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Necroptosis‑associated 
classification combined with tumor 
microenvironment characteristic 
analysis of cutaneous melanoma
Gang Hu1,4, Yan Jiang2,4, Jianying Ma1,4 & Hui Zhan3*

Necroptosis is a mode of programmed cell death that overcomes apoptotic resistance. The accurate 
prognosis of cutaneous melanoma is complicated to predict due to tumor heterogeneity. Necroptosis 
contributes to the regulation of oncogenesis and cancer immunity. We comprehensively investigated 
different necroptosis patterns by the non‑negative matrix factorization (NMF) clustering analysis 
and explored the relationships among necroptosis patterns, infiltered immune cells, and tumor 
microenvironment (TME) scores. Two different necroptosis patterns were identified, and the two 
clusters could predict prognosis and immune landscape. A four‑gene signature was successfully 
constructed and validated its predictive capability of overall survival (OS) in cutaneous melanoma 
patients. The prognostic value of the signature was further enhanced by incorporating other 
independent prognostic factors such as age and clinicopathological stages in a nomogram‑based 
prediction model. Patients with lower risk scores tended to have better OS, higher TME score, immune 
checkpoints, immunophenoscore (IPS), and lower Tumor Immune Dysfunction and Exclusion (TIDE), 
which indicated better responses to immunotherapy. In addition, the pigmentation score of the 
high‑risk group was visibly higher than those of the low‑risk group. In conclusion, the necroptosis‑
related signature indicated favorable predictive performance in cutaneous melanoma patients, which 
provides guidance for immunotherapy and provide novel insights into precision medicine.

Abbreviations
NMF  Non-negative matrix factorization
TME  Tumor microenvironmental
OS  Overall survival
IPS  Immunophenoscore
TIDE  Tumor Immune Dysfunction and Exclusion
TCGA   The Cancer Genome Atlas Breast Cancer
GEO  Gene Expression Omnibus
CNV  Copy Number Variation
ROC  Receiver operating characteristic
AUC   Area under curve
PCA  Principal component analysis
TCIA  The Cancer Immunome Atlas
GSEA  Gene Set Enrichment Analysis
ICIs  Immune checkpoint inhibitors

OPEN

1Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, 
Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China. 2Department of Nosocomial 
Infection Management, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei 
Polytechnic University, Huangshi, Hubei, China. 3Department of Dermatology, Huangshi Central Hospital (Pu Ai 
Hospital) of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141, Tianjin Road, 
Huangshi 435000, Hubei, China. 4These authors contributed equally: Gang Hu, Yan Jiang and Jianying Ma. *email: 
hszhanhui@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12676-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8752  | https://doi.org/10.1038/s41598-022-12676-6

www.nature.com/scientificreports/

Cutaneous melanoma is the most malignant skin cancer with great potential to develop metastases. It accounts 
for less than 5% of the overall cutaneous malignancies but contributes to almost all skin cancer  deaths1. The 
incidence of primary cutaneous melanoma continues to increase each  year2. Despite advances in the treatment 
of metastatic melanoma and prevention of metastatic recurrence, clinical prognosis remains  poor3. Therefore, 
developing cutaneous melanoma-specific genomic signatures is needed to optimize targeted-therapeutic preci-
sion strategies.

Necroptosis is seen as a novel form of programmed necrotic cell death, which plays an important part in 
overcoming apoptosis resistance, triggering and amplifying antitumor immunity in cancer therapy, similar to 
apoptosis in mechanism and necrosis in  morphology4–6. The necroptosis is regulated by distinct proteins, includ-
ing RIPK1, RIPK3, and  MLKL7. For example, RIPK1 has been associated with a variety of innate immune recep-
tors and sensors. Downstream of these receptors and associated adaptors have been implicated in the regulation 
of multiple responses, including necroptosis, pyroptosis, and  apoptosis8. In melanoma, selective inhibition of 
the RIPK3/MLKL axis by loss of RIPK3 is essential to prevent  necroptosis9. Necroptosis is immunogenic and 
activates antitumor responses, potentially providing a therapeutic strategy to eliminate apoptosis-resistant tumor 
cells. Regulation of necroptosis-related proteins is often downregulated in cancer cells, suggesting that cancer 
cells may also escape necroptosis to survive, whereas the expression level of key mediators is elevated in certain 
 tumors6. Necroptosis has been reported to have pro-metastatic and immunosuppressive effects, which may 
promote tumorigenesis and cancer  metastasis6.

Melanin pigmentation regulates the expression of multiple genes and plays a critical role in many cellular 
processes in melanoma  cells10–12. It can affect the behavior of melanoma cells, their surrounding environment, 
susceptibility to the therapy, and viability of immune  cells10,13,14. Slominski et al.11 reported that induction of 
melanogenesis is associated with marked upregulation of HIF-1α and HIF-1-dependent pathways, resulting in 
increased aggressiveness of melanoma. Pigmentation levels affect the sensitivity of melanoma cells to chemo-
therapy and radiotherapy. The inhibition of melanogenesis makes pigmented melanoma more sensitive to cyclo-
phosphamide and  radiotherapy13,15. Janjetovic et al.14 revealed that a high pigmentation level was associated with 
melanoma resistance to hydroxyderivatives of vitamin D3. Cellular melanogenesis could affect the necroptosis 
of melanoma cells. Death induced by protein-binding polysaccharides (PBPs) is associated with induction of 
RIPK1/RIPK3/MLKL-mediated  necroptosis16,17. In melanoma cells with active melanogenesis, induction of 
depigmentation with a melanin synthesis inhibitor restores melanoma cell sensitivity to RIPK1/RIPK3/MLKL-
mediated  necroptosis18.

Melanoma is one of the most immunogenic tumors and is most likely to respond well to  immunotherapy19. 
It is an excellent model for evaluating innovative immunotherapies such as checkpoint  inhibitors19,20. Despite 
significant advances in cancer immunotherapy, the majority of melanoma patients do not respond or relapse due 
to primary or acquired drug resistance, resulting in treatment  failure21. The plasticity of melanoma cells leads 
to a phenomenon known as “immune escape”, whereby cancer cells acquire a less immunogenic phenotype and 
the ability to suppress anti-tumor immune cells within the tumor microenvironment (TME)22,23. Therefore, it is 
crucial to develop the necroptosis classification and melanoma-specific signature, which might guide the screen-
ing of melanoma patients with good responses to immunotherapy.

Materials and methods
Data extraction. The RNA-seq data and relevant clinicopathological data were obtained from The Cancer 
Genome Atlas Breast Cancer (TCGA-SKCM) and Genotype-Tissue Expression (GTEx) databases using Uni-
versity of California, Santa Cruz (UCSC) Xena Browser (https:// xenab rowser. net/)24. Curated survival data and 
phenotypes were also obtained. In addition, mRNA expression and clinical data of an external validation set 
were retrieved from the Gene Expression Omnibus (GEO) database (ID: GSE65904). The samples with missing 
clinical information and overall survival (OS) < 30 days were excluded and 454 patients were included in the 
analysis. Moreover, Copy Number Variation (CNV) data was collected from the UCSC website, and the immu-
nology treatment response data was from The Cancer Immunome Atlas (TCIA) and tumor immune dysfunction 
and exclusion (TIDE).

Determination of differentially expressed genes (DEGs) associated with necroptosis. The 67 
necroptosis-associated genes were obtained from Supplementary Materials of previous  publication25, and then 
intersected with genes from GSE65904 dataset to obtain a total of 65 necroptosis-related genes (Table S1). The 
“limma” package was utilized for identifying DEGs between tumor and adjacent normal tissues with the follow-
ing cutoff for adjustment: P < 0.05 and |Fold change|> 1.5.

Consensus cluster for necroptosis genes. The “NMF” package in R software was used to perform 
non-negative matrix factorization (NMF) clustering analysis with expression matrix of differentially expressed 
necroptosis-related genes, and to identify different necroptosis phenotypes in cutaneous melanoma. The correla-
tions between different necroptosis patterns and prognosis were analyzed.

Immune cells infiltration analysis in TME. CIBERSORT algorithm was employed to evaluate the rela-
tive immune cells’ contents in the immune microenvironment [19]. The differences in immune cell infiltration 
in different necroptosis patterns were compared and analyzed.

Generation of necroptosis signature. Necroptosis-associated genes were first screened for their prog-
nostic values in the TCGA cohort by univariate Cox proportional hazards regression analysis. Then, LASSO Cox 
regression analysis was applied to narrowing down candidate genes using R package “glmnet”. Subsequently, 
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the patients’ risk score was calculated based on the results of multivariate Cox regression analysis. Patients were 
ranked by their risk score and subsequently assigned into high- and low-risk groups. The median value of the 
risk score from the TCGA cohort was used as the cut-off point. Kaplan–Meier analysis with a two-sided log-rank 
test using “survminer” package was conducted to determine the prognostic value of the risk score. The time-
dependent receiver operating characteristic (ROC) curve using “timeROC” R package was employed to assess 
the signature’s predictive accuracy, and the area under curve (AUC) metric was calculated. Principal component 
analyses (PCA) were carried out with “prcomp” in the “stats” R package based on the retrieved genes. Moreover, 
in the testing set, the same methods were adopted to examine the accuracy of the risk score model.

Assessment of immune landscape in TME. The marker gene set consisting of 547 genes (Table S2) 
which represent 22 immune cell types was used to assess immune cell infiltration by the CIBERSORT  algorithm26. 
Spearman correlation was performed between the risk score and the population of immune infiltrate estimates. 
The immune, stromal, and ESTIMATE scores for each sample were also analyzed.

Prediction of the immune response. Expression of 47 immune checkpoints was compared between 
the two risk subgroups (Table S3). Immunophenoscore (IPS) for cutaneous melanoma patients was generated 
based on the expression of MHC molecules, immunomodulators, effector cells, and suppressor cells, and could 
robustly reflect the response to immunotherapy. IPS, ranging from 0 to 10, was obtained from TCIA (https:// 
tcia. at/ home)27. TIDE method was also used to predict the response of  immunotherapy28. The response of each 
sample to anti-PD-1/PD-L1 and anti-CTLA4 immunotherapy was evaluated using TIDE algorithm according 
to the gene expression profiles. TIDE was developed on the basis of two primary mechanisms of tumor immune 
evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTLs) 
and the prevention of T cell infiltration in tumors with low CTL levels. The TIDE algorithm can determine the 
signatures of T cell dysfunction by testing how the expression of each gene in tumors interacts with the CTL 
infiltration level to influence patient survival and response to  immunotherapy28.

Analysis of pigmentation score among different risk groups. Gene set variation analysis (GSVA) 
enrichment analysis was performed based on the expression of 101 pigmentation-related genes, which were 
derived from MSigDB database (https:// www. gsea- msigdb. org/ gsea/ index. jsp). The GSVA score is considered 
a pigmentation score, which represents the pigmentation status of each patient. Differences in pigmentation 
scores were compared between high and low-risk groups.

Independent prognostic significance of signature and stratification analysis. Univariate and 
multivariate Cox proportional hazards regression analyses were conducted using “survival” package to evalu-
ate the prognostic capacity of the risk score in distinguishing between low- and high-risk patients and for its 
independence from other pertinent clinicopathological parameters. These parameters were age, gender, tumor 
location, and pathological stage. In addition, the KM analysis was conducted to elucidate differences between 
two risk subgroups based on age (≤ 60 and > 60 years), tumor location (primary tumor, regional lymph node, 
regional cutaneous, and distant metastasis), stage (I-II and III-IV), ulceration (< = 1.5 and > 1.5), tumor status 
(tumor-free and with tumor).

Drug sensitivity analysis. To estimate necroptosis-related prognostic model in the clinical treatment of 
cutaneous melanoma, we employed the “pRRophetic” package to calculate TCGA project of the cutaneous mela-
noma dataset for the IC50 of commonly used chemotherapeutic agents. The algorithm allows participants to 
apply baseline tumor gene expression profiles to predict clinical chemotherapy response, which is obtained by 
establishing statistical models from the gene expression and drug sensitivity data derived from cell lines in the 
Cancer Genome Project.

Construction of a predictive nomogram. A nomogram was constructed based on the multivariate 
analysis using “rms” package to predict the 3- and 5-year survival probability. Time-dependent ROC curve was 
further drawn to evaluate the prognostic capacity of the nomogram-based prediction model for overall survival 
by AUC metric. In addition, calibration plots were also drawn to assess the predictive performance of the model.

Functional analysis. To evaluate the possible biological functions of necroptosis-related genes, GSEA was 
performed to detect the associated GO terms and KEGG pathways between the low- and high-risk groups. The 
Hallmarks of C2 KEGG v.7.4 was selected, and the number of permutations was set to 1000 times. The outcomes 
that meet P < 0.05 were considered statistically significant.

Results
Genetic variation landscape of necroptosis genes in cutaneous melanoma. We explored the 
genetic variation of necroptosis-related genes in cutaneous melanoma from 3 aspects in the TCGA database: 
CNV, somatic mutations, and differential expression in the transcriptome. We found that a similar number of 
necroptosis-related genes gained copy number and CNV deletion (Fig. 1A). Genomic mutations were common 
in these genes with 376 (80.51%) of 467 patients having occurred genetic changes, in which BRAF (51%) had the 
most genetic alteration. CDKN2A and HDAC9 followed with 12% mutational frequency (Fig. 1B). The location 
of the 65 necroptosis-related genes in human chromosomes could be seen in Fig. 1C. The differential analysis 
in normal tissue and tumor tissue showed 14 necroptosis-related genes with significantly differential expression 
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Figure 1.  Landscape of genetic variation of 65 necroptosis-related genes in melanoma. (A) The CNV frequency 
of 65 necroptosis-related genes. (B) The somatic mutation of 65 necroptosis-related genes. (C) The location of 
the 65 necroptosis-related genes in human chromosomes. (D) Expression levels of 14 differentially expressed 
necroptosis-related genes between normal tissue and tumor tissues.
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in cutaneous melanoma (Fig. 1D). The alteration and genetic variation of necroptosis-related genes act as an 
important part in regulating the happening, aggravation, and prognosis of cutaneous melanoma.

DEGs between normal and tumor tissue specimens. The 65 necroptosis-associated genes were com-
paratively assessed for their expression in the pooled GTEx and TCGA data involving 813 normal and 473 tumor 
tissue specimens, and 14 DEGs were identified (P < 0.05). Of these DEGs, 6 (EGFR, GATA3, DIABLO, CFLAR, 
RIPK3, and MAPK8) were repressed, while (ZBP1, PLK1, SPATA2, BCL2, ALK, FASLG, TNFRSF21, and LEF1) 
were upregulated in cancer cases (Fig. 1D).

Identification of necroptosis patterns based on DEGs. Based on the expression profile of 14 DEGs, 
NMF consensus clustering analysis was carried out. At a clustering variable (k) of 2, the magnitude of the cophe-
netic correlation coefficient begins to fall, and intragroup and intergroup correlations were high and low, respec-
tively, suggesting the SKCM cohort clustered in two groups (C1 and C2; Supplementary Fig. 1). We marked them 
necroptosis cluster A (n = 171) and B (n = 283), respectively (Fig. 2A; Table S4). The Kaplan–Meier curves showed 
that OS in the necroptosis cluster A was significantly better than that in the necroptosis cluster B (Fig. 2B).

Immune cells infiltration analysis in TME. To understand the characteristics of immune infiltration 
cells in different clusters, we conducted the distinction of 22 kinds of immune cell infiltration between the 

Figure 2.  Identification of necroptosis patterns based on DEGs. (A) NMF consensus clustering for the k value 
was 2. (B) Kaplan–Meier curves of OS for patients with the two clusters. (C) The distinction in 22 kinds of 
immune infiltration cells between the two clusters.
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two clusters. Among the immune infiltration cells, a majority of immune cells were found infiltrated into the 
necroptosis cluster A, including activated memory CD4 + T cells, CD8 + T cells, plasma cells, activated NK cells, 
monocytes, M1 macrophages, helper follicular T cells, and regulatory T cells (Tregs) (Fig. 2C).

Prognostic gene‑based model in TCGA cases and external validation of the risk signa‑
ture. Univariate Cox proportional hazards regression analysis showed that 7 out of the 14 necroptosis-related 
genes had P < 0.05 in the TCGA cohort (Fig. 3A). To eliminate collinearity of the variables and avoid overfitting 
of the prognostic model, these 7 genes were undergone the LASSO regression analysis in the TCGA dataset 
(Fig. 3B and C). Subsequently, 6 candidate genes were identified for further multivariate Cox regression analy-
sis. Finally, the signature was constructed according to the expression levels of 4 genes (ZBP1, PLK1, EGFR, 
TNFRSF21, and ACAT2) (Fig. 3D). Risk score = -− 0.421 × (ZBP1 expression value) + 0.242 × (PLK1 expression 
value) + 0.169 × (EGFR expression value) -0.095 × (TNFRSF21 expression value). Based on the obtained median 
score, patients were divided into the low- and high-risk subgroups. In the TCGA and validation cohorts, high-
risk patients had elevated mortality and reduced survival time in comparison with their low-risk counterparts 
(Fig. 3E and F). PCA showed good discriminative performance of the necroptosis signature in TCGA and vali-
dation cohorts (Fig. 3G and H). Kaplan–Meier survival analysis with a two-sided log-rank test in the TCGA and 
validation cohorts showed patients in the high-risk group had significantly shorter OS compared to the patients 

Figure 3.  Necroptosis-related signature constructed and validated in the TCGA and GEO cohorts, repsectively. 
(A) The 7 necroptosis-related genes with P < 0.05 and their hazard ratios from univariate Cox proportional 
hazards regression analysis. (B) Tuning parameter selection in the LASSO model for OS-relevant genes in the 
TCGA cohort. (C) The LASSO coefficient profile of the 6 necroptosis-related genes in the TCGA cohort. The 
vertical line indicates the coefficient selected by LASSO. (D) Forrest plot showed that a total of 4 necroptosis-
related genes were identified as prognosis-related by multivariate cox analysis. (E and F) The distribution and 
value of the risk scores in the TCGA and validation cohorts. (G and H) PCA of melanoma patients according to 
the risk score in the TCGA and validation cohorts. (I and J) Kaplan–Meier curves show that the low-risk group 
has significantly longer overall survival compared to the high-risk group in both the TCGA and validation 
cohorts. (K and L) ROC curve analysis shows the predictive efficiency of the established risk score in TCGA and 
validation cohorts.
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in the low-risk group (P < 0.05) (Fig. 3I). The prognostic value of the signature was further tested in the valida-
tion cohort whereby a similar significant difference in OS was observed between the low- and high-risk groups 
(P < 0.05) (Fig. 3J). The AUC for the 3-year (0.712) and 5-year (0.711) survival rates in the TCGA cohort and the 
3-year (0.703) and 5-year (0.740) survival rates in the validation cohort showed favorable specificity and sensi-
tivity of the signature in predicting OS (Fig. 3K and L).

Correlation between risk score and TME. We performed a CIBERSORT algorithm to evaluate the infil-
trating level of immune cells in the tumor microenvironment and made comprehensive comparisons with the 
risk score. The high-risk score was negatively associated with infiltration of immune cells, including plasma 
cells, activated memory CD4 + T cells, CD8 + T cells, activated NK cells, M1 macrophages, regulatory T cells 
(Tregs), and memory B cells, and positively associated with infiltration of M0 macrophages, M2 macrophages, 
and neutrophils (Fig. 4A). Furthermore, we observed that the risk score had a strong negative correlation with 
the TME scores (Fig. 4B).

Correlation between risk score and response to immunotherapy. We explored the relationships 
between risk score and response to immunotherapy and evaluated whether risk score could serve as a predictor 
to immune response. We selected 47 immune checkpoints to analyze their expression differences between the 
two risk subgroups and observed a higher expression of 41 immune checkpoints in patients with low-risk scores 
(Fig. 5A). In The Cancer Immunome Atlas, the IPS which was based on immunogenicity could achieve high 
accuracy in predicting the immunotherapy response of patients. Therefore, we analyzed the relationship of IPS 
between high and low-risk score groups. Interestingly, we found that the total IPS for PD-1 or CTLA-4, or both 
PD-1 or CTLA-4 blockers in the low-risk score group was significantly higher than that in the high score group, 
which meant that patients with lower risk scores tended to have a better response to immunotherapy (Fig. 5B–
D). Next, the TIDEs were also calculated to predict response to immunotherapy. Similarly, patients with the low-
risk score have a lower TIDE score (P < 0.05), suggesting a better response to immunotherapy (Fig. 5E). Taken 
together, the necroptosis signature established by us could serve as a robust predictor to immune response.

Figure 4.  Immune landscape between low- and high-risk groups. (A) The infiltration levels of 22 immune cell 
types in the two risk groups. (B) The relationship between signature and the TME score.
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Correlation of risk score with pigmentation score. We compared the pigmentation score of the high- 
and low-risk groups. The result indicated that the pigmentation score of the high-risk group was visibly higher 
than those of the low-risk group (Fig. 5F). Based on the median value of the patient’s pigmentation score, we 
divided the patients into low and high pigmentation score subgroups. KM survival analysis indicated that the 
OS rate in the high pigmentation score group was obviously lower than that in the low pigmentation score group 
(Fig. 5G). Stratified survival analysis demonstrated that the prognostic value of the risk score was not affected 
by the pigmentation score. Risk score subtypes showed significant differences in survival between low and high 
pigmentation score subgroups (Fig. 5H). Taken together, the risk score may be an effective indicator that is inde-
pendent of the pigmentation score and can effectively evaluate the prognosis of patients.

Independent prognostic significance of signature and stratification analysis. Univariate analy-
sis indicated that among the pertinent clinicopathological parameters, high age, advanced stage, and high-risk 

Figure 5.  The relationships between risk score and immunotherapy. (A) Difference of immune checkpoint 
expression between high- and low-risk groups. (B–D) Difference of immunogenicity between high- and low-
risk groups. (E) Difference of TIDE score between low- and high-risk groups. (F) Comparison of pigmentation 
score in the high- and low-risk groups. (G) Survival analysis of high and low pigmentation score group. (H) 
Survival analysis of melanoma stratified by pigmentation score and risk score.
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score were poor prognostic factors (Fig. 6A). In multivariable analysis, after adjustment for other confounders, 
age, stage, and the risk score were still independent prognostic indicators (Fig. 6B). To confirm the prognostic 
discriminatory power of the signature, we performed stratified survival analysis in various clinical subgroups, 
including age (age < 60 and age > 60), gender (female and male), tumor location (primary tumor, regional lymph 
node, and distant metastasis), stage (I-II and III-IV), Breslow depth (< = 1.5 and > 1.5), ulceration (no and yes), 
and tumor status (tumor-free and with tumor). As the result shown in Fig. 6C, the OS of the low-risk patients 
based on age (P < 0.001 in both age < 60 and age > 60), stage (P < 0.001 in both I-II and III-IV), tumor location 
(P = 0.005 in primary tumor; P < 0.001 in regional lymph node), Breslow depth (P = 0.005 in <  = 1.5, P < 0.001 
in > 1.5), ulceration (P = 0.017 in no and P < 0.001 is yes), and tumor status (P < 0.001 in tumor-free and P = 0.007 
in with tumor) was significantly higher than that of high-risk patients.

Figure 6.  Univariate and multivariate Cox proportional hazards regression analysis for pertinent 
clinicopathological parameters. (A) Higher age, advanced stage, and high-risk groups were significantly poor 
prognostic factors in univariate analysis. (B) The high-risk group remains as an independent poor prognostic 
factor (P < 0.05) in the multivariate analysis. (C) Survival rates of the high- and low-risk patients in the 
subgroups based on clinicopathological characteristics.
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Drug sensitivity analyses. We compared the sensitivity of two risk groups to common anticancer drugs to 
identify potential cutaneous melanoma treatment modalities. As shown in Supplementary Fig. 2, patients in the 
high-risk group were more sensitive to Docetaxel, Elesclomol, and Pazopanib, while those in the low-risk group 
were more sensitive to Gemcitabine, Gefitinib, Cyclopamine, Lenalidomide, and Metformin.

Construction of prognostic nomogram. To explore the potential value of the signature in clinical prac-
tice, we constructed a nomogram based on risk scores and clinical variables to predict the 3- and 5-year survival 
rates. A nomogram was constructed integrating the age, TNM stage, and risk score in the multivariate analysis 
(Fig. 7A). AUCs of time-dependent ROC curve at 3 and 5 year-OS for the nomogram-based prediction model 
were 0.726 and 0.704 (Fig.  7B). Calibration plots revealed that the nomogram showed perfect concordance 
between the observed and predicted survival rates at 3- and 5-year (Fig. 7C).

Gene Set Enrichment Analysis (GSEA). We conducted GSEA between the low- and high-risk subgroups 
using the entire gene network based on the TCGA dataset. We observed that several pathways with enrichment 
in the low-risk group were related to immunity with the filter criteria of FDR q value < 0.05 (Table S5), including 
chemokine signaling pathway, T cell receptor signaling pathway, Toll-like receptor signaling pathway, natural 
killer cell-mediated cytotoxicity, and B cell receptor signaling pathway (Supplementary Fig. 3).

Discussion
Melanoma is one of the most immunogenic tumors because it has an extremely high genomic mutational load 
and has the highest potential to elicit specific adaptive antitumor immune  responses19. The necroptosis is regu-
lated by distinct proteins, including RIPK1, RIPK3, and MLKL, and is characterized to be inhibited by the 
necrostatin-17. Necroptosis acts as an integral part of the induction and amplification of cancer  immunity4. RIPK3 
is required to regulate cytokine expression in DCs which is a key sentinel in regulating immune  homeostasis29. 
Necroptosis initiates adaptive immune responses via releasing DAMPs into the tissue microenvironment. Tumor 

Figure 7.  Construction and validation of the nomogram. (A) Nomogram for predicting 3-year and 5-year OS 
of melanoma patients incorporating independent prognostic factors from multivariate Cox proportional hazards 
regression. (B) AUCs of time-dependent ROC curves at 3- and 5-year OS for the independent prognostic 
factors. (C) Calibration curves corrected for deviations in agreement between the predicted and observed OS 
rates at 3 and 5 years.
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cells undergoing necroptosis can trigger robust antitumor immunity in vivo and in vitro, and immune checkpoint 
inhibitors (ICIs) can synergistically enhance their efficacy, even in ICI-resistant  tumors4. Hence, necroptosis 
induction may provide promising therapeutic prospects, especially for patients who underwent drug resist-
ance to traditional chemotherapy or immunotherapy. Although lots of studies focused on a single necroptosis 
biomarker or interaction between a certain sort of immune cells and necroptosis genes, few researchers inves-
tigated the landscape of genetic variation of necroptosis genes and TME infiltration characteristics modulated 
by necroptosis signature.

In the present study, we first revealed CNV frequency, somatic mutation frequency, chromosomal loca-
tions, and expression level of 65 necroptosis-related genes, and found that there was no significant correlation 
between the CNV and transcriptional expression. We identified 14 differently expressed necroptosis-related 
genes between tumor and normal tissues. After that, we made an NMF consensus cluster analysis and identified 
2 necroptosis clusters based on 14 DEGs. Compared with cluster B, necroptosis cluster A had better OS, and the 
subsequent TME analyses showed that the contents of infiltrated immune cells in cluster A were significantly 
higher than that in cluster B. Next, the combined analysis of Cox and LASSO regression was applied to establish 
a necroptosis signature. The prognostic risk signature showed great predictive ability both in the TCGA and 
validation datasets. We also explored the risk score and infiltrated immune cells and TME risk scores. We found 
the low-risk group could be described as immune activated type, while the high-risk group an immune failure 
type. Furthermore, we found that low-risk patients exhibited higher levels of immune checkpoints and showed 
higher IPS and lower TIDE scores, suggesting a better response to immunotherapy. Similarly, analyses of drug 
response demonstrated significant differences between the two risk subgroups. To quantify patient survival and 
enhance the use of the necroptosis signature, we built a nomogram integrating age, tumor stage, and risk score. 
Functional enrichment analysis indicated that gene sets associated with the low-risk group were significantly 
enriched in immune signaling pathways.

TME is a crucial mediator of cancer progression and therapeutic outcome. The TME status correlates with 
patient response to immunotherapy in multiple  cancers30. Thus, explaining the diversity and complexity of the 
TME is an integral step in enhancing the predictive power and clinical guidance of immunotherapy. Previ-
ous studies have shown crosstalk between cells undergoing necroptosis and the remodeling of the immune 
 microenvironment4. Notably, we revealed a correlation between two necroptosis clusters and the immune micro-
environment, which may guide distinct therapeutic approaches in the risk groups. Furthermore, the low-risk 
group tends to have significantly higher infiltrating levels of the most immune cell types than the high-risk group. 
Increasing evidence shows that T cells play an important role in the anti-cancer immune  response31–33. This cor-
responds to our result that patients in the high-risk group tended to have a lower level of CD4 + and CD8 + T 
cells. The result indicated that patients of higher risk tend to have an unfavorable tumor-infiltrating lymphocytes 
pattern. Moreover, the signature was also significantly associated with innate immune cell types, including 
macrophages, monocytes, and NK cells. Since immune checkpoint blockade targeting PD-1, PD-L1 and CTLA4 
has shown promising anti-tumor effects by reversing the immunosuppressive effects of tumors, the expression 
of immune checkpoints has attracted widespread attention as a biomarker for identifying melanoma patients 
undergoing  immunotherapy34–36. In our research, the necroptosis signature obtained has good performance in 
predicting immune checkpoint treatment. The expression levels of most immune checkpoints were observed 
significant up-regulation in the low-risk subgroup. Hence, ICIs that target these checkpoints may be an optimal 
therapeutic approach for these patients. In addition, we found that low-risk patients showed higher IPS and lower 
TIDE scores, suggesting a better response to immunotherapy. Finally, we found that multiple chemotherapeutic 
agents have better sensitivity for high and low-risk groups, respectively, so that suitable chemotherapeutic agents 
can be selected according to different risk groups.

The three genes in the signature had been reported to be involved in tumorigenesis and progression in cutane-
ous melanoma, which enhances the predictive performance of the signature. ZBP1 is a Zα domain-containing 
protein that recognizes viral and endogenous Z-RNA37. ZBP1 recognizes Z-RNA in macrophages to activate 
the NLRP3 inflammasome and PANoptosis, an inflammatory programmed cell death pathway regulated by the 
PANoptosome complex with pyroptosis, apoptosis, and/or necroptosis key features of  apoptosis38. Growing 
evidence suggests that ZBP1-mediated necroptosis is involved in antitumor immunity and  tumorigenesis39. Yang 
et al.39 revealed that ZBP1-MLKL necroptotic signaling potentiated radiation-induced antitumor immunity via 
intratumoral STING pathway activation. In a breast cancer study, ZBP1 expression is dramatically upregulated 
in necrotic tumors. Knockdown of ZBP1 blocked tumor necroptosis during tumor development and inhibited 
 metastasis40. Polo-like kinase-1 (PLK1) is one of the key regulators of cell cycle progression. PLK1 had been 
reported to play crucial roles in the metabolism and progression of cutaneous  melanoma41–43. Schmit et al.44 
revealed that PLK1 expression was elevated in both melanoma tissue specimens and melanoma cells compared 
to normal skin tissue and melanoma cells. Knockdown of PLK1 resulted in significantly reduced viability and 
growth of melanoma cells. In addition, knockdown of PLK1 resulted in decreased clonal survival, cell cycle arrest, 
and apoptosis in melanoma cells. Su et al.42 reported that higher PLK1 levels were associated with worse OS and 
disease-free survival (DFS), which is consistent with our results. In addition, Deeraksa et al.45 demonstrated that 
PLK1 expression is elevated in androgen-insensitive prostate cancer (PCa) cells and silence of PLK1 promotes 
necroptosis-induced cell death in LNCaP-AI cells. Therefore, it is promising to exploit necroptosis through PLK1 
inhibition for the treatment of castration-resistant PCa. EGFR is a member of the RTK family and upregulated 
EGFR promotes migration and invasion of melanoma cells. The viability of melanoma cells receiving EGFR 
inhibitor was reduced, suggesting that EGFR is a promising target for anticancer  therapy46.

Melanogenesis is the most characteristic feature of  melanoma10. Cellular melanogenesis could affect the 
regulated cell death of melanoma cells. Pawlikowska et al.16,17 revealed that melanin content in melanoma cells 
can affect the induction of RIPK1/RIPK3/MLKL-mediated necroptosis by Coriolus Versicolor fungus-derived 
protein-PBPs. In melanoma cells with active melanogenesis, induction of depigmentation with a melanin 
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synthesis inhibitor restores melanoma cell sensitivity to RIPK1/RIPK3/MLKL-mediated  necroptosis18. These 
findings are consistent with our findings. In this study, the pigmentation score of the high-risk group was visibly 
higher than those of the low-risk group. In addition, melanogenesis was associated with clinical outcomes of 
melanoma  patients10. Brożyna et al.47 indicated that patients with melanotic melanomas have the significantly 
shorter OS and DFS than those with amelanotic lesions. In our study, we also found that the OS rate in the high 
pigmentation score group was obviously lower than that in the low pigmentation score group, consistent with 
a previously published article.

Conclusions
Our study revealed the extensive effect of necroptosis signature on cutaneous melanoma microenvironment, 
and succeed in identifying two distinctive necroptosis phenotypes and establishing signature, which closely 
correlated with response to immunology in cutaneous melanoma. Our results provide insight for improving 
personalized cancer immunotherapy.

Data availability
The datasets generated and/or analysed during the current study are available in the TCGA-SKCM (https:// portal. 
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