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ABSTRACT: By considering autocorrelation among process data,
canonical variate analysis (CVA) can noticeably enhance fault
detection performance. To monitor nonlinear dynamic processes, a
kernel CVA (KCVA) model was developed by performing CVA in
the kernel space generated by kernel principal component analysis
(KPCA). The Gaussian kernel is widely adopted in KPCA for
nonlinear process monitoring. In Gaussian kernel-based process
monitoring, a single learner is represented by a certain selected
kernel bandwidth. However, the selection of kernel bandwidth
plays a pivotal role in the performance of process monitoring.
Usually, the kernel bandwidth is determined manually. In this
paper, a novel ensemble kernel canonical variate analysis
(EKCVA) method is developed by integrating ensemble learning and kernel canonical variate analysis. Compared to a single
learner, the ensemble learning method usually achieves greatly superior generalization performance through the combination of
multiple base learners. Inspired by the ensemble learning method, KCVA models are established by using different kernel
bandwidths. Further, two widely used T2 and Q monitoring statistics are constructed for each model. To improve process monitoring
performance, these statistics are combined through Bayesian inference. A numerical example and two industrial benchmarks, the
continuous stirred-tank reactor process and the Tennessee Eastman process, are carried out to demonstrate the superiority of the
proposed method.

1. INTRODUCTION

Recent developments in the field of process monitoring have led
to a renewed interest in ensuring operation safety in the process
industry.1−4 Model-based and data-driven methods are the two
sorts of process monitoring strategies in general. Accurate
process models, which are typically difficult to generate for
complicated industrial processes, are required for model-based
techniques. Data-driven methods, unlike model-based methods,
rely solely on process data. Amassive amount of process data can
be captured, stored, and analyzed because of the rapid
advancement of information, communication, and computing
technology. As a result, data-driven process monitoring has
triggered an amount of innovative inquiry.5−8

The multivariate analysis (MVA) approach has been widely
used and explored among data-driven process monitoring
methods for its simplicity and adaptability.9,10 Representative
MVA methods include principal component analysis (PCA),
partial least-squares (PLS), and canonical variate analysis
(CVA). In PCA, features are extracted from process data by
maximizing the variance in the projection space. To address the
shortcomings of the standard PCA, Rohoma et al.11 suggested
two methods for evaluating sparse principal components. These
two approaches surpass PCA in threshold determination
because they use resampling and measurement error covariance

matrices to obtain the distribution of the loading components.
Furthermore, Yu et al. suggested a nonlinear, robust, and spare
PCA by using Spearman’s and Kendall’s correlation matrices.12

PLS is usually employed in quality-related process monitoring.
PLS concentrates on maximizing the covariance between input
and output variables. However, many theoretical researchers
have found that these two methods do not satisfy these
conditions of temporal correlation and autocorrelation of most
industrial data. To settle this issue, PCA and PLS have been
extended to dynamic versions by using time-lagged process
variables.13,14 In addition, the construction of a graphical
framework based on the PCA algorithm using a Bayesian
network can also realize the dynamic connection between
data.15

Different from PCA and PLS, as a variant of canonical
correlation analysis (CCA), canonical variate analysis (CVA)
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attempts to extract the state-space from process variables.
Hence, CVA is more suitable for monitoring dynamic processes.
More recently, CVA-based process monitoring methods have
attracted much attention in process monitoring.16,17 Juricek et
al. used a local approach to detect changes in the canonical
variable coefficients which are extracted from the built CVA
model.18 Odiowei and Cao19 constructed a minimum state-
space model using CVA to derive the state variable and residual
canonical variates, and employed kernel density estimations
(KDE) to establish the upper control limits to deal with the
nonlinearity and non-Gaussian issues for process monitoring.
Jiang and Braatz20 improved the interpretability of fault
detection by using correlation features that provide a more
efficient representation of process features and reduce
redundancy to space compared to raw data. Lu et al.21 employed
a sparse CVA (SCVA) to generate sparse canonical variates to
explore the major structures among process variables for process
monitoring. A new metric to quantify the dissimilarity of past
and future data was proposed by Pilario and Cao.22 The new
index is more reliable than the CVAT2 andQ index for detecting
incipient faults. Li et al.23 pointed out that taking into account
the residuals of the canonical variant produces a more reliable
and interpretable contribution plot than contribution maps
based on T2 and Q statistics from the CVA for detecting faults
that evolve slowly. Zheng and Zhao24 combined CVA and slow
feature analysis (SFA) to achieve the separation of process static
and dynamic information, which better explains the process
dynamics of the system.
However, the above CVA-based process monitoring methods

would fail to detect faults efficiently for nonlinear processes
owing to the assumption that the process variables are linear
related. To address this issue, kernel methods have been widely
adopted to extend linear MVA methods to nonlinear MVA
methods.25 Ciabatton et al. combined kernel canonical variate
analysis (KCVA) and kernel density estimation (KDE) to
develop a nonlinear monitoring method for detecting faults and
occupant bad behaviors for a residential microgrid application.26

Xiao et al. integrated locality preserving projections into KCVA
to retain local manifold structure in kernel space for fault
detection.27 In the research of Shang et al.,28 the exponential
weighted moving average approach is used to update the
covariance in the feature space after changing the operating
conditions. The first-order perturbation theory is used to
decrease the calculation of Hankel matrix singular value
decomposition in high-dimensional eigenspace. To reduce the
storage and computational expense, Yu et al. presented
accelerated KCVA for fault isolation by applying full rank
factorization incorporated in kernel matrix approximation.29 A
limitation of applying the KCVA to nonlinear dynamic systems
is that a singular kernel matrix may be involved, particularly for
industrial processes, since the process variables are often
colinear. To solve this issue, Samuel and Cao30 performed
CVA in the kernel space created by KPCA. The singularity
problem can be avoided owing to the compression of KPCA.
Only a single Gaussian kernel function is used in kernel-based

process monitoring approaches such as KPCA and KCVA. The
width parameters, on the other hand, are calculated empirically.
Thus, the detection performance may be significantly degraded
if an unfit Gaussian kernel function is selected while fault
information is unavailable.25 As a class of combinatorial
optimization learning methods, the ensemble learning (EL)
method can derive better performance by combing multiple
simple models.31 To enhance the process monitoring perform-

ance, Li and Yang, through the analysis of a nonlinear numerical
example, pointed out that a single KPCAmodel can hardly meet
the needs of the overall monitoring. Therefore, a new approach
is proposed where multiple KPCA models are combined with a
Bayesian inference strategy to obtain a new metric.32 Cui et al.33

further considered both global and local structure information
on the original data and preserved the local information in the
based KPCA models before performing ensemble learning.
Several nonlinear dynamic process monitoring approaches,

such as DKPCA and KCVA, have recently been presented. The
correlation relationship between process variables is investigated
by KCVA. DKPCA, on the other hand, solely considers the
variance information on process variables. The relationship
between process variables is not taken into account. Yet, the
kernel parameter is hard to determine. Moreover, only a single
model is derived for one kernel parameter. Inspired by EDKPCA
which combined ensemble learning and DKPCA, in this work,
the KCVA is extended to ensemble KCVA by integrating the
ensemble learning strategy into KCVA. Due to the merits of
ensemble learning and KCVA, the dynamics and nonlinearity of
complex industrial processes can be better presented for process
monitoring. First, the KPCA models with different kernel
parameters are established to extract the kernel principal
components. Then, CVA is performed in each kernel principal
component space, and T2 and Q statistics are constructed. The
corresponding thresholds are determined by KDE. For non-
linear dynamic process monitoring, a Bayesian combination
strategy is employed to integrate these monitoring statistics to
take advantage of these CVAmodels. Twowidely employed case
studies are presented to demonstrate the performance of the
proposed EKCVA compared to other related methods.
The main contribution and novelty of this article lie in the

following aspects:

• Ensemble learning approach is introduced to KCVA to
improve the process monitoring performance. Through
several base KPCA learners, the nonlinear characteristics
of nonlinear dynamic processes are better described.

• Meanwhile, by taking the autocorrelation and cross-
correlation into consideration, the proposed EKCVA
method can present superior fault detection performance
for nonlinear dynamic processes.

• A Bayesian inference strategy is adopted to define a single
fault detection index to facilitate the fault detection logic.

The remainder of this work is organized as follows. Section 2
briefly recalls the KPCA and CVA methods. Section 3 describes
in detail the proposed methodology and how the ensemble idea
is applied. Section 4 tests the effectiveness of the proposed
approach using a numerical example, the CSTR process, and the
widely accepted industry benchmark TEP and analyzes the
results. In the final section, we summarize the approach of this
paper and provide an outlook on future work in the context of
the experimental results.

2. BRIEF REVIEW OF KPCA AND CVA
2.1. KPCA. The general idea of KPCA is to perform PCA in a

reproducing kernel Hilbert space. First, all original data samples
are mapped to a high-dimensional space (called feature space)
using a nonlinear mapping. Then, linear PCA is performed as a
dimension reduction technique to extract features in this high-
dimensional space.34,35

Given an input data matrix X x x x, , , n
n m

1 2= [ ··· ] ∈ ×

collected at n time points for m variables. A nonlinear function
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Φ(•) is employed to map the original data X into a high-
dimensional feature space ,

 m ( )
⎯ →⎯⎯⎯
Φ •

(1)

Assuming that X has been centralized, the covariance matrix of
the high-dimensional feature space is constructed as

n
C x x

1
( ) ( )

i

n

i i
1

T∑= [Φ ][Φ ]
= (2)

Then, in the feature space , PCA is conducted by solving the
eigenvalue problem,

Cω ωλ = (3)

Here, λ and ω are the eigenvalue and eigenvector of the matrix
C, respectively. The eigenvectorω can be represented through a
linear combination of mapped data points with a series of
coefficients βj(j = 1,···,n),

x( )
j

n

j j
1

∑ω β= Φ
= (4)

Bymultiplying both sides of eq 3 byΦ(xk)
T (k = 1,···,n), it yields,

n

x x

x x x x

( ), ( )

1
( ), ( ) ( ), ( )

j

n

j k j

i

n

j i j k i

1

1

∑

∑

λ β

α

< Φ Φ >

= < Φ Φ > < Φ Φ >

=

= (5)

where <•, •> represents the inner product operator. Generally,
although the mapping Φ(•) exists, it may not always be
computationally accessible. To avoid such explicit mappings, the
use of kernel functions has become popular. Thus, an n × n
kernel matrix Kij = <Φ(xi), Φ(xj)> is defined. Further, the
centering operation on kernel matrices is performed,


n

K K 1 K K1 1 K1 1,

1
1 ... 1

1 1

c n n n n n

n n
∂ ∏ ∂
μ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

= − − +

= ∈ ×

(6)

The eigenvalue decomposition problem eq 5 is rewritten as,

n Kcβ βλ = (7)

where β = [β1, ..., β n]
T is the eigenvector of the kernel matrix Kc

with corresponding eigenvalues λ1, ..., λn.
2.2. CVA. CVA is a technique for reducing dimensions that

has been extensively researched in the field of process
monitoring.36,37 For the purpose of taking the autocorrelation
into consideration, the past and future vectors xp,k and xf,k are
constructed. With a time-lag number l, xp,k and xf,k are
constructed as

 x

x
x

x

x

x
x

x

,p k

k

k

k l

ml
f k

k

k

k l

ml
,

1

2
,

1

1

∂ ∂

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

= ∈ = ∈

−

−

−

+

+ − (8)

Then, the past and future Hankel matrices Xp and Xf are
obtained,





X x x x

X x x x

, , ,

, , ,

p p l p l p l N
ml N

f f l f l f l N
ml N

, 1 , 2 ,

, 1 , 2 ,

= [ ··· ] ∈

= [ ··· ] ∈

+ + +
×

+ + +
×

(9)

where N = n − 2l + 1. The overall estimates of the sample-based
covariance and cross-covariance matrices of the past and future
vectors are calculated,

N

X X X X

X X X X

1
1

pp pf

fp ff

p p p f

f p f f

T T

T T

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

Σ Σ

Σ Σ
=

−
(10)

To gain the best correlated linear combination of past and future
observations, a singular value decomposition (SVD) is
computed on the following Hankel matrix H.38

H U Vff fp pp
1/2 1/2 T= Σ Σ Σ = Λ− −

(11)

Here, U and V are the left and right singular matrices of H,
respectively. Λ = diag[σ1, σ2, ..., σq] is a diagonal matrix
containing all singular values, and q is the rank of H.
For dimensionality reduction, Uw

wml∈ × and Vw
wml∈ ×

contain the first w columns of U and V, respectively. Thus, the
weight matrices J and L are derived,





J V

L I V V( )

w pp
w ml

w w pp
ml ml

T 1/2

T 1/2

= Σ ∈

= − Σ ∈

− ×

− ×
(12)

Finally, the state variables and the residuals are derived from the
past vector matrix, respectively.





Z JX

E LX

p
w

p
ml

N

N

= ∈

= ∈

×

×
(13)

3. PROPOSED EKCVA-BASED PROCESS MONITORING
3.1. EKCVA Model. To overcome the limitation that a

singular kernel matrix may be involved, KPCA is performed
before exploring the correlation relation in process variables. In
KPCA, the Gaussian kernel function is widely employed for
process monitoring which is established,

k x y x y h( , ) exp( / )2= − − (14)

where h is the kernel width. A specific h will only generate a
single model. Although different methods for selecting an
optimal h for process monitoring have been devised, the
problem remains unsolved.25 For the improvement of process
monitoring performance, Li et al.32 applied ensemble learning to
the KPCAmethod. Inspired by this idea, we also adopt ensemble
learning in the proposed EKCVA.
To do so, multiple Gaussian kernel functions are defined,

k x y x y h( , ) exp( / )i
i

( ) 2= − − (15)

where hi = 2i−1cmσ2, and i = 1, ..., nl represents the ith submodel,
and nl stands for the ensemble size.
T h e t r a i n i n g d a t a s e t i s d e n o t e d b y

X x x x, ,..., n
n m

1 2= [ ] ∈ × . For each submodel, the kernel
matrix K(i) is computed by Kij

(i) = <Φ(xi),Φ(xj) >. Kc
(i) denotes

the centered kernel matrix of the ith submodel which is
computed as eq 6. Now, performing KPCA in high-dimensional
space is equivalent to resolving the eigenproblem of eq 16
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n Ki i
c
i i( ) ( ) ( ) ( )β βλ = (16)

with λ(i) = diag(λ1
(i), ..., λn

(i)) is the diagonal matrix of the
corresponding eigenvalues and β (i) = [β1

(i), ..., βn
(i)] is the matrix

containing the eigenvectors of the kernel matrix Kc
(i). Based on

the solution of eigenvector problem eq 16, the original data is
projected into kernel space. To avoid the singularity problem
arising from the execution of the CVA algorithm in a high-
dimensional space, the reduced Kernel matrix Ỹ(i) is computed
as follows:

Y S Ki i
c
i r n( ) ( )T ( )̃ = ∈ ×

(17)

where r is the number of the principal component and S(i) = [β1
(i),

..., βr
(i)].

Ỹ(i) can be considered as postprocessing data to build the
CVA model in kernel space. Following this idea, the past and
future data vectors ỹp,k

(i) and yf̃,k
(i) in kernel space are constructed by

rearranging each row vector of Ỹ(i),

 y
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̃ =

̃

̃

̃

∈ ̃ =

̃

̃

̃

∈

−

−

−

+

+ − (18)

Here, yk
i r( )̃ ∈ is the row vector of Ỹ(i). Similarly, two Hankel

matrices Ỹp
(i) and Ỹf

(i) are formed similar to eq 9.

Based on the constructed Hankel matrices Ỹp
(i) and Ỹf

(i), the
transformation matrices J̃(i) and L̃(i) are estimated by performing
SVD on the scaled Hankel matrix,

H U Vi
ff
i

fp
i

pp
i i i i( ) ( ) 1/2 ( ) ( ) 1/2 ( ) ( ) ( )T̃ = Σ̃ Σ̃ Σ̃ = ̃ Λ̃ ̃

− −
(19)

where Σ̃f f
(i), Σ̃fp

(i) and Σ̃pp
(i) can be calculated in a similar way to eq

10. The transformation matrices J̃(i) and L̃(i) are calculated by
retaining the first w singular vectors with dominant singular
values,





J V

L I V V( )

i
w
i

pp
i w rl

i
w
i

w
i

pp
i rl rl

( ) ( )T ( ) 1/2

( ) ( ) ( )T ( ) 1/2

̃ = ̃ Σ̃ ∈

̃ = − ̃ ̃ Σ̃ ∈

− ×

− ×
(20)

Thus, the state variables and residual variables Z̃(i) and Ẽ(i) of the
ith submodel are estimated,





Z J Y

E L Y

i i
p
i w

i i
p
i rl

N

N

( ) ( ) ( )

( ) ( ) ( )

̃ = ̃ ̃ ∈

̃ = ̃ ̃ ∈

×

×
(21)

3.2. EKCVA-Based Process Monitoring.Offline modeling
and online monitoring are two stages of the data-driven process
monitoring strategy. The EKCVA model is developed utilizing
the acquired samples under normal operating conditions in the
offline modeling stage. With a chosen confidence level, the
relevant upper control limits are determined. For online
monitoring, the statistics of the newly collected samples are
constructed and compared to the upper control limits. While the
online monitoring statistic is over the corresponding upper
control limit, an alarm is triggered to indicate the occurrence of a
fault.
Two commonly used statistical metrics for fault detection are

the T2 statistic and Q statistic.19 For the ith submodel as
expressed in eq 20, the monitoring T2 and Q statistics are
established from Z̃(i) and Ẽ(i),

zT

Q

k
i

j

w

j k
i

k
i

j

rl

j k
i

2( )

1
,

( )2

( )

1
,

( )2

∑

∑ ε

=

=

=

= (22)

where zj,k
(i) and εj,k

(i) are the elements of the jth row and kth column
of the Z̃(i) and Ẽ(i) matrices.
Usually, the Gaussian distribution assumption would be

violated in practice. Thus, it is inappropriate to calculate the
upper control limits from F-distribution and χ square
distribution for the establishedT2 andQ statistics. To determine
the upper control limits, the widely used kernel density
estimation (KDE) is employed in this study. In KDE, a
smoothed peak function (kernel) is used to estimate the
probability density functions (PDF) from the observed data
points curve.22,39,40 Thus, the Gaussian distribution assumption
of process data is not necessary. Taking theT2 as an example, the
PDF of the calculatedN T2(k), k = 1, ...,N statistics is estimated
as

p
Nh

k
d

T
T T

( )
1 ( )

j

N
2

1

2 2i
k
jjjjj

y
{
zzzzz∑= −

= (23)

Figure 1. EKCVA model for nonlinear dynamic process monitoring.
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where d is the kernel bandwidth, and ( )· is the kernel function.
A rough estimate of the optimal bandwidth is based on an
approximation of the minimized mean squared error of
integration.19 Usually, the kernel function ( )· is defined,

g
g

( )
1
2

exp
2

2i

k
jjjjj

y

{
zzzzzπ

= −
(24)

Then, for a given confidence level α, the upper control limits of
T2(i) and Q(i) can be computed for the ith submodel by solving
the following equations,

P p

P p

T T T T

Q Q Q Q

( ( ) d

( ( ) d

i
it

i i i

i
it

i i i

T

Q

2( )
lim
2( ) 2( ) 2( )

( )
lim
( ) ( ) ( )

i

i

limit
2( )

limit
( )

∫

∫

α

α

< = =

< = =

−∞

−∞ (25)

While a new sample x t
m∈ is collected, the centralized

Gaussian matrix is calculated through a nonlinear mapping: xt→
ϕ(xt),

k x X

k k 1 K k 1 1 K1

( ) ( )t t

c t t t n t n

Tϕ= Φ

̅ = − − + (26)

where n1 1/ 1, ..., 1t
n1= [ ] ∈ × . For the ith submodel, the

projection of the test sample after performing KPCA is

y S kt
i i

c
i( ) ( ) ( )= ̅ (27)

Then, two statisticsTt
2(i) (i = 1, ..., nl) andQt

(i) (i = 1, ..., nl) can be
constructed for the ith KCVA submodel.
To take the monitoring results of all submodels into

consideration and enhance the interpretation of the final
monitoring results, the Bayesian inference strategy is used to
convert the monitoring results into fault probabilities of each
submodel. For this purpose, the fault probabilities of the two
monitoring statistics are calculated,
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PTt
2

(i)(x) and PQt

(i)(x) are computed,
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where denotes the normal state and denotes the fault state.

The prior probability terms P ( )i
T
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t
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2 , and
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are equal to α. The likelihood terms P x( )i
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( ) ( )

t
| = − (33)

P x( )i
T
( )

t
2 | and P x( )i

Q
( )

t
| in eq 28 are easily obtained based on the

above equations.
The weighted combination approach is used to fuse the

calculated fault probabilities. First, as demonstrated in eq 34, the
weights of the monitoring results for each submodel are
determined. It can be found that the submodel with higher fault
probability will make a bigger impact on the final monitoring
result.
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where CTt
2

(1) + CTt
2

(2) + ··· + CTt
2

n
l = 1 and CQt

(1) + CQt

(2) + ··· + CQt

nl = 1.
Second, two new unified monitoring indicators are defined to
fuse the monitoring results of the submodels:
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With the unified monitoring indicators, the fault detection logic
is as follows,

ET 1 and EQ 1 fault free

otherwise faulty

2l
m
ooo
n
ooo

α α< − < − ⇒ −

⇒ (36)

The details of each step of the process monitoring procedure are
summarized as follows:

• Offline training
• Collect and normalize the training samplesX under

normal condition.
• Select nl appropriate kernel width parameters hi =

2i−1cmσ2, i = 1, ..., nl, and perform KPCA algorithm
to obtain the reduced kernel matrix Ỹ(i), i = 1, ..., nl.

• Construct past and future vectors from the reduced
kernel component space using eq 18 for each
submodel, and compute the cross-covariance and
covariance matrices.

• For the i = 1, ..., nl submodels, perform SVD on H̃(i)

to derive the projection matrices J̃(i) and L̃(i).
• For the i = 1, ..., nl submodels, determine state

variables Z̃(i) and residuals Ẽ(i), and compute the
monitoring indices and their upper control limits
using eq 22 and eq 25.

• Online monitoring
• Collect and normalize the new sample xt.
• Use eq 26 to construct the kernel matrix k̅t

(i), i = 1,
..., nl with normalized xt for each submodel.

• Calculate the score matrix yt
(i) using eq 27, and

construct the past data matrix at the point k.
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• For the ith submodel, calculate state and residual of
xt by multiplying the transformation matrices J̃(i)

and L̃(i) to obtain the monitoring statistics (Tt
2(i)

and Qt
(i)).

• Compute the fault probabilities for i = 1, ..., nl
submodels by eq 28−eq 33.

• Obtain themonitoring indices ET2 and EQ using eq
34 and eq 35.

• Determine the process status based on the fault
detection logic eq 36.

The scheme of the proposed EKCVA-based process
monitoring method is depicted in Figure 1.
3.3. Parameters Selection. The parameters selection is

critical in the proposed EKCVA-based process monitoring

algorithm. The number of time lag l, the number of kernel
principal elements (KPCs) r, the number of canonical variables
(CVs) w, the kernel width parameter h in KPCA, and the
ensemble size nl should be appropriately selected. The
determination of these parameters is discussed as follows:

• number of time lag l: l is determined from the
autocorrelation function of the measured values. Since
the autocorrelation of each variable is different, we used
the autocorrelation of the sum of all variables in this work.
This allows for a better description of the dynamic
characteristics of the process.19

• number of KPCs r: To determine howmany KPCs should
be retained, the cumulative percent variance (CPV) is

Figure 2. Monitoring diagrams of the dynamic fault (a) KPCA, (b) EKPCA, (c) DKPCA, (b) EDKPCA, (e) KCVA, and (f) EKCVA.
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often calculated.41,42 The number of KPCs is selected
while the CPV is over a predefined value.

• number of CVs w: Similar to that in ref 43, the number of
CVs is determined by finding the point where the “knee”
appears in the singular value curve.

• kernel width parameter h: According to literature studies,
the kernel width parameter is usually determined
empirically such as h = cmσ2, where c is a constant. m
and σ2 are the dimension and variance of the process data,

Figure 3. Monitoring diagrams of the nonlinear fault (a) KPCA, (b) EKPCA, (c) DKPCA, (b) EDKPCA, (e) KCVA, and (f) EKCVA.

Table 1. Numerical Example: Monitoring Performance by Five Methods for Each Fault

KPCA EKPCA DKPCA EDKPCA KCVA EKCVA

fault T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

1 9.75a 6.25 10.75 11.25 25.75 41.5 56.25 71.50 70.75 59.75 75.72 75.00
1.00b 1.00 1.00 1.50 1.53 0.51 1.02 0.51 0.51 0.51 0.51 1.53

2 93.75 69.25 92.25 93.25 54.25 99.50 55.00 99.75 96.25 72.75 99.75 98.50
1.50 1.00 1.50 1.00 0.51 1.53 1.02 0.51 0.51 0.51 0.51 1.53

aFirst row: FDRs. bSecond row: FARs.
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respectively. If the data are normalized to σ 2 = 1, then h =
cm.32,44

• ensemble size nl: Obviously, the selection of nl is crucial
for ensemble learning based process monitoring. If nl is set
to a small value, the process characteristics can not be fully
explored. The performance of process monitoring will be
degraded. On the other hand, a larger value of nl implies
higher computational complexity, which is not recom-
mended, particularly for kernel-based methods. By
considering the trade-off between fault detection
performance and computational complexity, the number
of ensemble size is determined by cross-validation in a
similar way as in ref 33.

4. CASE STUDIES
In this section, the proposed EKCVA-based process monitoring
method is evaluated through a numerical example, a closed-loop

CSTR process, and an industry benchmark of the Tennessee
Eastman process. For comparison study, KPCA, EKPCA,32

dynamic KPCA (DKPCA),45 ensemble DKPCA, and KCVA are
employed.
4.1. Numerical Example. The nonlinear state space model

of the numerical example is described as follows,46

f
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The state space vector zk
3∈ used to describe the dynamic

relationship between multivariate time series is which is
generated from a vector autoregressive VAR(1) process. f(u)
= 0. 05[u1, u2, 5u1−2u2, u12−3u2, −u13+3u22]T is a nonlinear
mapping function. The input u = [u1, u2] is a vector uniformly
distributed over the interval [0, 2].  N(0, 1 )k

3 2ξ ∈ ∼ and

 N(0, 0.1 )k
5 2ε ∈ ∼ denote the noises.

Two types of faults are considered including the change of
dynamics and nonlinearity. All faults are injected from the 201st
sampling point. The faults are described as follows:

• Fault 1: zk ≔ zk + [0, 2, 0]T for k > 200

• Fault 2: uk ≔ uk + [3, 0]T for k > 200

500 samples were generated under normal conditions for the
training model. Two faulty test data sets were generated, which
all consist of 600 samples.
For fair comparison, the number of time lag l is set as 4 for all

methods; h = 200, r = 5 are selected for the KPCA, DKPCA, and
KCVA models, and w = 6 for the KCVA method. For EKPCA,
EDKPCA, and EKCVA, the ensemble size is selected as nl = 8,
and the kernel parameters hi = 5·5·2(i−1) (i = 1, ..., nl) . Other
parameters of submodels are selected as KPCA, DKPCA, and
KCVA. The confidence level α is 0.99
The results obtained from process monitoring of Fault 1 are

set out in Figure 2. As can be seen from Figure 2a,b, the KPCA
and EKPCA fail to detect the abnormality from both T2 and Q
statistics. The reason is that the variation of the state space
vector is covered due to the process dynamics as shown in eq 37.
On the contrary, DKPCA, EDKPCA, and KCVA methods can
model the dynamic characteristics of the process by augmenting
the process data. Thus, the monitoring performance is
significantly improved as displayed in Figure 2c−f. Besides,
the good generalization capability inherited from ensemble
learning can further improve the model efficiency. Thus,
EDKPCA and EKCVA can provide better monitoring perform-
ance than DKPCA and KCVA, respectively. Since the nonlinear
dynamic behavior can be modeled more accurately by the

Figure 4. Schematic of the closed-loop CSTR.

Table 2. Constant Values in the CSTR Model

parameter description value units

Q inlet flow rate 100.0 L/min
V tank volume 150.0 L
Vc jacket volume 10.0 L
ΔHr heat of reaction −2.0 × 105 cal/mol
UA heat transfer coefficient 7.0 × 105 cal/min/K
k0 pre-exponential factor to k 7.2 × 1010 min−1

R activation energy 1.0 × 104 K
ρ, ρ c fluid density 1000 g/L
Cp, Cpc fluid heat capacity 1.0 cal/g/K

Table 3. Fault Description in CSTR Model

fault no. description value type

1 f = f 0e
−ϱt 5 × 10−4 multiplicative

2 g = g0e
−ϱt 1 × 10−3 multiplicative

3 Faults 1 and 2 occur simultaneously multiplicative
4 Ci = Ci + ϱt 1 × 10−3 additive
5 Ti = Ti + ϱt 0.05 additive
6 Tci = Tci + ϱt 0.05 additive
7 C = C + ϱt 1 × 10−3 additive
8 T = T + ϱt 0.05 additive
9 Tc = Tc + ϱt 0.05 additive
10 Qc = Qc + ϱt −0.1 additive
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EKCVA model, it can also be observed that the proposed
EKCVA method can acquire more excellent performance over
DKPCA, EDKPCA, and KCVA.
Fault 2 represents the change of nonlinearity. The monitoring

result of Fault 2 is plotted in Figure 3. It can be seen that Fault 2
can be detected by most methods. Compared to the KPCA
based method, the KCVA based method can provide a better
performance, since the autocorrelation is taken into consid-
eration. Through ensemble learning, the nonlinear feature is
more efficiently extracted than single model approaches. Thus,
EKCVA-based process monitoring has the best performance
among the comparative methods.
To further carry out the comparison of monitoring perform-

ance, two indexes are used. One is the fault false alarm rate
(FAR), and the other one is the fault detection rate (FDR). The
definitions of FAR and FDR are as follows:

J J f

f

J J f

f

FDR
no. of samples ( 0)

total sample ( 0)
100

FAR
no. of samples ( 0)

total sample ( 0)
100

th

th

=
> | ≠

≠
×

=
> | =

=
×

(38)

where J and Jth denote the test statistic and corresponding
threshold. f≠ 0 and f = 0 denote fault and fault-free, respectively.

Table 1 lists the FDRs and FARs of the comparative methods.
It is noticed that the EDKPCA Q statistic can provide better
performance than KPCA, EKPCA, and DKPCA for Fault 1 and
Fault 2. Thus, it will be helpful for process monitoring by using
ensemble learning and considering the process dynamics. On
the other hand, it can be found that the EKCVA T2 statistic can
offer the best performance in terms of FAR and FDR. For Fault
1, the FAR of EKCVA T2 statistic is 0.51% and FDR is 75.72%.
For Fault 2, the FAR of EKCVA T2 statistic is 0.51% and FDR is
99.75%.

4.2. CSTR Process. A CSTR, also known as a completely
mixed flow reactor, is a tank reactor with stirring paddles. The
physical and chemical changes in the substance in the system are
part of the reaction process. Temperature, pressure, and flow
rate are some of the parameters that characterize its system
attributes. Researchers have used various forms of CSTRs for
process monitoring in a variety of studies.22,39,47 A simplified
diagram of the three-state closed-loop CSTR process is depicted
in Figure 4. The following equations primarily describe the
mechanism of the CSTR process:

T
t

Q
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T T f
H kC

C
g

UA
C V

T T v
d
d

( )
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( )i
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p p
c 1ρ ρ
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Δ

− − +

Table 4. Comparison Results of FDRs for CSTR Process

KPCA (%) EKPCA (%) DKPCA (%) EDKPCA (%) KCVA (%) EKCVA (%)

fault no. T2 Q ET2 EQ T2 Q ET2 EQ T2 Q ET2 EQ

1 75.50 44.40 75.80 54.40 59.54 83.33 60.04 84.14 84.26 87.69 84.36 87.89
2 83.10 87.90 83.10 94.10 68.27 87.75 68.88 89.16 85.17 88.70 85.37 88.90
3 78.50 88.30 78.60 94.70 69.78 85.54 69.98 86.75 82.14 85.37 82.34 85.57
4 94.80 70.30 94.80 74.70 92.57 72.79 92.57 72.49 91.32 90.21 91.32 90.31
5 87.30 72.10 87.30 73.10 78.11 80.02 78.71 77.91 79.52 75.68 79.72 75.78
6 85.80 81.20 85.80 91.90 77.91 80.62 78.31 80.52 78.30 79.41 78.61 79.72
7 99.10 94.90 99.10 97.40 95.78 99.40 95.78 99.50 99.39 99.60 99.50 99.60
8 91.00 96.70 91.00 98.50 75.30 96.39 75.30 96.79 95.06 96.67 95.26 96.87
9 93.20 96.90 93.20 98.50 83.63 96.39 83.73 96.89 95.76 96.87 95.76 96.87
10 79.70 81.00 79.70 92.60 68.88 78.71 69.28 80.62 77.60 81.84 78.00 81.84
Average 86.82 73.27 86.84 86.99 76.98 86.12 77.26 86.48 86.85 88.20 87.02 88.32

Table 5. Comparison Results of the Average FARs for CSTR Process

KPCA (%) EKPCA (%) DKPCA (%) EDKPCA (%) KCVA (%) EKCVA (%)

T2 Q ET2 EQ T2 Q ET2 EQ T2 Q ET2 EQ

1.00 0 1.00 1.15 0.15 0.30 0.20 0.40 0.40 0.85 0.40 0.90

Table 6. Comparison Results of DDs (hours) for CSTR Process

KPCA (%) EKPCA (%) DKPCA (%) EDKPCA (%) KCVA (%) EKCVA (%)

fault no. T2 Q ET2 EQ T2 Q ET2 EQ T2 Q ET2 EQ

1 3.50 11.62 3.50 5.02 4.92 2.72 4.92 2.65 2.68 2.20 2.68 2.20
2 3.13 2.25 3.13 1.20 3.52 1.97 3.52 1.93 2.57 1.97 2.57 1.97
3 2.67 1.87 2.67 0.97 4.60 2.43 4.60 2.27 2.70 2.62 2.70 2.62
4 0.95 5.23 0.95 4.67 1.32 4.60 1.32 4.60 1.37 1.82 1.37 1.82
5 2.42 4.67 2.42 4.58 3.70 3.33 3.70 3.35 3.33 4.08 3.33 4.08
6 2.33 3.07 2.33 1.55 3.72 3.35 3.50 3.03 3.63 3.63 0.30 3.43
7 0.18 0.92 0.18 0.50 0.72 0.12 0.72 0.10 0.12 0.08 0.10 0.08
8 1.80 0.73 1.80 0.35 4.32 0.62 4.32 0.57 0.83 0.58 0.80 0.58
9 1.40 0.60 1.40 0.28 2.87 0.57 2.87 0.53 0.75 0.53 0.75 0.53
10 0.67 3.38 0.67 1.18 5.42 0.60 4.73 0.60 0.60 0.60 0.60 0.60
Average 1.91 3.43 1.91 2.03 3.51 2.03 3.42 1.96 1.85 1.81 1.52 1.79
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There are some constant values in the model, and these
parameters are listed in Table 2. The process variables of the
model X = [Ti, Ci, Tci, T, C, Tc, Qc]

T. Furthermore, vi, i = 1, 2, 3

are Gaussian white noise. For all variables, the sampling interval
is 1 min. k = k0 exp

−RT is an Arrhenius-type rate.
In this example, we simulate 10 types of faults in the CSTR

process. For Faults 1−3, f and g are equal to 1.00 in normal
operation. By attenuating their values to zero, the decay of
catalyst and heat transfer pollution can be simulated,
respectively. Faults 4−10 are sensor drifts. The details of these
faults are described in Table 3. The training data set contains
1200 data points generated under normal operating conditions;
1200 samples are collected for each fault. The time point for fault

Figure 5. Monitoring charts in CSTR process of Fault 1: (a) KPCA, (b) EKPCA, (c) DKPCA, (b) EDKPCA, (e) KCVA, (f) EKCVA.
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import is the 200th minute. The data acquisition for this
experiment can be downloaded from https://www.mathworks.
com/matlabcentral/fileexchange/66189-feedback-controlled-
cstr-process-for-fault-simulation. As it can be seen from the
model expression, the CSTR is a typical nonlinear dynamic
process.
According to the parameter selection procedure, h = 7·20·

2(i−1) (i = 1, ..., nl), l = 5, r = 6, w = 5, nl = 10 are set for the
EKCVAmodel. For the EDKPCAmodel, l = 5, r = 6, nl = 10, h =
7·20·2(i−1) (i = 1, ..., nl) . For EKPCAmodel, r = 6, nl = 10, h = 7·
20·2(i−1) (i = 1, ..., nl) . KCVA, DKPCA, and KPCA are
submodels of EKCVA, EDKPCA, and EKPCA, respectively,
with kernel parameters of h = 7·20. The confidence level α is
0.99 for determining the control limits. To evaluate the
monitoring performance, three indexes including DD, FAR,
and FDR are employed. Moreover, the detection time is

determined as the first time after five consecutive alarms have
been triggered to make the comparison more fair. DDs
computed in the experiment are in units of hours.
The monitoring results are listed in Tables 4, 5, and 6. The

EKCVA has the highest average FDRs (i.e., 87.02% and 88.32%
for theT2 andQ statistics, respectively). It is also noticed that the
average FDRs of the ensemble models are both higher than
those of the individual models. EKCVA T2 and Q statistics are
considered to be the most sensitive to all faults, where the DDs
are 1.52 and 1.79 h, respectively. Compared to EDKPCA and
KCVA, the FARs of EKCVA T2 and Q statistics are slightly
higher. However, the FAR values are at the same level as
EKPCA. Nevertheless, the EKCVA T2 and Q statistics provide
the best monitoring performance among these comparative
methods.

Figure 6. Monitoring charts in CSTR process of Fault 7: (a) KPCA, (b) EKPCA, (c) DKPCA, (b) EDKPCA, (e) KCVA, (f) EKCVA.
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The results obtained from the preliminary analysis of Fault 1
and Fault 7 can be compared in Figure 5 and Figure 6,
respectively. For Fault 1, it is a catalyst degradation fault.
Variations in process variables are not immediately apparent at
first. The difference between normal and abnormal conditions
will progressively become significant after a few hours. As shown
in Figure 5, the DDs of all methods are relatively large, but the
EKCVA model has the smallest DDs. Additionally, EKCVA
achieves the best monitoring results with the highest FDR. Fault
7 is the sensor drifts in the concentration of product reactants
with a small magnitude of failure. Since KPCA and EKPCA
models ignore the dynamics of process data, it can be found that
there are larger DDs as displayed in Figure 6. Nevertheless, the

proposed EKCVA method has superior monitoring perform-
ance than other methods in terms of FDR, FAR, and DD.

4.3. TEP. The industrial benchmark of the Tennessee
Eastman process (TEP) was developed by Eastman Chemical
Company based on a practical chemical process.48 The flow
diagram of TEP is exhibited in Figure 7. In TEP, the process data
have time-varying, strongly coupled, and nonlinear character-
istics, thus it is widely used in the comparison study of process
monitoring and fault detection.46,49−51

In the TEP benchmark, 21 faults were predefined. The specific
description of 21 faults is listed in Table 7. For process
monitoring, 22 continuous variables and 11 manipulated
variables were selected. The TEP data set can be found on the
Web site (http://web.mit.edu/braatzgroup/links.html). A total
of 500 observations under normal operating conditions were
collected as training data. The testing data were acquired under a
48 h run of the simulation, with faults introduced at the eighth
hour. And a total of 960 observations were collected.
In this case study, the kernel width of KPCA model is

empirically determined as h = 10m = 330, r = 30.52 hi = 5m·2
i−1 (i

= 1, ..., 11) is selected for EKPCA model proposed Li and Yang.
For EDKPCAmodel, l = 5, r = 30, and hi = 5m·2

i−1 (i = 1, ..., 8) .
For DKPCAmodel, l = 5, r = 30, and h = 10m. For KCVAmodel,
h = 10m, r = 30, l = 5, and w = 26. For EKCVA, r = 37, w = 24, l =
5, hi = 50m·2i−1 (i = 1, ..., 11) . The confidence level α is 0.99.
Table 8 and Table 9 summarize the monitoring results for all

21 faults. The proposed EKCVA model can provide superior
performance over other models for most faults such as faults 4, 8,
10, and 11 as shown in Table 8. The average FDRs of ET2 and
EQ are 83.74% and 81.26%, respectively, whereas the average
FDRs of other methods are below 80%. Although the FAR of EQ
(i.e., 4.946%) is higher than other Q statistics, the FAR of
ET2(i.e., 5.554%) is at the same level as other T2 statistics. The
numbers of detection delays (DD) are provided in Table 10.
From this table, we can see that the average DD of the EKCVA
EQ statistic is the smallest among the monitoring statistics, and

Figure 7. Diagram of Tennessee Eastman benchmark process.

Table 7. Disturbance Description for TE Process

fault no. fault description type

1 B composition constant, A/C feed ratio in
Steam 4

step change

2 A/C ratio constant, B composition in Steam 4 step change
3 D feed temperature in Steam 2 step change
4 reactor cooling water inlet temperature step change
5 condenser cooling water inlet temperature step change
6 a feed loss in Steam 1 step change
7 C header pressure loss in Steam 4 step change
8 A, B, C feed composition in Steam 4 random variation
9 D feed temperature in Steam 2 random variation
10 C feed temperature in Steam 4 random variation
11 reactor cooling water inlet temperature random variation
12 condenser cooling water inlet temperature random variation
13 reaction kinetics slow drift
14 reactor cooling water valve sticking
15 condenser cooling water valve sticking
16−20 unknown faults unknown
21 stable valve in Stream 4 constant

position
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the average DD of EKCVA ET2 statistic is 21, which is smaller
than KPCA T2, DKPCA T2, EDKPCA ET2, and KCVA T2.
Nevertheless, the proposed EKCVA has superior monitoring

performance than the other methods in terms of FDR, FAR, and
DD.

Table 8. Comparison Results of FDRs for TE Process

KPCA (%) EKPCA (%) DKPCA (%) EDKPCA (%) KCVA (%) EKCVA (%)

fault no. T2 Q ET2 EQ T2 Q ET2 EQ T2 Q ET2 EQ

1 99.88 99.25 100 99.25 100 99.5 100 99.50 99.75 99.25 98.87 99.62
2 98.63 98.13 98.75 98.25 98.50 98.25 99.50 98.25 98.62 98.24 98.99 98.25
3 17.75 8.13 18.25 6.50 3.37 3.00 4.25 6.88 9.80 6.28 17.74 15.60
4 100 22.25 100 27.63 100 77.00 100 77.13 98.74 83.17 99.87 99.25
5 36.75 29.13 38.00 100 28.88 100 29.38 100 33.67 27.26 100 100
6 100 100 100 100 100 100 100 100 99.87 99.87 100 100
7 100 99.50 100 100 100 100 100 100 100 99.25 100 100
8 99.38 97.25 99.38 98.25 98.00 97.88 98.13 97.88 99.37 96.48 99.75 99.37
9 14.88 4.75 14.37 5.87 3.50 2.38 4.4 5.63 9.92 6.78 18.24 16.10
10 58.75 60.88 88.62 73.38 85.75 59.50 85.50 91.25 58.42 36.06 93.71 91.57
11 81.88 46.00 71.88 66.75 80.00 62.13 80.63 65.00 71.23 55.65 86.63 78.56
12 99.75 98.38 99.75 97.75 99.38 99.75 99.50 99.87 99.62 96.98 99.75 99.87
13 95.38 94.25 95.50 94.25 95.25 94.38 95.25 94.25 95.10 93.97 95.60 95.85
14 100 99.63 100 100 100 100 100 100 99.87 99.87 99.87 99.87
15 24.38 14.50 25.37 13.88 4.50 5.63 4.38 15.25 18.22 8.79 29.31 25.28
16 49.25 53.13 94.13 78.75 90.25 54.38 90.50 85.87 44.54 21.61 95.22 91.57
17 96.63 81.13 96.88 83.50 97.13 87.50 97.13 89.00 95.85 86.55 95.72 94.84
18 91.00 89.38 91.25 89.38 90.38 89.38 90.50 85.87 90.20 89.82 91.44 91.19
19 48.50 4.13 84.50 21.75 92.50 4.63 93.88 22.75 16.08 12.31 98.74 91.55
20 70.88 49.25 91.87 47.38 80.75 61.88 81.00 87.50 58.54 36.18 90.19 76.76
21 51.50 38.25 56.87 32.37 53.38 41.13 55.00 51.25 42.96 24.37 58.11 42.64
Average 73.10 61.31 79.81 69.99 74.22 68.49 76.62 75.09 68.60 60.89 83.74 81.26

Table 9. Comparison Results of the Average FARs for the TE Process

KPCA (%) EKPCA (%) DKPCA (%) EDKPCA (%) KCVA (%) EKCVA (%)

T2 Q ET2 EQ T2 Q ET2 EQ T2 Q ET2 EQ

5.800 1.875 5.750 1.750 5.030 1.625 5.233 2.201 3.503 1.557 5.554 4.946

Table 10. DDs (Samples) For All Faults with Different Methods

KPCA (%) EKPCA (%) DKPCA (%) EDKPCA (%) KCVA (%) EKCVA (%)

fault no. T2 Q ET2 EQ T2 Q ET2 EQ T2 Q ET2 EQ

1 2 7 1 7 1 5 1 5 3 5 2 4
2 13 15 9 15 13 15 13 15 11 11 9 13
3 5 15 5 15 15 15 15 15 13 16 5 3
4 1 1 1 1 1 1 1 1 1 2 1 1
5 1 1 1 1 1 1 1 1 2 3 1 1
6 1 1 1 1 1 1 1 1 2 2 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1
8 1 21 1 1 16 15 11 15 3 4 3 5
9 1 1 1 6 1 1 1 1 3 93 3 5
10 8 16 6 16 6 16 6 16 13 13 11 6
11 6 7 6 7 6 7 6 5 7 9 6 6
12 3 3 3 3 4 3 3 2 3 4 1 1
13 38 47 26 47 38 46 38 47 40 5 1 4
14 1 2 1 2 1 1 1 1 2 2 2 2
15 86 92 92 92 238 92 66 51 397 3 79 2
16 245 30 1 10 7 17 7 10 26 26 6 9
17 20 28 2 26 20 24 20 21 2 4 21 21
18 18 20 15 61 18 87 18 61 62 62 18 4
19 1 11 2 2 2 11 2 9 3 3 2 2
20 40 75 63 70 63 73 63 75 81 81 67 48
21 281 257 40 257 251 257 244 257 259 167 208 52
avg 37 31 13 31 34 33 25 29 44 24 21 9
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Faults 5, 10, and 19 are employed for comparison. Fault 5
involves a step change in condenser cooling water inlet
temperature. This fault does not cause a continuous change in
the variable as the controller will compensate for the effects of
the fault. However, this type of fault can also disrupt the normal
operating process. The monitoring results are plotted in Figure
8. It can be found that the monitoring statistics of KPCA,
DKPCA, and KCVA have a similar trend where the monitoring
statistics will degrade after 10 h, although the step change still
was imposed. On the other hand, through ensemble learning,
more models are established by EKPCA, EDKPCA, and
EKCVAmethods. Thus, they can capture this change accurately.
The monitoring statistics of EKPCA, EDKPCA, and EKCVA
can detect fault 5 more sensitively as shown in Figure 8.

Fault 10 is a randomly varying fault, and the controller cannot
fully compensate for the variation of this fault, and the dynamics
of the process change under this fault condition. Themonitoring
results for this fault are shown in Figure 9. Themonitoring charts
for KPCA, DKPCA, and KCVA do not indicate the occurrence
of all faults. Similar to fault 5, EKCVA still achieves the best
monitoring results compared with both methods, EKPCA and
EDKPCA, where almost all fault samples are detected. EKCVA
ET2 and EQ statistics reach 93.71% and 91.57% of the FDRs,
respectively.
The fault information of fault 19 is unknown. From Figure 10,

it is obvious that the Q statistic of the EKCVA model has
improved significantly over the Q statistic of the other five
compared methods, reaching a fault detection rate of 99.55%.

Figure 8. Monitoring results in TEP of Fault 5: (a) KPCA, (b) EKPCA, (c) DKPCA, (b) EDKPCA, (e) KCVA, (f) EKCVA.
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This indicates that the system deviates from the set operational
level. In addition, EDKPCA outperforms EKPCA due to the
capture of process dynamics. However, the EKCVAmethod still
has the best performance.

5. CONCLUSION

The findings reported here shed new light on a data-driven
dynamic nonlinear process monitoring approach. In the
proposed EKCVA method, an ensemble learning strategy is
introduced into KCVA. With the aid of ensemble learning, the
capability of extracting nonlinearity features of KCVA is
enhanced. Additionally, to give a final comprehensive statistic,
Bayesian inference is applied to reorganize the monitoring
results derived by KCVA which achieves comprehensive and

accurate monitoring of process changes. To evaluate the
proposed EKCVA method, a numerical example, the industrial
TEP benchmark, and the CSTR process are carried out.
Experimental results show that the EKCVA method outper-
forms other methods in terms of detection rate and detection
time.
Although the superiority of the presented method has been

verified, there are three issues that deserve further investigation.
First, only the Gaussian kernel function is adopted in the model
establishment. As a local kernel function, the Gaussian kernel
function has good interpolation ability. The linear kernel is often
used as the global kernel. Therefore, to further improve the
feature extraction performance, mixed kernels that contain local
and global kernel functions would be studied. Second, this study

Figure 9. Monitoring results in TEP of fault 10: (a) KPCA, (b) EKPCA, (c) DKPCA, (b) EDKPCA, (e) KCVA, (f) EKCVA.
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mainly focuses on the fault detection issue for nonlinear
dynamic processes. Fault identification is crucial to determine
the root cause of faults. Reconstruction based fault identification
has been widely studied in kernel-based process monitoring
methods. However, since there is more than one model used in
the EKCVA method, the decision making strategy should be
another topic to investigate in future work for fault
identification.
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