [11]. From our results, long-term predictions are not quite satis-

factory. Our calculations globally estimated bone resorption (Fig 5) and the other systems ana-

lyzed generated better results in the regions analyzed. This result could be due to changes in

stem alignment, which critically modify the stress distribution within the tibia.

A number of limitations of our research warrant discussion. One limitation is related to the

load values. We assumed mean values for joint contact forces. The application points were also

an approximation of reality because the tibia considered here was different from that used in

the loading reference studies [29, 31, 32]. Different load sequences were tested, and the same

results as those reported in the Results section were obtained. Therefore, no relationship

existed between the sequences in which the loads were applied. However, newly published

research has shown that patient-specific loads can be predicted from the bone density distribu-

tion which could improve this limitation [43]. The use of an Artificial Neural Network

(ANN)-based approach is promising not only for loading prediction but also formultiscale

bone remodeling simulation [44–46]. Another limitation related to the assumed loads is that

we analysed only walking loads and neglected other activities [47–50]. A further limitation is

that a perfectly osseointegrated bone–implant interface was assumed. Thus, we neglected the

initial situation immediately after prosthesis implantation. In the future, a bone-implant

osseointegration model could be developed to model the adhesion between the implant and

the bone [25, 51] allowing bone ingrowth and damage to be simulated simultaneously. A single

tibia model was used to perform this analysis. In the authors’ opinions, however, this limitation

does not reduce the importance and generality of the obtained results. These types of simula-

tions have high computational costs, but new methodologies to accelerate bone remodeling

predictions may be applied to reduce the computation time [33]. Finally, initial tibial bone

defects were not simulated before prosthesis implantation. The incorporation of the bone

defects will slightly modify the results obtained in the short term, but in the long term, the

results would have been very similar. Bone adaptation would have been slightly different at the

Fig 6. Von Mises stress distribution for each prosthesis at the end of the simulation: (A) straight stem, (B) offset stem with supplement, (C)

offset stem without supplement, (D) sleeves with stem, and (E) stemless sleeves.

https://doi.org/10.1371/journal.pone.0184361.g006
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first time increments, but as the simulation evolves, bone adapts depending on the loading

conditions. Thus, in the long term, almost no differences would have been predicted.

All the limitations described above must be considered when attempting to draw conclu-

sions from this study. Bony defects around tibial implants are common during revisions.

Metaphyseal filling sleeves are an alternative to allografts. The solid metaphyseal fixation of the

sleeves leads to the highest proximal bone resorption. However, bone formation was globally

predicted for the stemless metaphyseal sleeves and the straight stem, with BMD ratios of 0.7%

and 2.8%, respectively.

All the technical difficulties associated with the use of tibial stems in revision TKA could be

avoided if adequate stability of the construct could be obtained without using stems. The high-

est value of Von Mises stress was obtained for the straight stem prosthesis, and the lowest was

obtained for the stemless sleeves prosthesis (Fig 6). The peak Von Mises stress was located

along the stem, mainly at the stem tip. Long-term data are needed to determine where these

new implants fit within the currently available methods. Bone remodeling models are useful

tools for the biomechanical comparison of implants and allowed us to predict their long-term

behaviors. Although bone remodeling simulations are not novel, their application in this study

to revision knee systems allowed us to quantitatively and qualitatively compare multiple sys-

tems. Based on this bone remodeling model, we can conclude that revision TKA systems pro-

duce bone resorption in the epiphysis and metaphysis regions, although bone formation is

predicted in the diaphysis, and important differences exist among the different systems. There-

fore, this predictive tool may aid in the surgeon’s treatment decision and in the development

of patient-specific treatments.
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