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Ion channels/pumps are essential regulators of innate immune cell function.

Macrophages have been increasingly recognized to have phenotypic plasticity and

location-specific functions in the lung. Transient receptor potential vanilloid 4 (TRPV4)

function in lung injury has been shown to be stimulus- and cell-type specific. In

the current review, we discuss the importance of TRPV4 in macrophages and its

role in phagocytosis and cytokine secretion in acute lung injury/acute respiratory

distress syndrome (ARDS). Furthermore, TRPV4 controls a MAPK molecular switch from

predominately c-Jun N-terminal kinase, JNK activation, to that of p38 activation, that

mediates phagocytosis and cytokine secretion in a matrix stiffness-dependent manner.

Expanding knowledge regarding the downstream mechanisms by which TRPV4 acts to

tailor macrophage function in pulmonary inflammatory diseases will allow for formulation

of novel therapeutics.

Keywords: TRPV4 (transient receptor potential vanilloid-4), macrophage, innate immunity, lung inflammation and

injury, MAPK

INTRODUCTION

Ion channels and transporters are rapidly being recognized as essential for basic physiological
functions of immune cells (1, 2). However, gaps in knowledge remain on the intracellular molecular
mechanisms by which ion channels contribute to immune cell function. Calcium and other
cations (such as sodium and potassium) have been shown to act as second messengers to regulate
innate immune cell function and activation (3). For example, macrophage migration, polarization,
phagocytosis, and cytokine secretion have been shown to be regulated through calcium (4–6).
One such mechanism of calcium regulation in the cell is through the calcium permeable cation
channel transient receptor potential vanilloid 4 (TRPV4). TRPV4 is a mechanosensitive cation
channel that is essential for macrophage activation functions such as macrophage phagocytosis and
cytokine secretion in a matrix stiffness-dependent manner (7, 8). The current review focuses on
experimental data illustrating the importance of TRPV4 on immune cell function. We appreciate
all the important contributions to the literature in this field, however given space considerations we
have focused on what is perceived to be directly relevant to this review.

MACROPHAGE HETEROGENEITY IN THE LUNG

The lung is constantly exposed to inhaled particles and pathogens from the environment (9).
Hence, lung innate immunity needs to be tightly regulated and phenotypically plastic in order
to simultaneously maintain homeostasis and clear foreign invaders (10). Recently published data
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characterize macrophage phenotypic subsets based on their
location in the lung [alveolar (AM) vs. interstitial (IM)] in
naïve and injured (LPS/bleomycin treatment) conditions (11–
13). The alveolar and interstitial subsets have been further
divided based on site of origin into “resident” and “recruited”
macrophage populations after injury or inflammation, by fate
mapping, and lineage tracing models (11, 14–16). “Resident”
macrophages populate the lung a few days after birth from fetal
monocytes, and self-renew after injury (14, 15, 17). In contrast,
recruited lung macrophages populate the lung only after injury
and are derived from circulating monocytes that originated
from the bone marrow (14, 15, 18). Despite this anatomic
lineage and genomic classification, the in vivo biologic functions
of both resident/recruited alveolar and interstitial macrophage
populations are not fully understood. The microenvironment
plays a key role in reprograming the monocyte/macrophage
phenotypic response to lung injury (19, 20). Reprograming of the
macrophage phenotype is not as simple as the classically-defined
in vitro M1/M2 paradigm characterized by surface marker
labeling (21–24). The molecular pathways in vivo by which the
macrophage phenotype and function change in response to the
microenvironment have yet to be fully described.

MACROPHAGE FUNCTION AND
SIGNALING IN ACUTE LUNG INJURY

Other literature has extensively characterized the important
macrophage mediated mechanisms of chronic lung injury.
Herein, this review will focus on the role of macrophages
in acute lung injury. Macrophages are the most abundant,
and critical cells, that maintain homeostasis in the lung (9).
Macrophages have also been shown to play an important role
in orchestrating the acute lung injury and repair process (25).
Acute lung injury, both from non-infectious and infectious
inflammation is a complex process. Acute lung injury is a
consequence of endothelial and/or alveolar epithelial injury,
followed by recruitment, and accumulation of inflammatory
cells in the injured/stiffened alveolus (26–28). Macrophages
have surface receptors that recognize pathogen (PAMPs)
and/or damage-associated molecular patterns (DAMPs)
to recruit inflammatory cells (e.g., neutrophils, recruited
alveolar/interstitial macrophages) and coordinate both activation
and cessation of inflammation (29). Macrophages function to
phagocytize invading organisms, apoptotic cells/neutrophils,
or particles. In addition, macrophages secrete, and respond
to pro- and anti-inflammatory cytokines and chemokines
(e.g., IL-1β, TNF-α, IL-8, IL-6, IL-10) (30–34). Activation of
macrophages in response to infection occurs in part through
coordination of activation of key stress activated pathways
including Nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB), Interferon regulatory factor 3 (IRF3),
Stimulator of interferon genes (STING), and Mitogen activated
protein kinases (MAPKs) (35). The MAPK family (i.e., p38,
ERK, and JNK) exhibits functional cross-talk and redundant
functions in inflammation (35). p38 and JNK have been shown
to be activated in lung injury in response to infection and

to be important in macrophage activation functions such as
phagocytosis (36). Control of persistent activation of MAPKs
is mainly regulated by the phosphatases, dual-specificity serine
threonine phosphatases/MAPK phosphatases (DUSPs/MKPs)
(37, 38). It has been described that increased lung stiffness
regulates MAPK/phosphatase cross-talk, while others have
shown that alveolar vessel wall stiffness increases >10-fold
(from 3 to 45 kPa) after intratracheal LPS-induced lung injury
in mice (39), thus providing mechanistic insight into how
macrophages can respond to cues from the injured lung.
However, distinct mechanisms whereby increased lung tissue
stiffness/injury controls the MAPK and phosphatase cross-talk is
poorly understood.

THE TRPV4 CHANNEL AND
MECHANOBIOLOGY OF THE LUNG

Transient receptor potential (TRP) channels are a family of
6 transmembrane domain proteins that are permeable to
multiple cations including calcium (40). TRP channels are
widely expressed in multiple tissues and cell-types with varied
physiologic functions (40). Specifically, the TRP family member,
TRPV4, is a ubiquitously-expressed, plasma membrane-based,
calcium-permeable channel that is sensitized and activated by
both chemical [5,6-Epoxyeicosatrienoic acid (EET), 4 alpha-
phorbol 12,13-didecanoate (4-αPDD)] and physical stimuli
(temperature, stretch, and hypotonicity) (40–43). TRPV4 can
initiate intracellular, celltype and context-specific signals that
depend on local increases in intracellular calcium which could
act as a second messenger, and/or induce heterodimerization
with other channels, activate kinases, and/or directly interact
with cytoskeletal proteins via intracellular amino-(NH2) and
carboxy-(COOH) terminal tails (44–47).

It has been increasingly recognized that cellular responses
depend on the biophysical properties of the surrounding lung
tissue environment (48, 49). Thus, mechanical cues from lung
tissue stretch/stiffness can alter cellular responses to soluble
mediators (e.g., growth factors, cytokines, chemokines) resulting
in cellular dysfunction and disease. The mechanosensitive
channel, TRPV4 has been implicated in mouse models of
lung injury/fibrosis, which include hydrochloric acid, pulmonary
edema, ventilator-associated lung parenchymal overdistension,
and from our group, pulmonary fibrosis (50–53). The recent
mini-review by Michalick and Kuebler in Frontiers Immunology
further supports the concept that TRPV4 may connect
mechanosensation to immunity in the lung (54). Given TRPV4’s
published role on regulating activity and infectivity of RNA
viruses such as Zika, it remains possible that TRPV4 plays a
role in the profound lung injury observed in the current SARS-
CoV-2 pandemic (55). Conflicting data exist on the role of
TRPV4 in mouse models of lung inflammation/injury, which
seem to depend on the inciting agent, mechanism of injury,
and the effector cell type (50–53). In ventilator-induced lung
injury, macrophage TRPV4 has shown to exacerbate the lung
injury (51, 52). Similarly in acid-induced lung injury, TRPV4
also exacerbates the lung injury (53). Furthermore, a recent
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study using a single pharmacologic inhibitor of TRPV4 revealed
decreased lung injury after intratracheal instillation of LPS for
24 h (56). Our data, in a clinically relevant infectious model of
lung injury, support the hypothesis that TRPV4 is protective
from injury (7). In support of our findings, epithelial cell TRPV4
similarly protects the lung, but in a somewhat distinct, rapid
direct LPS-induced lung injury model (3 h) (57). Despite the
conflicting data on the role of TRPV4 in mouse models of lung
injury, some consensus exists on the importance of TRPV4 in
macrophage signaling (7, 8, 52). Further understanding of the
molecular mechanisms by which macrophage TRPV4 is involved
in the pathogenesis of lung injury will allow for a therapeutic
target to ameliorate lung injury.

TRPV4 IN MACROPHAGES AND LUNG
INJURY

The calcium ion channel, TRPV4 is an essential mechanosensor
that is required for effective phagocytosis in vitro and protects
against infection-associated lung injury in vivo (7, 8). TRPV4
in macrophages have been shown to exacerbate ventilator-
associated lung injury, and macrophages are key effector
cells in the lung injury process (51, 52). Calcium has long
been described as a mediator of many discrete steps in the
phagocytic process (58). In addition, effective phagocytosis
requires cytoskeletal rearrangements and direct interaction with
the biophysical properties of the matrix (19, 20, 59). However,
the key regulatory ion channels/pumps by which calcium
influx into the cell is controlled during phagocytosis is not
fully elucidated.

Published work first revealed that differentiated murine bone
marrow-derived macrophages (BMDMs) express equal amounts
of TRPV4 that was functionally active with or without LPS.
TRPV4 in macrophages functions to effectively phagocytize
both non-opsonized, E. coli bacteria, and opsonized (FcR-
dependent), IgG-coated latex beads, in vitro in response to
LPS (8). The LPS-stimulated phagocytic response was induced,
in our hands, under conditions of pathophysiologic-range
extracellular matrix stiffnesses, in the range noted in inflamed
or injured lung (≥8–25 kPa) (16). TRPV4 had no effect on basal
phagocytosis. In addition, TRPV4 downregulated LPS-induced
IL-1β secretion and upregulated IL-10 secretion. Further,
this TRPV4 mediated anti-inflammatory cytokine profile
(↓ IL-1β, ↑ IL-10) was dependent on pathophysiologic-range
matrix stiffness. To apply in vivo relevance, TRPV4 was found
to be required for effective alveolar macrophage phagocytosis
of IgG-coated latex beads in live mice in vivo (8). Taken
together, TRPV4 is necessary for effective opsonized and non-
opsonized macrophage phagocytosis and an anti-inflammatory
cytokine profile, in a stiffness-dependent manner in vitro and
in vivo (8).

To expand on this work, TRPV4’s in vivo relevance to human
disease, and molecular mechanism by which TRPV4 mediates
its phagocytic and cytokine secretory effects was determined.
TRPV4 was found to function to protect the lung from injury in
an experimental model of Pseudomonas aeruginosa pneumonia

in intact mice (7). Lung injury was measured by (i) inflammatory
cell infiltration, (ii) total protein in whole lung lavage, (iii)
cytokine secretion, and (iv) lung parenchymal consolidation.
In addition, TRPV4 was required for effective clearance of the
P. aeruginosa bacteria as measured by colony forming units
retained in the lung in WT, as compared to global TRPV4 KO
mice. Next, macrophages were identified as the critical cell type
required to clear the P. aeruginosa infection by flow cytometric
techniques (7).

To determine the molecular mechanism by which TRPV4
protects the lung from injury and clears bacteria, putative
intracellular signaling pathways were investigated that are
known to regulate LPS signals in macrophages (60). TRPV4
controlledmolecular switching from predominate JNK activation
to that of p38, in a stiffness-dependent manner. Since MAPK
phosphorylation occurs commonly through the phosphatase
family DUSPs/MKPs, it was postulated that DUSPs controlled
the TRPV4-mediated MAPK molecular switch. TRPV4
acted to increase DUSP1 and then functioned to selectively
dephosphorylate/deactivate JNK. Hence, the TRPV4-mediated
MAPK molecular switch was found to be controlled through
DUSP1 in a stiffness-dependent manner. TRPV4 additionally
enhanced p38 activation thereby driving effective phagocytosis,
while inhibiting JNK thereby decreasing pro-inflammatory
cytokine secretion (IL-6, CCL2, and CXCL1). Finally, TRPV4 is
also required for macrophage phagocytosis and p38 activation in
healthy human monocyte-derived macrophages. Taken together,
published work shows that TRPV4 in macrophages protected the
lung from infection-associated lung injury through regulation
of MAPK activation switching via DUSP1 (7). TRPV4 provides
a novel mechanistic link between the mechanoenvironmental
properties of the lung and innate immune cell function
(Figure 1).

IMPORTANT FUTURE DIRECTIONS

Ongoing questions remain regarding the molecular mechanism
by which TRPV4 activity is regulated or how TRPV4 is directly
activated. In addition, the molecular signals by which TRPV4
regulates the MAPK molecular switch remain unknown. Since
TRPV4 can directly interact with signaling molecules via its
amino (NH2) and carboxy (COOH) terminal intracellular tails,
the key signaling molecules that interact with TRPV4 to enhance
macrophage phagocytosis and limit cytokine secretion is an
active area of investigation. It remains possible that the TRPV4
interacting partners are not TLR4-dependent, as other data
suggests that TRPV4 interacts with PI3K to mediate pulmonary
fibrosis (61). The role of TRPV4 in different macrophage
populations after infection remains an important question. Other
cation/calcium channels (e.g., Piezo) have been shown to have
an effect on immune cells in a mechanosensitive manner and
interestingly recent work demonstrates TRPV4 is required for
Piezo1-induced pancreatitis (62, 63). The molecular pathways in
vivo by which the macrophage phenotype and function change in
response to the microenvironment have yet to be fully described.
For example, it will also be interesting in the future to explore
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FIGURE 1 | Working model demonstrates that a mechanical signal through TRPV4 regulates the LPS response. Our data shows in the absence of an above

threshold mechanical signal, TRPV4 does not influence the minimal LPS/TLR4 response, leading to low level phagocytosis/bacterial clearance, and resultant lung

homeostasis. In the presence of an above threshold mechanical signal, TRPV4 modulates with the LPS/TLR4 response to increase phagocytosis and decrease

pro-inflammatory cytokine secretion, thereby protecting the lung from infection-associated injury/ARDS (7). Adapted from original publication in The Journal of

Immunology. Copyright© 2020 The American Association of Immunologists, Inc.

TRPV4’s action in response to (a) other types of infectious stimuli
(e.g., Gram positive organisms, viral infections such as SARS-
CoV-2), (b) sex differences, and (c) transcriptional/epigenetic
mechanisms. An important goal of future work is to integrate
mouse and human macrophage experiments, however there
is limitation to this approach. It is well-known that mouse
models do not fully recapitulate human disease, and the mouse
immune system is programmed differently than that of humans

(64). In order to circumvent this limitation, investigators utilize
human diseased tissue which may provide insight into disease
mechanisms, however it is usually in an in vitro setting. Hence,
data obtained frommouse models and human disease tissue have
their own independent strengths. Therefore, it is important to
interpret the findings in a contextual nature to determine the
relevance to mechanisms of human disease and design targeted
pharmacologic therapies.
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CONCLUSION

In summary, macrophages function in the lung to maintain
homeostasis and clear environmental particles and pathogens.
Extensive macrophage heterogeneity and plasticity allows for
fine-tuning of the inflammatory response upon inflammation
or infection. Ion channels have been shown to play a key
role in regulating innate immune function and contribute
to the pathogenesis of inflammatory/infectious lung diseases.
The cation channel TRPV4 has been implicated in lung
diseases associated with parenchymal stretch and inflammation
or infection. The data outlined in this review show the
importance of macrophage TRPV4 in response to infection and
lung injury. The data shows that TRPV4 is (a) functionally
active in macrophages, (b) required for effective non-opsonized
and opsonized phagocytosis in vitro and in vivo, and (c)

required for secretion of an anti-inflammatory cytokine profile
by macrophages. These phagocytic and cytokine effects in
macrophages were both dependent on matrix stiffness in the
range of injured or fibrotic lung (8). In addition, TRPV4 (a)

protects the lung from injury after P. aeruginosa pneumonia,

(b) mediates the lung injury effects through MAPK molecular
switching, and (c) is required for effective macrophage
phagocytosis in human macrophages. This MAPK switching
effect in macrophages was also dependent on matrix stiffness in
the range of injured or fibrotic lung (7). Collectively, TRPV4 is
shown to play a novel role in protecting the lung from infection-
associated lung injury by regulating the phagocytic and cytokine
secretory response to infection, and therefore may be a potential
therapeutic target in the pathogenesis of acute lung injury.
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