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Abstract

The role of microbial interactions in defining the properties of microbiota is a topic of key

interest in microbial ecology. Microbiota contain hundreds to thousands of operational taxo-

nomic units (OTUs), most of them rare. This feature of community structure can lead to

methodological difficulties: simulations have shown that methods for detecting pairwise

associations between OTUs, which presumably reflect interactions, yield problematic

results. The performance of association detection tools is impaired when there is a high pro-

portion of zeros in OTU tables. Our goal was to understand the impact of OTU rarity on the

detection of associations. We explored the utility of common statistics for testing associa-

tions; the sensitivity of alternative association measures; and the performance of network

inference tools. We found that a large proportion of pairwise associations, especially nega-

tive associations, cannot be reliably tested. This constraint could hamper the identification

of candidate biological agents that could be used to control rare pathogens. Identifying test-

able associations could serve as an objective method for filtering datasets in lieu of current

empirical approaches. This trimming strategy could significantly reduce the computational

time needed to infer networks and network inference quality. Different possibilities for

improving the analysis of associations within microbiota are discussed.

Introduction

Microbiota play key roles in ecosystem processes, from eukaryote physiology [1] to global bio-

geochemical cycles [2]. Research often focuses on comparing microbiota found in similar envi-

ronments to identify the major forces shaping their structure [3] and function [4]. Microbial

interactions are probably one such force [5, 6].

The most common technique for describing microbiota is 16S rRNA sequencing [7]. Asso-

ciation network analysis is then often employed to characterize potential microbial interac-

tions [8]. Such analyses require identifying pairwise associations between the occurrence or

abundance of bacterial operational taxonomic units (OTUs) [9]. However, microbiota fre-

quently contain hundreds to thousands of OTUs, most of them rare [10–12]. Consequently, a

typical matrix describing the abundance of OTUs among similar microbiota will include a

high proportion of zeros. Simulations have illustrated that an excess of zeros impairs the
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efficiency of association network analysis [13, 14]. To avoid this problem, rare OTUs are fil-

tered out beforehand. Current trimming procedures are empirical in nature and restrictive.

They may rely on OTU prevalence [13, 15], mean abundance [16], or diversity [17]. Moreover,

simulations have found that association network analyses more efficiently detect negative rela-

tionships (i.e., amensal, competitive) than positive relationships (i.e., mutualistic, commensal)

[13]. It is not yet clear whether this result is due to the distribution of OTU prevalence.

Precisely defining the conditions under which positive and negative associations can be

reliably tested should improve current research on microbial interactions. This approach

could help design studies that have adequate statistical power; identify potential paths for

improving data analysis; and, accounting for its constraints, clarify the interpretation of associ-

ation network analyses.

Below, we analyzed the effect of low OTU prevalence, a common pattern in real microbiota,

on association measures calculated from occurrence data and read abundance data. More spe-

cifically, we theoretically and empirically calculated the extrema of common prevalence-based

association measures. These extrema were used to define which OTU associations could be

reliably tested. We investigated whether alternative association measures and cutting-edge

association network analysis tools were also affected by low OTU prevalence. This methodo-

logical strategy allowed us to (i) define the extent to which prevalence and sample size affect

the results of microbiota association analyses; (ii) demonstrate that negative associations can-

not be captured in most cases; and (iii) show that there is little added value obtained from ana-

lyzing abundance data as compared to occurrence data. We discuss our findings in the context

of current analytical procedures and tools with a view to proposing potential solutions to the

issues we identified.

Materials and methods

Methods for detecting associations among microbes have progressed rapidly as the to obtain

microbiota data has become more widespread. Here, we determined how an excess of zeros

affected classical correlation measures by examining the latter’s testability. We also considered

alternative association measures and explored the relationship between method type and asso-

ciation network inference quality.

Prevalence affects the distribution of association statistics, which can lead to problems with

the testability of correlation coefficients. For instance, a statistic’s minimum and/or maximum

can fall within the expected confidence interval obtained from the classical distributions used

to approximate expected values. This issue can arise with both occurrence data and abundance

data.

Model for occurrence data: Fisher test and Phi coefficient

First, we explored how to define testability when occurrence data are used. Co-occurrence

networks are commonly reconstructed using the hypergeometric law that underlies Fisher’s

exact test [9, 18, 19]. For fixed prevalence values, the probability of observing the minimum or

maximum number of co-occurrences may be higher than the alpha level (traditionally set to

5%) [20, 21]. In such a case, neither negative nor positive associations, respectively, can be

significantly detected. Limits on testability can be studied by enumerating all the possible

combinations of associations based on prevalence (detailed in Part B.7 in S1 Appendix). The

combinatorics that ensue from the hypergeometric law provide numerical solutions for deter-

mining association testability.

The Phi coefficient [22] can be used to establish equations for exploring association testabil-

ity, which provide an analytical solution. The Phi coefficient ϕ is a measure of association
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between two binary variables XA and XB.

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P11 � PA PB

PA ð1 � PAÞPB ð1 � PBÞ

r

; ð1Þ

where PA, PB are the prevalence values for two OTUs, XA and XB, and P11 is the prevalence of

their co-occurrence. The prevalence of an OTU is

prevalence ¼
number of non � zero samples

total number of samples
: ð2Þ

The extrema of Phi [23] depend exclusively on PA and PB (S1 Fig and Part B in S1 Appendix).

minð�Þ ¼ max �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PA PB

ð1 � PAÞð1 � PBÞ

r

; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � PAÞð1 � PBÞ

PA PB

s !

maxð�Þ ¼ min �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PAð1 � PBÞ

PBð1 � PAÞ

s

; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PBð1 � PAÞ

PAð1 � PBÞ

s ! ð3Þ

Under the null hypothesis (H0) that the occurrences of XA and XB are independent, Phi can be

approached thanks to Pearson’s chi-squared test:

�
2
¼
w2

N
; ð4Þ

where N is the total number of samples and χ2 is a chi-squared distribution with one degree of

freedom [24]. This latter distribution is thus used to build a confidence interval with which to

test departure from the null hypothesis. Furthermore, we can describe cases where it would be

impossible to reliably test associations based on this confidence interval because the genuine

minimum and/or maximum of ϕ fall within the confidence interval.

Model for read abundance data: Pearson and Spearman correlations

Second, we explored how to define testability when read abundance data are used. We first

employed the Pearson correlation coefficient [25], which is a measure of association between

two continuous variables, XA and XB.

r ¼
EðXA XBÞ � EðXAÞEðXBÞ

sXA
sXB

ð5Þ

We demonstrated that the minimum of the Pearson correlation coefficient depends only on

OTU prevalence (see the proof in Part C in S1 Appendix and the illustration in S2 Fig).

minðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PA PB

ð1 � PAÞð1 � PBÞ

r

> � 1; if PA þ PB < 1 ð6Þ

We can then define a confidence interval based on the following assumption: if XA and XB fol-

low two uncorrelated normal distributions,

r ¼
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2þ t2
p ð7Þ

where t has a Student’s t-distribution with degrees of freedom N − 2.

We demonstrated that the result for the correlation minimum (Eq (6) is identical for the

Spearman correlation approach (Part C.7 in S1 Appendix). The Spearman correlation is the
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Pearson correlation applied to the ranks of XA and XB. The Spearman correlation coefficient

follows the same expected distribution described by Eq (7) when XA and XB are independent.

This fact makes it possible to relax the assumption of normality of the Pearson correlation test,

a hypothesis not respected in the analysis of the microbiota data.

To estimate the proportion of unreliable tests, we considered two distributions for OTU

prevalence: (i) a uniform law, to study the influence of sample size N and prevalence PA, PB
and (ii) a truncated power law, to take into account the real structure of microbiota data. We

also compared the results for the testability limits for the two types of data and highlighted a

correlation between the two associated measures.

Simulated responses of association measures

We found that, theoretically, OTU prevalence has an impact on the observable minimum

Pearson and Spearman correlation coefficients. We therefore explored the behavior of alter-

native association measures. We analyzed the relationship between OTU prevalence and the

values of five measures used to infer association networks: Pearson and Spearman correlation

coefficients, Bray Curtis dissimilarity, mutual information, and the maximal information

coefficient (MIC) [9, 26]. Bray Curtis dissimilarity is an ecological statistic that we employed

here to quantify compositional dissimilarity between OTUs. Mutual information and the

MIC are two measures that were developed from information theory. Both are used to cap-

ture nonlinear or non-monotonic relationships. We generated two correlated variables to

analyze the responses of the association measures. The zero-inflated negative binomial

(ZINB) distribution appears to best fit microbiota data [27, 28]. We generated a bivariate nor-

mal sample of size N = 50 and simulated three correlation levels: a negative correlation

(r = 1), a positive correlation (r = 1), and a null correlation (r = 0), which served as a reference.

The copula theory allows normally distributed data to be marginally transformed into ZINB-

distributed data [29]. OTU prevalence was modeled using the probability of structural

zeros. For the ZINB distribution, dispersion was 0.5, and the mean was 1000. This situation

corresponded to two OTUs of high abundance. Prevalence values ranged from 0.05 to 0.95

in 0.05 steps. We calculated the value of each association measure for all possible pairs of

prevalence. We conducted 100 simulations and retained the median value for each prevalence

pair.

Association network analysis tools

We studied the relationship between OTU prevalence and the quality of inference provided by

association network analysis tools. Three inference tools were studied: CoNet [30], SPIE-

C-EASI [15], and SparCC [16]. We simulated datasets containing 50 samples and 100 OTUs.

The data followed a multivariate normal distribution and contained with 100 known associa-

tions, of which half were positive and half were negative. From the adjacency matrix, we calcu-

lated a correlation matrix where the target matrix condition was 100, as described in [15].

Using the copula theory, we then transformed the normally distributed data into ZINB-distrib-

uted data [29]. Prevalence was modeled using the probability of structural zeros. All the OTUs

had the same prevalence, which was the variable study parameter. For the ZINB distribution,

dispersion was 0.5, and the mean was 1000. Finally, we used the different tools to infer the

association network and measured tool ability to pick up on positive or negative associations.

We independently examined the proper classification of negative associations and positive

associations. Inference quality was assessed based on the area under the ROC curve (AUC)

and the area under the precision-recall curve (AUPRC) [31].

Rarity of microbial species: In search of reliable associations
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Data filtering before association network inference

We analyzed the effect of data filtering methods on network inference quality. We simulated

datasets containing 300 samples and 300 OTUs following a ZINB distribution, as described in

the previous paragraph. The datasets contained 1000 associations, half positive and half nega-

tive. As above, the target matrix condition was 100. OTU prevalence followed a power law dis-

tribution where k = −1.5. Minimum prevalence was 5/300 to avoid simulating a situation in

which OTUs were missing from all 300 samples, which would not be taken into account in net-

work inference. For the ZINB distribution, dispersion was 0.5, and the mean was 1000. We

implemented data filtering in CoNet and SPIEC-EASI (S2 File). For CoNet, we did not com-

pute the p-values of the problematic pairs we identified. For SPIEC-EASI, after normalizing

the data with the centered log-ratio (clr) transformation [32], we assigned a zero weight to the

problematic pairs during the graphical lasso estimation [33], which corresponded to a strong

regularization parameter for these pairs. SparCC’s algorithm did not allow problematic pairs

to be filtered. To generate benchmarks for data filtering, we inferred association networks

under three different conditions: (i) for all OTU pairs; (ii) for fully testable pairs only (i.e., after

removing problematic pairs; alpha level of 5%); and (iii) for OTUs that had been filtered based

on a prevalence threshold. In this latter case, the goal was to be able to compare the results of

filter based on testability with those obtained using a conventional filter based on prevalence.

To do this, we removed enough low prevalence OTUs to have at least the same number of fil-

tered pairs as in (ii). We performed 20 simulations of each. We then measured the AUC values

associated with network inference. Inference quality was based only on the associations that

remained after filtering.

Results

Testability given a uniform prevalence distribution

When occurrence data were used, four inequations (Eqs (7-10) in S1 Appendix) defined reli-

able tests based on the chi-squared distribution and OTU prevalence (Fig 1C). The proportion

of non-testable associations (i.e., neither positive nor negative correlations could ever be signif-

icant) rapidly fell as N increased (Fig 1D). The proportion of associations with partial testabil-

ity (i.e., either only positive or negative correlations could ever be significant) never exceeded

0.25 (Fig 1D). When N = 300, the proportion of fully testable associations (both positive and

negative correlations could be significant) exceeded 0.80 (Fig 1D). We showed numerically

that there was consistency between the proportion of Fisher’s exact tests affected by prevalence

and the analytical results (Fig 1A and 1B). There were slightly more non-testable associations

when Fisher’s exact test was used, as compared to the Phi coefficient, and slightly fewer associ-

ations with partial testability.

When read abundance data were used, some negative correlations were not testable based

on the Student’s distribution (Eq (33) in S1 Appendix and Fig 1E). This problem became less

pronounced as N increased, and the proportion of testable associations reached 0.95 at

N = 300 (Fig 1F).

Testability given realistic community structure

Prevalence distributions are highly unbalanced in microbiota because of the large number of

rare OTUs (Fig 2A). Accordingly, we modeled OTU prevalence using a truncated power law

distribution; the latter reflects observed community structure (Part E in S1 Appendix and S3

Fig). OTU prevalence was fitted according to a truncated power law, with k ranging from −2
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to −1: the smaller the k, the higher the proportion of rare species. The use of such a distribution

means that, for most OTU pairs, both OTUs had a low prevalence (Fig 2B).

For the occurrence data, there was thus a large proportion of associations for which nega-

tive correlations could never be significant (> 0.50 for k = −1,> 0.90 for k = −2); this

Fig 1. Testability of pairwise associations for the occurrence data and for the read abundance data. For the occurrence data: the testability

zones defined by OTU prevalence for the Fisher’s exact test (A), and the proportion of testable associations as a function of N assuming

prevalence follows a uniform distribution (B). Testability zones defined by OTU prevalence for the Phi coefficient (C), and the proportion of

testable associations as a function of N assuming prevalence follows a uniform distribution (D). For the read abundance data: testability zones

defined by OTU prevalence for the Pearson and Spearman correlation coefficients (E), and the proportion of testable associations as a function

of N assuming prevalence follows a uniform distribution (F). The alpha level for the tests was 5%. For (A), (C) and (E), N = 50.

https://doi.org/10.1371/journal.pone.0200458.g001
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proportion increased as N increased (Fig 2C). This counter-intuitive result is due to the accu-

mulation of rare OTUs as N increases under the power law assumption. Fewer than 10% of

associations were non-testable when N was greater than 50 (Fig 2D).

For the read abundance data, when N = 100, a large proportion of negative correlations

were non-testable when k = −1 (proportion: 0.60) and k = −2 (proportion: 0.95) (Fig 2D).

Comparison between the two data types

We compared the association statistics for both data types under conditions of low OTU prev-

alence such as those observed in actual microbiota data (Part D in S1 Appendix). A formal

decomposition of variance and covariance illustrates the structural relationship of the

Fig 2. Association testability under realistic conditions of microbial community structure. (A) Histograms of OTU

prevalence in several microbiota characterized by 16S rRNA sequencing. Data were taken from the Qiita database [34]

and the TARA Ocean Project [35]. The microbiota are described elsewhere (Part E in S1 Appendix). To better illustrate

the skewed distributions, only prevalence values of greater than 5% were included. (B) Distribution of all pairs of OTU

prevalences from microbiota data for soil from California vineyards. Each point represent a pair of OTU prevalences.

Proportion of testable associations as a function of N when k = −2 or −1 for the occurrence data (C) and the read

abundance data (D).

https://doi.org/10.1371/journal.pone.0200458.g002
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correlation coefficients calculated from the occurrence data and the read abundance data (Eq

(2), Part A in S1 Appendix). The observed values of the Phi coefficient ϕ and the Pearson cor-

relation coefficient r for OTU pairs in microbial datasets (Fig 3A) illustrated that the minimum

of the statistics is particularly affected as explained above. Furthermore a correlation was

observed between the two measures for real microbiota datasets (cor = 0.78 and R2 = 0.62 for

honeybees microbiota data, Fig 3A). Simulations allowed us to delve deeper into the expected

correlation between the two measures. The association tests that can be performed using

occurrence data versus read abundance data tend to be similar, and prevalence influences asso-

ciation testability in the same way. More specifically, association measures for the two data

types become correlated as prevalence decreases (Fig 3B).

Impact of OTU prevalence on other association measures

We studied the relationship between OTU prevalence and the responses of five common asso-

ciation measures (Fig 4) using simulated data. There were differences in the abilities of the

measures to capture negative associations. The Pearson correlation coefficient did a poor job

of picking up on negative associations. The Spearman correlation coefficient did better: it was

able to pick up on negative associations. OTU prevalence had a strong effect on the Spearman

correlation coefficient, as noted above. Bray Curtis dissimilarity and mutual information did a

poor job of capturing negative associations: their responses for the dataset containing the asso-

ciations were the same as their responses for the null dataset. The MIC responded well, espe-

cially when prevalence was high. The Spearman correlation coefficient and the MIC were the

only measures that could properly capture negative correlations, but they were nonetheless

affected by low prevalence.

In the case of the positive associations, all five measures showed a greater degree of sensitiv-

ity. However, OTU prevalence still exerted an influence, even if it was less dramatic than for

negative associations. For the negative associations, measures were altered when the sum of

the two prevalences decreased, along the first bisector. For the positive associations, measures

Fig 3. Correlation between the Phi coefficient and the Pearson coefficient. (A) Correlation in honeybees microbiota

data (Part E in S1 Appendix). Each point corresponds to the association coefficients for an OTU pair. Read abundance

data were normalized using clr. (B) Correlation computed from simulations of OTU abundances modeled using a

zero-inflated Poisson (ZIP) distribution (Part D.2 in S1 Appendix). The parameters are the probability of structural

zeros, p0, and the value of the Poisson parameter, λ. In biological terms, the probability of structural zeros corresponds

to the prevalence (prevalence = 1 − p0), and the Poisson parameter corresponds to read abundance. For each pair of p0

and λ values, we generated 100 samples of two hypothetical OTUs, XA and XB, whose abundances followed a ZIP

distribution with those parameter values. We then calculated ϕ and r for the samples. The correlation between the two

coefficients was assessed by repeating this process 105 times.

https://doi.org/10.1371/journal.pone.0200458.g003
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were affected when one of prevalences decreased, along the prevalence axes. Consequently, the

mechanisms that limit the ability to measure positive associations are different from those tied

to negative associations.

Impact of prevalence on network inference quality

We compared the ability of three recently developed tools to infer association networks within

simulated microbiota data: all three had difficulties detecting associations when faced with a

high proportion of zeros (i.e., low OTU prevalence; Fig 5). Positive associations were easier to

detect, but low prevalence still had an effect. Examining the characteristics of the ROC curves,

limitations occurred at a prevalence level of 0.2. When paired OTUs had prevalences below

this level, they fell completely within a zone of partial testability, where only positive associa-

tions could be tested (compare with Fig 1E).

Impact of data filtering on association network inference quality

We analyzed the effect of filtering data on the quality of association network inference (Fig 6)

using simulated data. In our dataset, problematic pairs (at an alpha level of 5%) represented,

on average, 70% of the total number of associations. During prevalence-based filtering, we

removed the less prevalent OTUs, with a view to eliminating the same proportion of associa-

tions as in testability-based filtering.

The results obtained with CoNet and SPIEC-EASI were quite similar. When the data were

unfiltered, negative associations were less well recovered than were positive associations, as

mentioned previously. Under these conditions, the AUC values were below 0.8. When the

Fig 4. Relationship between OTU prevalence and the responses of five association measures for a simulated dataset. Two zero-inflated negative

binomial (ZINB) distributions (N = 50, μ = 1000, θ = 0.5, p0 = 1 − prevalence) were created using all pair of prevalences from 0.05 to 0.95 (steps of 0.05)

and for three correlation levels. For the graphs, the correlation level is −1 in the first row, 0 in the second row, and +1 in the third row. The five

association measures are represented in different columns. A total of 100 simulations were performed, and the median values were plotted.

https://doi.org/10.1371/journal.pone.0200458.g004
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Fig 5. Performance of three association network analysis tools as a function of OTU prevalence. Datasets of 100 OTUs were generated using a ZINB

distribution (N = 50, μ = 1000, θ = 0.5, p0 = 1 − prevalence). A covariance structure was imposed on the datasets-there were 100 associations, of which half were

positive and half were negative. All OTUs had the same prevalence, which varied from 0.05 to 1 in 20 log steps. For each prevalence value, 20 simulations were

performed. The plots show the means of a LOESS regression. The left-hand graphs represent the classification of the negative associations, and the right-hand

graphs represent the classification of the positive associations. The top and bottom graphs show the AUPRC and AUC values, respectively.

https://doi.org/10.1371/journal.pone.0200458.g005

Fig 6. Impact of data filtering on association network inference quality. Performance of CoNet and SPIEC-EASI

depending on data filtering methods: no filtering, testability-based filtering, and prevalence-based filtering. In testability-

based filtering, problematic associations were removed (alpha level of 5%). In prevalence-based filtering, the lowest-

prevalence OTUs were removed to obtain the same number of filtered associations as for testability-based filtering.

Datasets of 300 OTUs were generated using ZINB distributions (N = 300, μ = 1000, θ = 0.5, p0 = 1 − prevalence).

Prevalences were simulated using a power law distribution where k = −1.5. A covariance structure was imposed on the

datasets: there were 1000 associations, half positive, half negative. The target matrix condition was 100. A total of 20

simulations were performed to obtain the boxplots of the areas under the ROC curve.

https://doi.org/10.1371/journal.pone.0200458.g006
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data were filtered, the quality of inference improved. When the data were filtered by testabil-

ity, the AUC values for both negative and positive associations were greater than 0.9. Further-

more, the AUC values for negative associations were the same as the AUC values for positive

associations (and were even higher when SPIEC-EASI was used). When prevalence-based fil-

tering was used, the AUC values were lower. For our simulated dataset, testability-based fil-

tering thus yielded better results than the more common, prevalence-based filtering

procedure.

Network inference could be carried out significantly faster when the data were filtered. The

mean calculation times for unfiltered, testability-filtered, and prevalence-filtered data were as

follows: 122, 72, and 19 seconds, respectively, for SPIEC-EASI and 2041, 667, and 661 seconds,

respectively, for CoNet.

Discussion

We showed that it is impossible to reliably test a large proportion of the pairwise associations

between OTUs in microbiota using classical association measures and common association

network analysis tools. Indeed, in our simulations employing realistic community structure

(i.e., most OTUs are rare), we discovered the following: (i) correlations, especially negative cor-

relations, could not be tested for most associations using classical statistics; (ii) alternative asso-

ciation measures was also affected by low OTU prevalence; and (iii) cutting-edge network

analysis tools also struggle when OTU prevalence is low. These findings clarify previous model-

ing results [13] and underscore a major analytical challenge in this domain. This issue cannot

be solved via the use of statistics adapted to non-linear relationships, the permutation and boot-

strap tests proposed by CoNet, or the clr transformation procedure employed by SPIEC-EASI.

It also has important practical implications. For example, this constraint could hamper the

identification of candidate biological agents that could be used to control rare pathogens.

We defined equations that can be used to quickly identify a priori whether OTU associa-

tions can be tested. Applying stringent standards (i.e., analyzing only fully testable associa-

tions) drastically reduced the number of tests required to infer an association network. We

propose a way to implement this filtering strategy in CoNet and SPIEC-EASI: by assuming

there is no association for problematic pairs in the correlation matrix of OTU abundances

when an association network is being inferred. By limiting test number, the time needed for

network inference was drastically reduced. We showed that identifying testable associations

could serve as an alternative to current, empirical strategies for filtering microbiota datasets.

Indeed, we found that inference quality may be better if data are filtered to remove problematic

pairs of OTUs rather to remove low-prevalence OTUs.

We found that association testability tended to be similar for occurrence data and read

abundance data. More specifically, association measures calculated using the two data types

became correlated as prevalence decreased. This fact raises questions about the information

that is actually being captured by current methods for quantifying OTU associations. These

questions have both computational implications—it is unclear that current models are able to

make the most of abundance data—and biological implications—the two data types could

reveal the operation of different biological processes involved in interactions. Zero-inflated dis-

tributions can be used to explicitly model occurrence and abundance. They aim to differentiate

structural zeros, due to OTU absence, from sampling zeros, due to limited sequencing depth.

Since zeros can be ambiguous, presence-absence patterns likely change with sequencing depth.

As a result, the minima and maxima of the Pearson correlation coefficient and the Phi coeffi-

cient will depend on this depth. Fitting OTU abundances using such distributions appears to

be a promising solution for improving the inference of microbial associations [27, 36].

Rarity of microbial species: In search of reliable associations

PLOS ONE | https://doi.org/10.1371/journal.pone.0200458 March 15, 2019 11 / 15

https://doi.org/10.1371/journal.pone.0200458


The low prevalence of OTUs in metagenomics datasets greatly limits our ability to carry out

broad-scale analyses. Based on the results obtained in this study, we believe that advances in the

discovery of microbial associations should be made by systematically integrating available infor-

mation into the models being used. Initial attempts to develop statistical models that incorpo-

rate previous findings into metagenomics analyses have yielded promising results [37]. From a

biological point of view, this approach would benefit from the development of a database dedi-

cated to microbial interactions. Open and shared microbiota datasets, like those present on the

Qiita collaborative platform (https://qiita.ucsd.edu), could be used to benchmark statistical

models, and contributing to such databases could improve our knowledge of microbiota.
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