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Many Gram-negative bacterial pathogens employ translocated virulence factors, termed
effector proteins, to facilitate their parasitism of host cells and evade host anti-microbial
defenses. However, eukaryotes have evolved to detect effector-mediated virulence
strategies through a phenomenon termed effector-triggered immunity (ETI). Although
ETI was discovered in plants, a growing body of literature demonstrates that metazoans
also utilize effector-mediated immunity to detect and clear bacterial pathogens. This mini
review is focused on mechanisms of effector-mediated immune responses by the
accidental human pathogen Legionel la pneumophila . We highl ight recent
advancements in the field and discuss the future prospects of harnessing effectors for
the development of novel therapeutics, a critical need due to the prevalence and rapid
spread of antibiotic resistance.
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EFFECTOR-MEDIATED IMMUNITY ENHANCES HOST DEFENSE
AGAINST BACTERIAL PATHOGENS

The evolutionary arms race between host and pathogen has necessitated the use of several
complementary innate immune pathways to detect and eradicate pathogens. Initial pathogen
recognition occurs through engagement of pathogen associated molecular patterns (PAMPs) by
host pattern recognition receptors (PRRs) (Janeway, 1989). PRRs include toll-like-receptors (TLRs),
located on either the plasma membrane or endosomal membranes (Medzhitov and Janeway, 2000;
Massis and Zamboni, 2011). PRR recognition of PAMPs activates signaling cascades that culminate
in production of pro-inflammatory cytokines that contribute to controlling infection (Janeway and
Medzhitov, 2002). Inflammasomes are multimeric intracellular protein complexes that activate
inflammatory caspases in response to cellular damage or pathogen infection [reviewed in (Martinon
et al., 2002)]. Bacterial pathogens have evolved diverse repertoires of virulence factors to promote
their survival within hosts by acquisition of host-derived nutrients and avoidance of host defenses.
Bacterial effectors are directly injected into host cells through specialized secretion systems and
functions within the host cells to facilitate pathogen survival in close association with host cells
(Cambronne and Roy, 2006; Galán, 2009). Both intracellular and extracellular pathogens utilize
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effector proteins, emphasizing their importance in the virulence
strategies of diverse bacterial pathogens.

Multiple effector-mediated virulence processes are similar
between seemingly diverse bacterial pathogens. Multicellular
eukaryotes are able to detect bacterial effectors and/or their
virulence processes via effector-triggered immunity (ETI)
(Stuart et al., 2013; Rajamuthiah and Mylonakis, 2014; Fischer
et al., 2019). ETI was first described in immune defense against
pathogens in plants as “gene-for-gene resistance” where
resistance (R) genes in plants recognize bacterial effectors
(Avr) within the plant cell and trigger an immune response
(Flor, 1971; Chisholm et al., 2006). However, animals also detect
pathogen infection through ETI and effector-mediated responses
[reviewed in (Fischer et al., 2019)]. Plant ETI results from either
direct recognition of the effector itself or sensing of intracellular
effector activity, whereas only the latter has been observed in
metazoans (Stuart et al., 2013). In plants, several models have
been described of how resistant strains directly or indirectly
detect pathogen effectors. The “receptor-ligand model” describes
direct recognition of bacterial effectors whereby a host R protein
binds and inactivates a bacterial Avr effector (Stuart et al., 2013).
The Pseudomonas syringae effector AvrPto blocks host pathogen
recognition through subversion of receptor-mediated signaling.
In resistant plants, AvrPto is directly inactivated by the R protein,
Pto (Xiang et al., 2008). The “guard hypothesis,” “decoy model,”
and “bait-and-switch model” are indirect models through which
resistant plants detect pathogen effector function (Dangl and
Jones, 2001; Stuart et al., 2013). In animal cells, effector function
is detected indirectly though cell-autonomous sensing of
homeostatic perturbations elicited by the effectors to the
benefit of the pathogen (Colaço and Moita, 2016). Examples
include cellular detection of effector-mediated translation
inhibition, inhibition of Rho GTPases, and pore formation
(Fischer et al., 2019). This mini review is focused specifically
on mechanisms of effector-mediated and -triggered host defense
against the accidental human pathogen Legionella pneumophila.
USE OF THE “ACCIDENTAL” PATHOGEN
L. PNEUMOPHILA AS A MODEL TO
UNDERSTAND EFFECTOR-MEDIATED
IMMUNE RESPONSES

Several mechanisms of effector-mediated immunity have been
uncovered by studying the accidental human pathogen
Legionella pneumophila. Legionella spp. are Gram-negative
intracellular bacteria that are ubiquitous in aquatic and soil
environments, where they parasitize free-living protozoa
(Rowbotham, 1980; Fliermans et al., 1981; Barbaree et al., 1986).
Anthropomorphic fresh-water environments such as cooling
towers, water fountains and any system that allows for
aerosolization of water droplets, have potential to be the source of
Legionella infection, collectively termed legionellosis (Barbaree et al.,
1986). Inhalation or aspiration of L. pneumophila can result in an
inflammatory pneumonia called Legionnaires’ disease, which is fatal
in ~10% of cases (Soda et al., 2017). Legionnaires’ disease primarily
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
affects elderly and immunocompromised individuals and was
named for the initial outbreak, which occurred at the 1976
American Legion Convention in Philadelphia (Fraser et al., 1977;
McDade et al., 1980). In immunocompetent individuals, L.
pneumophila can cause a mild self-limiting flu-like illness called
Pontiac Fever (Glick et al., 1978). Legionellosis is a consequence of
L. pneumophila replication within alveolar macrophages (Nash
et al., 1984; Friedman et al., 2002); however, the infection is
readily cleared by innate immune responses in vivo, owing in part
to orchestrated production of pro-inflammatory cytokines (Shin,
2012; Liu et al., 2020). The opportunistic colonization of built
freshwater environments, rarity of person-to-person transmission
and susceptibility to innate immune responses has led to description
of L. pneumophila as an “accidental pathogen” (Borges et al., 2016;
Boamah et al., 2017).

Virulence strategies evolved by L. pneumophila to parasitize
free-living protozoa have conferred the ability to replicate within
mammalian macrophages (Park et al., 2020). Upon phagocytosis,
L. pneumophila rapidly remodels its vacuole to prevent lysosomal
degradation and establish an intracellular replicative niche called the
Legionella containing vacuole (LCV) (Horwitz, 1983). For
biogenesis of LCV and intracellular replication, L. pneumophila
employs over three hundred individual effector proteins
translocated into host cells by a Dot/Icm type IVB secretion
system (T4SS) (Berger and Isberg, 1993; Zhu et al., 2011;
Ensminger, 2016). L. pneumophila encodes the largest arsenal of
translocated effector proteins identified to date, due to its broad and
diverse tropism for free-living protozoa (Park et al., 2020). Armed
with these effectors, L. pneumophila proliferates to high numbers
within host phagocytes. Effectors are essential for biogenesis of the
LCV and intracellular replication through facilitating nutrient
acquisition and prevention of lysosomal degradation. However,
several L. pneumophila effectors that perform these essential
functions paradoxically amplify pro-inflammatory immune
responses in macrophages. Thus, L. pneumophila has become a
useful model pathogen to delineate mechanisms of effector-
mediated immune detection and clearance. Legionella have also
served as a valuable model to study molecular basis of
inflammasome activation; however, this aspect of Legionella
biology has been reviewed previously and will not be discussed
here (Mascarenhas and Zamboni, 2017).

Below, we discuss mechanisms of effector-mediated immune
defense against L. pneumophila and the potential for effector-
mediated immunity to be harnessed for development of novel
therapeutics to combat infectious diseases.
L. PNEUMOPHILA EFFECTOR-MEDIATED
TRANSLATION INHIBITION ENHANCES
MACROPHAGE INFLAMMATORY
RESPONSES

Effector-mediated host protein translation inhibition, a virulence
strategy employed by multiple pathogens, enhances inflammatory
signaling in L. pneumophila infected macrophages (Fontana et al.,
2011; Barry et al., 2013). To replicate intracellularly, L. pneumophila
February 2021 | Volume 10 | Article 593823
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is reliant on host-derived amino acids (George et al., 1980; Bruckert
et al., 2013; Price et al., 2014; Schunder et al., 2014). Since free amino
acid levels are tightly regulated in eukaryotic cells, L. pneumophila
utilizes several effectors to facilitate acquisition of amino acids from
host cells. The effectors Lgt1-3, SidI, SidL, LegK4, and RavX
collectively inhibit host protein translation [recently reviewed in
(Belyi, 2020)]. The mechanisms by which RavX, SidL, and SidI
inhibit translation have not been fully elucidated. However, Lgt1-3
glycosylation of the host translation elongation factor eEF1A on a
conserved Ser residue inhibits host polypeptide elongation (Belyi
et al., 2006; Belyi et al., 2008) and LegK4 impairs polypeptide
refolding through phosphorylation of host Hsp90 (Moss et al.,
2019). SidI interacts with eEF1A and eEF1Bg; however, this
interaction is not sufficient for translation inhibition (Shen et al.,
2009; Joseph et al., 2020). The collective activity of this redundant
family of effectors enhances the inflammatory response to L.
pneumophila (Shin and Roy, 2008; Barry et al., 2013).

Effector-mediated protein translation inhibition synergizes
with PAMP-mediated signaling to enhance inflammation in L.
pneumophila–infected macrophages. Fontana and colleagues
originally discovered that activity of the effectors Lgt1-3, SidI,
and SidL induced selective mitogen activated protein kinase
(MAPK)-mediated upregulation of interleukin (IL)-1a in L.
pneumophila–infected macrophages (Fontana et al., 2011;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Fontana et al., 2012). MAP kinase signaling cascades culminate
in activation of the dimeric activating protein (AP-1)
transcription factor—made up of Jun and Fos—which
facilitates pro-inflammatory gene expression (Fujioka et al.,
2004; Hess et al., 2004; Alonso et al., 2018; Gazon et al., 2018).
Interestingly, complementation of a L. pneumophila mutant
lacking lgt1-3, sidL, and sidI with just lgt-3 is sufficient to
restore MAPK activation during infection (Figure 1) (Fontana
et al., 2012). Translation inhibition results in selective
upregulation of IL-1a, which is critical for host defense against
L. pneumophila (Barry et al., 2013; Copenhaver et al., 2015;
Mascarenhas et al., 2015). The selective upregulation of Il1a is a
consequence of mRNA superinduction, a phenomenon whereby
increased de novo transcription of specific genes overcomes
bacterial blockade of protein translation and initiates a pro-
inflammatory response (Barry et al., 2017). This selective
production of IL-1a by infected macrophages results in
amplification of pro-inflammatory cytokine production by
uninfected translation-competent bystander cells (Copenhaver
et al., 2015; Liu et al., 2020) (see below). Translation inhibition
also occurs via an effector-independent mechanism, which may
be a consequence of metabolic reprogramming (Barry et al.,
2017; Price et al., 2020) (see below). However, effector-mediated
restriction of host protein translation, which liberates amino
FIGURE 1 | Schematic representation of L. pneumophila effector-mediated host defense in macrophages. From the LCV, L. pneumophila (purple) translocates
hundreds of individual effector proteins (red squares/rectangles) into the host cytosol through the Dot/Icm T4SS (orange). Multiple effectors inhibit host translation
elongation (RavX, SidI, SidL, LegK4, and Lgt1-3), which results in activation of MAPK signaling and pro-inflammatory cytokine expression [AP-1 (Jun, Fos)]. The
activity of Lgt1-3 also activates the mTORC1 complex, which results in downregulation of pro-inflammatory genes. However, in macrophages, mTOR signaling is
attenuated by detection of pathogen-derived molecules. Activation of NF-kB downstream of PRR (TLRs shown) engagement is enhanced by LegS2, LnaB, and
LegK1, the latter of which phosphorylates IkBa. L. pneumophila replication within macrophages is also impaired by LegA9 and LegC4, the latter of which augments
cytokine-mediated restriction. Finally, LamA, a recently characterized L. pneumophila effector, degrades cellular glycogen, leading to increased aerobic glycolysis and
proinflammatory cytokine production. For clarity, the SidE family of effectors and the role of IL-1 production by infected macrophages are not shown. Question marks
indicate unknowns. See text for additional details.
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acids for use by L. pneumophila (De Leon et al., 2017),
contributes to a highly orchestrated pro-inflammatory response
in accidental hosts and is an example of canonical ETI.
L. PNEUMOPHILA EFFECTOR-MEDIATED
TRANSLATION INHIBITION IMPACTS
MECHANISTIC TARGET OF RAPAMYCIN
(mTOR) SIGNALING

Modulation of host protein translation also impacts activity of
the mechanistic target of rapamycin (mTOR). mTOR is central
to many cellular processes and regulates host amino acid
metabolism, where availability and dearth of amino acids
results in activation or inactivation of mTOR signaling,
respectively [Figure 1; reviewed in (Condon and Sabatini,
2019)]. Several viral pathogens and protozoan parasites, such
as Leishmania, have evolved to directly target this pathway and
its processes for their own benefit (Buchkovich et al., 2008;
Jaramillo et al., 2011; Leroux et al., 2018).

Recent work has revealed the central, albeit complex, role of
mTOR in L. pneumophila pathogenesis and host defense.
Ivanov and Roy initially reported that macrophages detect
cytosolic “pathogen signatures,” which results in suppression
of mTOR and selective production of pro-inflammatory
cytokines and independently of translocated effectors (Ivanov
and Roy, 2013). Concomitantly, L. pneumophila virulence is
attenuated in the lungs of mice with mTOR-deficient
macrophages. However, subsequent studies uncovered a role
for effectors in mTOR regulation during L. pneumophila
infection (Abshire et al., 2016; De Leon et al., 2017). The
mTORC1 complex (a multiprotein complex containing
mTOR) is both suppressed and activated by distinct families
of L. pneumophila effectors (De Leon et al., 2017). Translation
inhibition, through the activity of the Lgt effector family (see
above), and consequent increases in free amino acids, activates
mTORC1 in macrophages. However, mTORC1 is suppressed
through ubiquitination and suppression of Rag GTPases by the
SidE effector family (SidE/SdeABC), which also inhibit host
protein translation (De Leon et al., 2017). Thus, the SidE family
of effectors may prevent mTORC1 sensing amino acids that are
liberated downstream of Lgt1-3 activity. In macrophages,
mTOR activation by the Lgts is downstream of potent
translation inhibition. As discussed above, inhibition of
protein translation in macrophages results in selective
production of a subset of pro-inflammatory mediators, such
as IL-1a. Thus, inhibition of mTOR would contribute to
selective production of cytokines that orchestrate a robust
inflammatory response in the lung through engagement of
bystander cells (see below) (Ivanov and Roy, 2013;
Copenhaver et al., 2015; Barry et al., 2017; Liu et al., 2020).
Together, these studies collectively emphasize the central and
complex role of mTOR in Legionella pathogenesis and the
inflammatory response elicited in accidental hosts.
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AN EFFECTOR-MEDIATED STRATEGY
FOR REPLICATION IN AMOEBAE LEADS
TO PRO-INFLAMMATORY
MACROPHAGE RESTRICTION

L. pneumophila is ubiquitous in freshwater environments
where it parasitizes and replicates within unicellular
eukaryotes, including amoebae (Molmeret et al., 2005;
Albert-Weissenberger et al., 2006). When environmental
conditions are not optimal for growth and survival,
amoeboid trophozoites undergo encystation, a condition
where the amoeba turns into a metabolically inactive cyst
containing cellulose rich cell wall that is resistant to hostile
environmental conditions (Moon and Kong, 2012; Aqeel et al.,
2013). Although L. pneumophila survives in amoebal cysts,
encystation is restrictive to intracellular replication (Kilvington
and Price, 1990; Bouyer et al., 2007). Prior to encystation,
amoebae accumulate glycogen, which is used for biogenesis of
the characteristic cellulose-rich cell wall (Weisman et al., 1970;
Fouque et al., 2012; Moon and Kong, 2012; Schaap and
Schilde, 2018).

To maintain amoebae as replication-permissive trophozoites,
L. pneumophila utilizes the effector LamA, an amylase that
catalyzes glycogenolysis to limit glycogen accumulation in
infection amoebae (Price et al., 2020). LamA alone is not
required for L. pneumophila replication in the natural hose
Acanthamoeba polyphaga, likely due to functional redundancy
with other effectors (Ghosh and O’Connor, 2017; Park et al.,
2020). However, other natural host amoebae were not examined
in this study. Thus, it is tempting to speculate that LamA activity
is individually important in other species, such as A. castellanii,
in which encystation is highly restrictive to L. pneumophila
(Weisman et al., 1970; Bouyer et al., 2007).

LamA-mediated metabolic reprogramming is deleterious to
L. pneumophila in accidental hosts (Price et al., 2020). Excess
cellular glucose results in increased aerobic glycolysis in both
A. polyphaga and human monocyte-derived macrophages
(hMDM) (Price et al . , 2020). Aerobic glycolysis in
macrophages promotes their activation, M1 polarization and
secretion of pro-inflammatory cytokines (Langston et al.,
2017). Thus, LamA activity enhances secretion of pro-
inflammatory cytokines from hMDMs during infection
[Figure 1 (Price et al., 2020)] and impairs L. pneumophila in
hMDM through IFN-g–mediated indolamine-2,3-dioxygenase
(IDO) activity (Murray et al., 1989; Price et al., 2020). This
result is intriguing since translation inhibition during L.
pneumophila infection limits production of most cytokines
(see above). The authors propose that the amount of IFN-g
produced is sufficient for IDO activation; however, it would be
interesting to determine if IFN-g activation is indeed required
for LamA-mediated restriction. In the mouse lung, IL-1a
production is severely decreased following infection with a
lamA mutant compared to wild-type bacteria. However, the
lamA mutant strain presumably still translocates effector
February 2021 | Volume 10 | Article 593823
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translation inhibitors (see above). Thus, macrophage metabolic
reprogramming may contribute to effector-independent
translation inhibition and concomitant inflammation (Barry
et al., 2017). Moreover, LamA-mediated macrophage
activation is a direct consequence of its enzymatic activity,
distinguishing this response from canonical ETI.
EFFECTOR-MEDIATED AUGMENTATION
OF CYTOKINE-MEDIATED RESTRICTION
OF L. PNEUMOPHILA

Pro-inflammatory cytokines activate resting macrophages and
are critical for restriction of L. pneumophila in mammalian hosts
(Archer and Roy, 2006). The effector LegC4 was initially
identified in a high-throughput forward genetic screen for
individual effectors that impact L. pneumophila virulence in
amoeba and mammalian infection models (Shames et al., 2017;
Rolando and Buchrieser, 2018). This screen identified LegC4 as
conferring fitness disadvantage on L. pneumophila relative to the
isogenic parental strain in a mouse model of Legionnaires’
disease but not BMMs ex vivo (Shames et al., 2017; Ngwaga
et al., 2019). Interestingly, LegC4 is individually important for L.
pneumophila replication in the natural host, A. castellanii
(Shames et al., 2017). Further investigation revealed that LegC4
is deleterious to L. pneumophila specifically within cytokine-
activated macrophages (Ngwaga et al., 2019) (Figure 1). In
cultured mouse BMMs, LegC4-mediated restriction is
contingent on autocrine and paracrine TNF receptor 1
(TNFR1)-mediated signaling. However, loss of TNFR1 is
insufficient to rescue LegC4-mediated replication defects in the
mouse lung, likely due to LegC4-mediated exacerbation of IFN-
g-mediated restriction (Ngwaga et al., 2019). LegC4 additionally
enhances secretion of several pro-inflammatory cytokines,
including IL-12, IL-6, and TNF-a, from L. pneumophila–
infected BMMs despite global translation inhibition (Shames
et al., 2017; Ngwaga et al., 2019). Whether LegC4-mediated
increases in cytokine production from L. pneumophila–infected
macrophages is due to enhanced transcription or translation is
unknown. Revealing the influence of LegC4 on production of IL-
1a, TNF-a, and IFN-g in the lung will provide a foundation for
understanding the mechanism of LegC4-mediated restriction.

Interestingly, LegC4 is also augments cytokine-mediated
restriction of L. longbeachae, and the second leading cause of
Legionnaires’ disease globally (Gobin et al., 2009). L. longbeachae
is lethal to mice and is reliant on a Dot/Icm T4SS for intracellular
replication; however, L. longbeachae does not encode a homolog
of legC4 (Cazalet et al., 2010; Wood et al., 2015; Massis et al.,
2016). LegC4 is sufficient to attenuate L. longbeachae replication
within BMMs activated with either TNF-a or IFN-g (Ngwaga
et al., 2019), demonstrating that LegC4-mediated restriction is
not specific to L. pneumophila. LegC4—like LamA—enhances L.
pneumophila virulence in a natural host, but its activity in
macrophages is deleterious. The mechanism by which LegC4
impacts L. pneumophila fitness in natural and accidental hosts,
respectively, and its potential to enhance cytokine-mediated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
restriction of other intracellular pathogens are currently under
investigation in our lab.
EFFECTOR-MEDIATED ACTIVATION OF
INFLAMMATORY GENE EXPRESSION
AND AUTOPHAGY

Many bacterial pathogens actively attenuate inflammatory
signaling by restricting activation of the NF-kB transcription
factor (Brodsky and Medzhitov, 2009). However, NF-kB is
activated in mammalian cells infected with L. pneumophila.
Within L. pneumophila–infected cells, NF-kB activation occurs
in two waves; effector-independent TLR-dependent activation
when bacteria first make contact with host cells and effector-
mediated activation after several hours of infection (Losick and
Isberg, 2006; Asrat et al., 2014). Several L. pneumophila effectors
contribute to NF-kB activation in mammalian cells (Figure 1).
LegK1 is a eukaryotic-like serine/threonine kinase that
phosphorylates the inhibitor of kBa (IkBa), which results in
nuclear localization of NF-kB and consequent upregulation of
pro-inflammatory and pro-survival gene (Ge et al., 2009;
Rahman and McFadden, 2011). However, LegK1-mediated NF-
kB activation occurs only upon ectopic expression of legK1 in
epithelial cells (Ge et al., 2009). LnaB enhances NF-kB-mediated
gene expression by an unknown mechanism following ectopic
expression and during L. pneumophila infection of epithelial cells
(Losick et al., 2010). LegK1 does not contribute to NF-kB activity
in L. pneumophila–infected epithelial cells (Losick et al., 2010),
which raises the possibility that this phenotype is a consequence
of dose-dependent effect, or mislocalization due to ectopic
expression. Neither lnaB nor legK1 are required for L.
pneumophila replication in mouse macrophages individually or
in combination (Losick et al., 2010). Since amoebae lack NF-kB
signaling components, direct effector-mediated activation of this
pathway is perplexing. It is possible that IkBa phosphorylation
by LegK1 is due promiscuous enzymatic activity and/or presence
highly conserved target motifs. Identification of LegK1 substrates
in amoebae would shed light on this possibility. Effector-
mediated NF-kB activation enhances L. pneumophila survival
in macrophages through prevention of premature apoptosis but
also results in expression of pro-inflammatory cytokines,
including IL-1a (Losick and Isberg, 2006). NF-kB plays a
multifaceted role in L. pneumophila infection of accidental
hosts, but the evolutionary basis for its activation has yet to
be elucidated.

Autophagy is central to cell-autonomous restriction of
intracellular bacterial pathogens in phagotrophs. L.
pneumophila has evolved several effectors capable of regulating
host autophagy and two, LegS2 and LegA9, are deleterious to L.
pneumophila in accidental hosts (Khweek et al., 2016; Rolando
et al., 2016; Sherwood and Roy, 2016). LegS2 is a mitochondria-
targeted sphingosine-1-phosphate lyase that restricts L.
pneumophila replication in macrophages, suppresses
autophagy, and enhances NF-kB activation (Degtyar et al.,
2009; Khweek et al., 2016; Rolando et al., 2016). Suppression of
February 2021 | Volume 10 | Article 593823
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starvation-induced autophagy by LegS2 is facilitated by
modulation of host sphingosine metabolism (Rolando et al.,
2016), but whether amplification of NF-kB is linked to LegS2-
mediated sphingosine metabolism and suppression of autophagy
is unknown. LegA9 enhances L. pneumophila macrophage
clearance by upregulating autophagy in BMMs (Khweek et al.,
2013); however, further investigation is required to define the
mechanism by which LegA9 augments L. pneumophila
macrophage clearance.
CONSEQUENCES OF EFFECTOR-
MEDIATED IMMUNITY IN A MOUSE
MODEL OF LEGIONNAIRES’ DISEASE

L. pneumophila replicates robustly in macrophages derived from
permissive mice but is efficiently cleared from the lung just days
after infection. Restriction of L. pneumophila in the mouse lung
is due to a rapid and robust pro-inflammatory response
orchestrated through engagement of multiple cell types
(Blanchard et al., 1987; Blanchard et al., 1989; Brieland et al.,
1998; Archer and Roy, 2006). L. pneumophila–infected alveolar
macrophages are poor producers of TNF-a, IL-6, and IL-12 in
vivo due to effector-mediated translation inhibition (Copenhaver
et al., 2014; Copenhaver et al., 2015). However, selective
upregulation of IL-1a by infected translation-impaired cells
ultimately results in pro-inflammatory cytokine production by
uninfected bystander cells, namely Ly6Chi monocytes and
neutrophils (Copenhaver et al., 2015; Barry et al., 2017; Casson
et al., 2017). A central role for IL-1a in immune defense against
L. pneumophila has been well established and is contingent on
MyD88-mediated signaling (Barry et al., 2013; Asrat et al., 2014;
Copenhaver et al., 2015; Mascarenhas et al., 2015). However, the
mechanism by which IL-1a facilitates bacterial clearance in vivo
was only recently uncovered. IL-1a produced by infected
alveolar macrophages engages IL-1R on alveolar epithelial cells,
which in turn secrete granulocyte colony stimulating factor
(GM-CSF) (Liu et al., 2020). Consequent GM-CSF signaling in
inflammatory monocytes upregulates aerobic glycolysis leading
to pro-inflammatory cytokine production (Liu et al., 2020). This
work exemplifies how effector-driven virulence mechanisms,
such as translation inhibition, trigger a highly orchestrated
inflammatory response to L. pneumophila in the lung.
HARNESSING EFFECTOR-MEDIATED
IMMUNITY TO COMBAT
BACTERIAL INFECTION

Antimicrobial resistance comprises a major global public health
challenge. Thus, to control the emergence and spread of
antimicrobial-resistant pathogens, innovative therapeutic
strategies are desperately needed. Anti-virulence therapy a
promising alternative approach to combat resistant pathogens
via targeting virulence pathways of the pathogen (Rasko and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Sperandio, 2010; Martıńez et al., 2019). As pathogen-centric
therapeutics are susceptible to evolution of resistance, host-
centric therapeutics are an attractive alternative to control
bacterial infection. Information gleaned from effector-
mediated immune response and the effectors themselves have
potential to combat infection by regulated amplification of
host immunity.

Bacterial products, including effectors, modulate host
immunity . Bacter ia l PAMPs are promis ing innate
immunologicals, but whether immune-activating effectors can
be harnessed directly or indirectly to combat infectious diseases
has not been investigated. CpG oligodeoxynucleotides (ODN), a
TLR9 agonist, have been used as vaccine adjuvants and can
amplify immune responses to multiple bacterial, parasitic and
viral pathogens, including Leishmania major, Mycobacterium
tuberculosis, Francisella tularensis and, more recently, SARS-
CoV-2, the etiological agent of COVID-19 (Zimmermann et al.,
1998; Elkins et al., 1999; Juffermans et al., 2002; Scheiermann and
Klinman, 2014; Oberemok et al., 2020). Moreover, multiple
effectors from well-adapted human pathogens that dampen
host immunity have attracted attention as potential drug
candidates for the treatment of inflammatory diseases (Rüter
and Hardwidge, 2014).

Use of effectors that amplify immunity directly into host cells
as possible host-specific therapeutics has not been evaluated.
Effector-mediated subversion of host homeostasis triggers ETI
but perturbation of host cellular processes poses a major
challenge. Global inhibition of translation as a means to
enhance anti-microbial immunity would be impractical.
However, based on insight from the response to ETI, treatment
with IL-1a could initiate an early and robust immune response
in the lung against diverse pathogens (see above). The effector
LegC4 is an intriguing candidate for host-specific therapeutics
based on its ability to amplify cytokine-mediated pathogen
restriction. However, further investigation is required to
determine the mechanisms of LegC4 function within immune
cells and if immune-activating effectors can be harnessed as host-
specific therapeutics.

To exert their functions, effectors require access to the cytosol
of host cells. Current use of effectors as therapeutics is
accomplished by autonomous translocation into host cells via
fusion to cell-penetrating peptides (Rüter and Schmidt, 2017).
However, the N-terminal domain of anthrax lethal factor (LFn),
when co-delivered with the anthrax protective antigen, facilitates
translocation of cargo protein directly into mammalian cells
(Rabideau and Pentelute, 2016). LFn fusion has been successfully
utilized to deliver bacterial proteins into host cells and mice
(Kofoed and Vance, 2011; Shi et al., 2015). In addition,
nanoparticles can be used for specific delivery of nucleic acids
for orthologous expression of effectors within target cells or
direct delivery of protein cargo (Avila et al., 2016; Rincon-
Restrepo et al., 2017).

Thus, potential exists for bacterial effectors to function as
therapeutic agents. Effector based therapeutics offer several
advantages over conventional biologics such as autonomous
translocation, enhanced specificity, efficacy at low concentrations,
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targeted and topical applications, comparatively fewer side effects,
cost-effective and stability at variable pH and temperatures.
Moreover, further understanding of novel effectors, mechanisms
of effector-mediated immunity, and the development of selective
delivery mechanisms offers potential for improved combinatorial
therapeutics in the future.
CONCLUSIONS

In addition to sensing pathogens through PRRs, the mammalian
immune system has developed additional mechanisms to detect
the activity of virulence factors secreted by pathogens. Effector-
mediated immunity facilitates detection and/or enhanced
clearance of pathogens. This additional mechanism to detect
pathogens is important because pathogenic microorganisms
have evolved ways to avoid, modulate and hide from the first
line of immune defense offered by triggering of PRRs. As an
accidental human pathogen, L. pneumophila continues to serve
as a useful model used to study innate immune mechanisms
without the complications of evasion strategies used by
mammalian-adapted pathogens. L. pneumophila has provided
valuable insight into mechanisms of innate immune defense
against intracellular bacterial pathogens, including how effector-
mediated virulence strategies trigger inflammation. Further
investigation of L. pneumophila effector function will
undoubtedly reveal yet additional mechanisms by which cells
of the innate immune system restrict intracellular pathogens.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Exploiting effector-mediated immunity to elicit pathogen-centric
immunotherapeutics may provide additional treatment or
prevention strategies against antimicrobial resistant pathogens.
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