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We tested an information foraging framework to characterize the mechanisms that drive active (visual)
sampling behavior in decision problems that involve multiple sources of information. Experiments 1
through 3 involved participants making an absolute judgment about the direction of motion of a single
random dot motion pattern. In Experiment 4, participants made a relative comparison between 2 motion
patterns that could only be sampled sequentially. Our results show that: (a) Information (about noisy
motion information) grows to an asymptotic level that depends on the quality of the information source;
(b) The limited growth is attributable to unequal weighting of the incoming sensory evidence, with early
samples being weighted more heavily; (c) Little information is lost once a new source of information is
being sampled; and (d) The point at which the observer switches from 1 source to another is governed
by online monitoring of his or her degree of (un)certainty about the sampled source. These findings
demonstrate that the sampling strategy in perceptual decision-making is under some direct control by
ongoing cognitive processing. More specifically, participants are able to track a measure of (un)certainty
and use this information to guide their sampling behavior.
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Decision making typically involves searching for and sampling
information from both external (Hertwig & Erev, 2009; Hills &
Hertwig, 2010; Krajbich, Armel, & Rangel, 2010) and internal
environments (e.g., memory; Hills, Jones, & Todd, 2012; Stewart,
Chater, & Brown, 2006). The way information is sampled can
influence the outcome of the decision in perceptual tasks (Glaholt
& Reingold, 2009, 2011; Russo & Leclerc, 1994; Shimojo,
Simion, Shimojo, & Scheier, 2003), value-based judgments (Kra-
jbich, Armel, & Rangel, 2010; Krajbich, Hare, Bartling, Mor-
ishima, & Fehr, 2015; Krajbich & Rangel, 2011; Noguchi &
Stewart, 2014) and in risky gambles (Hills & Hertwig, 2010). Most
theory development across these different domains of decision
making has focused on the overarching decision process: How do
humans use the acquired information in order to come to a deci-

sion? In this article, we focus on the mechanisms that govern
sampling behavior itself. We can think of sampling behavior as a
lower level of decision making about what information to acquire,
from what source and at what point in time. To obtain a handle on
these sampling mechanisms, we focus on decision making in the
perceptual domain.

Most studies of perceptual decision making deal with situations
in which there is just a single source of information, from which
evidence in favor of the various decision alternatives is acquired in
parallel. Take, for instance, the classic perceptual decision making
task of motion direction discrimination (Britten, Shadlen, New-
some, & Movshon, 1992; Gold & Shadlen, 2000; Huk & Shadlen,
2005; Newsome, Britten, & Movshon, 1989; Palmer, Huk, &
Shadlen, 2005; Roitman & Shadlen, 2002; Shadlen & Newsome,
2001). The observer views a single pattern of moving dots. A
subset of the dots moves coherently in one of two signal directions
(e.g., left vs. right); the remaining dots move in random directions.
Therefore, a single source of information provides all the evidence
to support a choice between two alternatives: for example, the
more rightward motion energy in the stimulus, the less evidence in
favor of a leftward choice and vice versa.

Decision making in this type of paradigm is frequently modeled
with an evidence accumulation or sequential sampling model. For
instance, in the drift diffusion model a decision variable that
signals the net evidence in favor of two choice options drifts
toward one of two decision boundaries that represent the available
options (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Smith,
2004; Smith & Ratcliff, 2004). The drift rate is noisy, possibly
because of noise in the information itself and because of noise
internal to the decision mechanism. The noise allows the model to
account for variability in both choice latency and probability. In an
accumulator model the different decision alternatives are repre-
sented by different “accumulators” that integrate the evidence in
favor of the option they represent (Brown & Heathcote, 2005,
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2008; Smith & Vickers, 1988; Usher & McClelland, 2001). Deci-
sion making is then governed by a parallel race to a decision
boundary. As in the diffusion model, the accumulators are subject
to various forms of internal noise, which allows the model to
account for variability in choice and reaction time (RT).

Many ecological decision problems involve visually sampling
information from a number of sources, which together inform
some course of action. For example, when choosing where to place
our foot on a rocky path, we visually sample a variety of candidate
locations with gaze in the process of committing to a particular
step (Patla, 1997). In a supermarket, we might visually compare
different packages of cereal before selecting one to put in our
trolley. In these situations, the evidence used for decision making
has to be gathered in sequence, through selection by overt atten-
tional mechanisms.

In recent years, there has been a great deal of interest in the
relationship between gaze behavior and decision making (Glaholt &
Reingold, 2009; Krajbich et al., 2010, 2015; Krajbich & Rangel,
2011; Noguchi & Stewart, 2014; Russo & Leclerc, 1994; Shimojo et
al., 2003). Specifically, it has been shown that the option fixated for
longer and fixated last is more likely to be chosen (Glaholt & Rein-
gold, 2009; Krajbich et al., 2010; Krajbich & Rangel, 2011; Shimojo
et al., 2003). These influences of gaze behavior on overall choice have
been modeled with a diffusion model in which the drift rate is fixation
dependent (Krajbich et al., 2010; Krajbich & Rangel, 2011). In this
modification of the drift diffusion model, the drift rate, in addition to
an overall bias toward one of the options, is momentarily biased
toward for the option currently fixated. As a result, the decision
variable drifts toward the boundary representing the currently fixated
option and that option is more likely to be chosen.

This model accounts for overall choice preferences and response
times. However, the model does not (attempt to) account for the
sampling behavior itself. Instead, it assumes that the fixation times
are effectively randomly controlled: they are not influenced by the
cognitive processing during a fixation. This theoretical stance is
reminiscent of indirect control models of eye movement behavior
in reading and visual search (Hooge & Erkelens, 1996; Vaughan,
1982; Vitu, O’Regan, Inhoff, & Topolski, 1995). However, the
currently dominant models in these domains (Engbert, Nuthmann,
Richter, & Kliegl, 2005; Henderson & Ferreira, 1990; Nuthmann,
Smith, Engbert, Henderson, 2010; Reichle, Pollatsek, Fisher, &
Rayner, 1998; Reichle, Pollatsek, & Rayner, 2012) all allow for at
least some degree of direct control. That is, the duration of an
individual fixation may be influenced by the current cognitive
processing duration that fixation—an assumption sometimes re-
ferred to as the “eye-mind link.”

Although some studies of value-based decision making carefully
control the value, or desirability, of the choice options, it is difficult to
know what information is being extracted when the participant is
fixating an option. As such, it is difficult to characterize the mecha-
nisms that govern sampling behavior. In that regard perceptual deci-
sions offer a better opportunity to control what information needs to
be gathered and the quality of that information.

Information Foraging in Perceptual Decision Making

In a recent study (Cassey, Evens, Bogacz, Marshall, & Ludwig,
2013), we extended the classic random dot motion task to the
situation of interest here in which multiple sources of information

have to be sampled serially in order to make a perceptual decision.
Figure 1 illustrates the paradigm. Cassey et al. (2013) asked
participants to make a comparative motion direction judgment.
Observers were instructed with a cue at central fixation which of
the two patterns to fixate first. Gaze position was monitored online
and motion information was only delivered once a pattern was
fixated. From the moment the eyes left the central fixation, ob-
servers had 1.5 seconds to sample the two patterns. The task was
to indicate which of the patterns moved relatively more clockwise
(through the short angle). For example, in Figure 1 the coherent
motion of the top pattern is toward 9 o’clock and the motion of the
bottom pattern is toward 7 o’clock. In this case then, the top
pattern moves relatively more clockwise. If the directions of mo-
tion had been, say, 11 and 1 o’clock, the 1 o’clock pattern should
be classed as more clockwise. The quality of the two patterns is
easily varied by changing the motion coherence.

This comparative motion direction discrimination paradigm in-
corporates some of the critical features that are ecologically rele-
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Figure 1. Comparative motion discrimination paradigm used by Cassey
et al. (2013) and in Experiment 4 of the current study. Motion information
is delivered in a gaze-contingent manner so that a pattern only starts
moving once it is fixated. The observer is cued which pattern to fixate first,
to ensure that the first fixation is equally often on the top and bottom
patterns. Once the eyes have left the central fixation region, the observer
has 1.5 s to sample both patterns to come to a perceptual decision. There
are no further constraints on fixation behavior. See the online article for the
color version of this figure.
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vant and (mostly) quite distinct from the “standard” perceptual
decision making paradigm reviewed above. (a) There are multiple
sources of information, which can only be sampled one at a time;
(b) The quality of information provided by different sources may
vary, but (c) the quality (coherence) is independent from the
task-relevant variable that needs to be extracted (direction); (d)
The quality of a source is only known once it has been or is being
sampled; (e) The task-relevant variable that needs to be extracted
from a source is continuous, rather than a discrete classification;
and (f) The information sampled from multiple sources has to be
put together in order to form some overall, categorical judgment
about the “state” of the environment.

We think of the problem loosely as a “foraging” task in a patchy
environment (Charnov, 1976; McNamara & Houston, 1985; Pirolli
& Card, 1999; Stephens, 2008) The objective is to gather as much
information as possible from multiple patches in a limited period
of time. Information may be defined as a measure of uncertainty
reduction (MacKay, 2003): more information means that we are
more certain about the value of some variable. In the context of
value-based decision making, sampling an option may make the
observer gradually more certain about the utility of that option, or
more certain about the difference in utility between that option and
some alternative. In the context of the comparative motion dis-
crimination task described above, sampling a pattern may make the
observer gradually more certain about the motion direction of that
pattern. In this article, we adopt a loose definition of information
as the degree of certainty around the task-specific variable that is
important for decision making.

Figure 2 sketches the information foraging account. We assume
there are two sources of information, only one of which can
be sampled at a time. A comparison of the task-relevant variable
(generically indicated as ‘value’) is performed at the end of the
total sampling period. Panel A shows that the observer first sam-
ples source X. After m samples, (s)he switches to source Y and
takes n samples from that source. The total sampling time is given
by T � m � n and in this example m � n because the observer
switches exactly halfway. Suppose source X is of lower quality
than source Y and the samples drawn from X are more variable.
Panel A illustrates how information grows as the samples come in
and demonstrates that the rate of information accumulation de-
pends on the quality of the source (i.e., lower slope for X). After
switching to Y, the information accumulated from X is maintained
in working memory (Romo & Salinas, 2003).

At the end of the available sampling time, the observer has a
representation of the values of both X and Y and the (un)certainty
of these representations is determined by the total accumulated
information for each source. In this example, at time T the observer
has accrued more information for Y than for X, which translates
into a smaller spread of the corresponding distribution in panel B.
The accuracy with which X can be discriminated from Y clearly
depends on the amount of information accumulated from both
sources.

Suppose the observer has some way of monitoring the amount
of information accumulated (i.e., certainty around the estimated
value of a source). In that case, (s)he might try to obtain equally
good estimates for both sources of information. One way to
achieve this goal is simply to impose some criterion on the infor-
mation. The gray dashed horizontal line in Figure 2C shows a
hypothetical criterion. It is clear that were such a criterion in place,

it would take longer to reach it when sampling X compared to
sampling Y. In this way, the observer would spend more time
sampling a low quality source of information compared to a high
quality source of information.

It is also possible that the working memory representation of
previously sampled information is not perfect, unlike the perfect
maintenance of information shown in Figure 2A. Panel C shows
how the representation of the previously sampled source may
degrade over time once the observer has switched to a different
source. Such degradation of information may arise as a result of
passive decay (forgetting) or interference in working memory
(Barrouillet, Portrat, Vergauwe, Diependaele, & Camos, 2011;
Lewandowsky & Oberauer, 2009; Oberauer & Lewandowsky,
2008). In the face of such degradation, it may be adaptive to switch
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Figure 2. Information foraging account. There are two sources of infor-
mation which are sampled serially. A – Accumulation of information for
both sources. The observer first samples variable X and midway through
the available time switches to variable Y. When a source (i.e., Y) has not
been sampled yet, the information about that source is 0. X provides lower
quality information than Y, which translates into a different rate at which
information is accrued. B – At the end of the sampling time T, the
information accumulated for both options sets the width of a set of internal
response distributions that represent the values of both options. For the
sake of illustration, variable X has been given a higher mean value. C –
Sampling controlled by placing a threshold (gray dashed horizontal line) on
the information accumulated. In addition, previously sampled information
may degrade when a new source of information is being sampled, shown
by the gradual decrease for X while sampling Y (and then for Y while
sampling X for the second time). Once the information criterion for the
second source has been reached, the observer has time left to switch back
to the first source and acquire more information from X. See the online
article for the color version of this figure.

247INFORMATION FORAGING



back to the first source once the criterion amount of information
has been accumulated for the second source. Indeed, Cassey et al.
(2013) hypothesized that such imperfect memory was one source
of inefficiency in human observers and the reason why participants
regularly switched back to a previously sampled source in their
task. Note that in Figure 2C the total sampling time for X is much
greater than for Y and that this difference occurs through (a) a more
prolonged first sampling epoch, and (b) a subsequent return to that
source. In this way the model can account for adaptation of the
total sampling time to the quality of available information, as
observed by Cassey et al. (2013).

In some way, the framework sketched in Figure 2 resembles
standard accumulator models that are used to account for RTs and
choice data in simple decision making tasks (Brown & Heathcote,
2005, 2008; Smith & Vickers, 1988; Usher & McClelland, 2001).
Indeed, as in a standard accumulator model, the rate of rise of an
“accumulator” (say, the green line) is determined by the quality of
the evidence provided. However, there are some important differ-
ences.

Most importantly, the information foraging framework is an
attempt to represent an overall more challenging situation that
involves multiple sources of evidence, which can only be sampled
serially. This situation calls for switching between sources of
information and (working) memory demands. The accumulators
shown in Figure 2 represent the (un)certainty around a continuous
value estimated from a source of information. Good evidence
means that a criterion is reached more quickly. However, unlike in
a standard accumulator model, this larger drift does not mean that
the decision alternative represented by the accumulator is more
likely to be chosen in the end. Indeed, in the example shown in
Figure 2 option X has the higher value, but provides worse evi-
dence. In other words, the traces shown in Figure 2, are similarly
influenced by the quality of sensory evidence as in standard
accumulator models, but they do not represent the evidence in
favor of that option.

That said, it could be argued that each individual sampling
“episode” is like a basic perceptual decision about a single random
dot motion pattern, which may be described by some rise-to-
threshold mechanism. However, note that this decision involves
identifying the continuous value of a pattern, rather than a discrete
classification into a limited number of response categories. Stan-
dard models of (perceptual) decision making rely on a limited
number of decision alternatives, represented by separate decision
boundaries (Smith & Ratcliff, 2004) or accumulators (Brown &
Heathcote, 2008; Smith & Vickers, 1988). Such models are not
well suited to describe decisions on a continuous scale. Extensions
of these models so that they involves some continuous decision
“field” (Ludwig, Mildinhall, & Gilchrist, 2007; Smith, 2016; Wil-
imzig, Schneider, & Schoener, 2006) may be able to account for
the sampling behavior in our particular paradigm and we will
highlight this possibility in the General Discussion.

The foraging framework outlined above has several components
that need to be tested and empirically constrained. First, informa-
tion—in the form of certainty around the parameter of interest—
grows with sampling time. Second, information stored in working
memory from the previously sampled source(s) may degrade with
time. Third, the point at which a source is left, is determined by
monitoring the amount of information accrued online. In Experi-
ment 1, we aimed to characterize the growth in information with

time. In Experiment 2, we characterized the growth in information
in the presence of a memory representation of a previously sam-
pled information source. In addition, this experiment was designed
to identify any loss of previously sampled information after
switching to a new source. In Experiment 3, we aimed to identify
the origin of limited information growth observed in Experiments
1 and 2. Finally, Experiment 4 tested whether the decision to leave
a source of information is driven by online monitoring of the
information accrued.

Experiment 1

The foraging framework assumes that certainty grows with
sampling time. There are numerous demonstrations of psycho-
physical discrimination ability improving with time in a wide
variety of domains (for a review, see Watson, 1986), including
random dot motion direction discrimination (Gold & Shadlen,
2003; Huk & Shadlen, 2005; Kiani, Hanks, & Shadlen, 2008).
However, typically accuracy is measured as a threshold for dis-
crimination performance in a forced choice paradigm. In these
paradigms, the behavioral decision may be formed by evaluating
the relative evidence for a small number of discrete options from
a small number of channels (e.g., left vs. right). Here we are
concerned with estimating and signaling a more continuous vari-
able, by asking participants to report the direction a random dot
motion pattern is moving in. The questions we address here are
how information grows with time under these conditions and in
what way this growth depends on the quality of the information.

This experiment was performed during the larger study by
Cassey et al. (2013). Eight participants in that study performed a
single session of absolute motion direction judgments, in which we
assessed the accuracy of their motion direction judgments for just
a single pattern presented for a variable amount of time. Cassey et
al. (2013) only used and reported the data from two (of 13)
conditions: low and high coherence patterns viewed for �750 ms.
Here we report the full data set from this experiment as a way to
describe how the accuracy of the direction estimates changes over
time.

Method

Participants. Eight participants took part in the full study,
which involved attending six �1-hr sessions on different days. The
fourth of these sessions was devoted to measuring the accuracy of
their single pattern direction identification.

Ethical clearance for this and all subsequent experiments was
obtained from the local Faculty of Science Human Research Ethics
Committee. The experiments were conducted in accordance with
the ethical guidelines of the British Psychological Society (which
are in line with those of the APA). All participants provided
written informed consent and were fully debriefed.

Materials. Stimuli were created using the PsychToolbox 3.0.8
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) in
Matlab (The MathWorks Ltd.). They were presented on a 21�
Viewsonic G225fB monitor with 1024 � 768 resolution at 85 Hz.
The viewing distance was �57 cm, with the head stabilized
through a chin and forehead rest. The stimulus was viewed through
a hot-plated mirror that is part of an eye tracker, but eye move-
ments were not monitored in this session.
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One RDK pattern consisted of 100 light or dark gray dots
(squares of side length 3 pixels � 7=) which moved within a
circular aperture of radius 4° on a midgray background, giving a
mean dot density of 2 dots°s�2. The dots moved according to
a ‘Brownian Motion’ algorithm (Pilly & Seitz, 2009). That is, on
each frame, a subset of dots were chosen as signal dots and
translated in the signal direction. The signal direction was chosen
randomly for each trial from the interval [0..359], with all signal
dots being displaced in that direction. The direction of the noise
dots was sampled from the same uniform distribution, with the
direction drawn independently for each noise dot and each frame.
All dots moved at the same speed at 6°s�1, being translated �4=
on each frame. RDK animations were produced independently for
each trial for each participant.

Procedure. A single RDK was shown in the center of the
screen for one of six durations: {71, 129, 247, 506, 653, 1000} ms.
The coherence of the pattern was 12% (“low”) or 24% (“high”). To
identify an upper limit of direction identification performance, we
included one additional condition in which a 99% coherence
pattern (“super high”) was shown for 1000 ms. Each of the 13
conditions was repeated 55 times, for a total of 715 trials, per-
formed over one hour with three breaks.

Participants simply viewed the RDK and then indicated their
estimate of its net motion direction using an on-screen dial posi-
tioned with a mouse (see also Figure 4). The initial position of the
dial was set randomly so that there was no correlation with the
actual motion direction. Participants had unlimited time to position
the dial and when they were satisfied with the indicated direction
they pressed the mouse button. A green arrow would then display
the true motion direction alongside the reported direction.

There are two forms of error in this absolute direction judgment
task: systematic error (bias) and variable error. From the perspec-
tive of our foraging account, the latter is of particular interest. That
is, the variable that participants are trying to estimate is the (mean)
direction of the pattern. As the pattern is sampled for longer, the
certainty around that estimate is expected to increase. This increase
in certainty around the mean is quantified by the variable error. For
each direction judgment, we computed the (smallest) angular dif-
ference with respect to the true direction of the probed pattern.
Across trials, the mean of this distribution of this angular error
corresponds to the bias. The spread of this distribution corresponds
to the variable error.

Results

Figure 3A shows the distributions of errors for low and high
coherence RDKs for the different viewing times for one partici-
pant. We excluded trials in which the error fell outside the
interval 	 
/2 (i.e., outside a 	 90° semicircle around the true
direction of motion). These error distributions were fit with a Von
Mises circular density, which is characterized by two parameters:
location � and concentration �. The concentration parameter is a
reciprocal measure of the spread of the distribution—it is compa-
rable with the precision (reciprocal variance) of a Gaussian distri-
bution. Visual inspection of the full histograms (i.e., including all
the trials) suggested that there were occasional minor secondary
peaks around 	 
; that is, the reported direction was opposite to
the true direction. We do not have an explanation for this finding.
One possibility is that participants may sometimes respond to the
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Figure 3. Information growth with sampling time in Experiment 1. A – Error distributions for one participant
(S1). The errors are shown in radians. The solid curves are fits of a Von Mises circular density. B – Growth in
the Von Mises concentration parameter with sampling time for individual participants. The solid curves are fits
of a “speed-accuracy” growth curve (see text for details). Also shown in gray are the concentration estimates
from the 99% coherence condition. Where these symbols are not visible (S2 and S6 in particular), it is because
they lie beyond the upper limit of the ordinate. Error bars are standard errors. Double (natural) log coordinates
are used to facilitate visual inspection of the low and high coherence data within the same panels. See the online
article for the color version of this figure.
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orientation of the spatiotemporal pattern (Adelson & Bergen,
1985) or to motion “streaks” (Apthorp & Alais, 2009).

When using the full circular range we found that the fitted Von
Mises concentration parameter would have to decrease to accom-
modate these outliers, often at the expense of capturing a well-
defined central peak. As the number of these outliers was relatively
small and variable across conditions and participants, including
these trials decreased the reliability of our concentration estimates
at the individual level. Qualitatively the results were similar when
the full circular range was used. We also explored fitting mixtures
of Von Mises distributions (e.g., Zhang & Luck, 2008), but again
found that estimates at the individual participant level were less
reliable, with the overall pattern preserved. Given these observa-
tions, we report the analyses conducted on the truncated distribu-
tions. Over all conditions and participants 9% of the trials were
discarded because of errors that were too large. Such errors were
not evenly distributed across the conditions, with more rejected
trials for short viewing times compared with long viewing times.

Several features of the distributions in Figure 3A are worth
noting. First, all distributions are closely centered around zero. In
other words, there was very little bias and on average this partic-
ipant was accurate in the direction judgments (as, indeed, were the
others). Second, the low coherence distributions are wider than the
high coherence distributions. This result confirms that the variation
in coherence was sufficient to induce a variation in the precision
with which the direction could be estimated. Third, the distribu-
tions are reasonably well characterized by Von Mises densities,
particularly for the longer viewing times. At early viewing times,
the distributions are more uniform and the fits do not capture the
tails very well. Nevertheless, the Von Mises concentration param-
eter is a reasonable index of the spread of the distribution. Fourth,
for both coherence levels, the distributions become narrower with
increasing viewing times. That is, the direction judgments are
becoming more precise with an increase in sampling time.

Figure 3B illustrates the increase in concentration with sampling
time for each individual participant in the study. The data in panel
A correspond to Participant 1 (S1) in panel B. The low and high
coherence concentration estimates are fit with “speed-accuracy”

growth functions of the form: ��t� � ��1 � e�
t
�� for t 
 0

(McElree & Carrasco, 1999; Ludwig & Davies, 2011).
It is clear that for almost all participants, with exception of S5

perhaps, there is strong growth in the concentration with time. In
addition, for all participants, there is a clear separation between the
low and high coherence concentration estimates: the high coher-
ence patterns allow for much more accurate direction judgments.
Both the low and high coherence data grow to asymptotic levels
(given by � in the equation above; the asymptotes are more clearly
visible on linear coordinates). Importantly, the asymptotic levels
appears differ for the two coherence levels. That is, it is not the
case that the functions appear to converge to a common asymptote.
We return to this issue below in Experiments 2 and 3. Finally, the
concentration of the direction estimates for the super high coher-
ence pattern was generally much larger than the upper limit of the
high coherence precision (in some cases off the scale; see Figure
legend).

A more detailed statistical analysis of the parameters of the
growth functions (asymptotes and time constants: � and � respec-

tively) will be deferred until the results for Experiment 2 have been
presented.

Experiment 2

In Experiment 2 we again probe the growth of information, but
this time under conditions in which the direction of a previously
sampled pattern has to be maintained in working memory. In
addition, we assessed the loss of information once the observer has
switched to a new source of information. It is clear that shifting the
focus of attention to new material has the capacity to interfere with
the maintenance of material stored in memory (e.g., Logie, Zucco,
Baddeley, 1990). Moreover, temporal decay and interference are
common mechanisms used to account for forgetting (Barrouillet et
al., 2011; Oberauer & Kliegl, 2001; Oberauer & Lewandowsky,
2008). However, it remains to be seen whether such degradation of
previously sampled material occurs in sensory information forag-
ing.

In this experiment two RDK patterns were viewed in sequence,
with participants actively switching from one pattern to another.
Participants were probed to report the direction of either the first or
the second viewed RDK. The idea here is that when the first
pattern (RDK1) is probed, the viewing time of the second pattern
(RDK2) is effectively a delay interval. Moreover, processing of the
motion of RDK2 may interfere with the memory representation of
the RDK1 direction. When the second pattern is probed, we again
identify the growth in information over time, but under conditions
in which that information was processed with a concurrent mem-
ory load (RDK1 direction).

Method

Participants. Eight new participants were tested in five ses-
sions, run on different days, with each session lasting approxi-
mately one hour. In the first session, participants performed four
blocks of 96 trials. In the remaining four sessions, they performed
five blocks of 96 trials, for a total of 24 blocks (2304 trials/
participant). Participants were paid £50 upon completion of all five
sessions.

Materials. The stimuli were created in mostly the same way
as in Experiment 1. In this experiment the RDKs consisted of
white dots on a black background. The RDKs were positioned
�5.8° above and below the center of the screen. The position of
one eye (typically the right) was recorded at 1000 Hz using an
Eyelink 2000 video-based eye-tracker (SR Research Ltd.). The
viewing distance was �57 cm. To direct gaze to the appropriate
locations, we used a small, light gray fixation cross (a ‘�’ sign,
with each leg measuring 0.5° � 0.1°). Eye movements were
tracked to control the stimulus presentation in a gaze-contingent
manner, but were not analyzed.

Procedure. Figure 4 illustrates the paradigm used in this
experiment. Participants started by fixating a target in the either the
top or bottom pattern location. Once accurate fixation was
achieved, a foreperiod of 800 ms was followed with presentation
of RDK1 in this location. The pattern could have either a low or a
high coherence (12 or 24%, respectively; we omitted the 99%
coherence condition). RDK1 was presented for either 129 or 506
ms (T1 � {129, 506}), after which it disappeared and a fixation
point appeared in the location of RDK2. The activation of RDK2
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was gaze-contingent: the pattern was presented as soon as the
vertical gaze position crossed an invisible, horizontal boundary at
a distance of 1.8° from the center of the screen (in the same visual
field as RDK2). The second pattern was presented for a variable
amount of time: T1� {71,129,247,506,753,1000}. Gaze contin-
gency was introduced in this experiment to ensure that the demand
for active switching was as similar as possible as the paradigm
used by Cassey et al. (2013) and in Experiment 4 here.

After the offset of RDK2, a dial appeared with the arrow
pointing to a randomly set direction. The location of the dial cued
the participant to report the global motion direction of either
RDK1 or RDK2 (probe 1 or probe 2, respectively in Figure 4). The
participant set the direction of the dial using the mouse cursor and
clicked the mouse when (s)he was satisfied with the direction set.
At that point the true motion direction was shown for 500 ms (in
the form of a green arrow, drawn together with the light gray arrow
set by the participant).

There were 24 conditions in which we probed RDK1, defined by
combining: the coherence of the first pattern (low/high), T1 (two
levels) and T2 (six levels). Each of these conditions was repeated
twice in a block. There were 12 conditions in which RDK2 was
probed, through combining the coherence of the second pattern
(low/high) with T2 (six levels). In these conditions, both the
coherence and the presentation time of RDK1 were chosen ran-
domly. Each of these 12 conditions was repeated 4 times in a
block, so that RDK1 and RDK2 were probed equally often. The
combination of number of conditions and repetitions per condition,
created 96 trials in a block; these trials were randomly intermixed.

Results

For each participant, Experiment 2 generated 36 error distribu-
tions (24 RDK1 conditions; 12 RDK2 conditions). Figure 5 shows
all 36 distributions for one participant. In the top two rows, we
probed the participant to report the direction of RDK1. The view-
ing time of RDK2 (along the columns) here acts as an increasing
delay interval. The bottom row shows the errors when RDK2 was
probed; this row is directly comparable to Figure 3A. As in
Experiment 1, we rejected trials in which the indicated direction
fell in the wrong “half” of the circular dial. Across all participants
and conditions, 11% of the trials were rejected for this reason. The
remaining errors were fit with circular Von Mises densities.

Once again, the distributions are centered around zero and the
low coherence distributions are generally wider than the high
coherence distributions. If we take the top two rows, there appears
to be no consistent change in the shape of the distributions along
the columns, perhaps with exception of the low coherence distri-
butions in the first row (RDK1 probed and viewed for 129 ms.).
These distributions become wider as the delay interval (T2) in-
creases. This is the kind of change we might expect to see in the
case of working memory decay or interference (i.e., the participant
becomes less precise the longer the delay interval).

In the bottom row we characterize the growth in precision, now
with the added complication of having to keep the direction of
RDK1 in mind while estimating the direction of RDK2. For both
coherence levels the distributions appear to get narrower, at least
for the short viewing times, again suggesting that the concentration
of direction estimates grows with sampling time.

From these error distributions we estimated 36 concentration
parameters for each participant. Figure 6 (right three panels) shows
these parameters averaged across participants. The right-most
panel shows the mean concentration of RDK2 errors as a function
of how long that pattern was viewed. The growth in accuracy is
immediately obvious and it is well characterized by a speed-
accuracy function of the same form as shown in Figure 3B. Again,
both functions grow to an asymptote and those asymptotes depend
on the coherence level. For comparison, the left-hand panel shows
the growth curves from Experiment 1, averaged across participants
for that experiment. The nature of information growth appears very
similar to Experiment 2, except that the asymptotic concentration
estimates are higher in Experiment 1. We return to this issue below
with a statistical assessment.

The middle two panels of Figure 6 show the concentration of
direction judgments of RDK1, after an interval during which
RDK2 is sampled. These data were fit with a simple exponential

decay function of the type: ��t� � �e�
t
�, for t 
 0 (shown by the

solid lines). There appears to be some loss of information in some
conditions (low coherence, probe 1-short; high coherence, probe
1-long).

To assess whether any information loss is reliable, we examined
the estimated � parameters of the exponential decay function. If we
take the natural logarithm of the concentration estimates, � and �
may be estimated with the following linear regression equation:

ln ��t� � � � 1
�

t. Therefore, if 1
�

is positive, the function has a

negative slope; if 1
�

is negative, the function has a positive slope.
We compared the slopes from all four conditions against zero

(no loss, no growth). We used Bayes Factors in order to quantify

probe 1 probe 2

T1 = 129 or 506 ms

T2 = 71 - 1000 ms

Gaze-contingent
interval

until mouse click 
(followed by 
feedback arrow 
showing correct 
direction)

Figure 4. Characterizing information growth and loss in Experiment 2.
When we probe the participant to report RDK2, the variation in T2 allows
us to track the growth of information with time. When we probe the
participant to report RDK1, then T2 acts as a delay interval. We use this
delay to track the loss of information after switching to a new source. See
the online article for the color version of this figure.
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the evidence in favor of a difference from zero, but also to be able
to quantify evidence in favor of the null hypothesis (Rouder,
Speckman, Sun, Morey, & Iverson, 2009; Wagenmakers, 2007).
The Bayes Factor compares two models: a null model of no
difference and an alternative model that predicts there is a differ-
ence from zero. The Bayes Factor is effectively a marginal like-
lihood ratio, averaged over a prior distribution of effect sizes. In
line with Rouder et al. (2009), We adopted a scaled Cauchy prior
on the effect size with a medium scale of ��2� ⁄2. This prior places
most of its mass on small-to-medium effects. Bayes Factors were

computed using the BayesFactor package in R and the ‘ttestBF’
function (Morey, Rouder & Jamil, 2014).

Although the slopes were generally close to zero, all but two of
the 32 slope estimates (eight participants times four conditions)
were negative. The Bayes Factors in favor of the alternative were:
1.36, 3.70, 3.22, and 1.97 (high-short, high-long, low-short, low-
long conditions, respectively). Bayes Factors between 1/3 and 3
are generally considered ambiguous (Raftery, 1995). Bayes Fac-
tors between 3 and 10 would provide some evidence in favor of the
alternative model. According to these rules of thumb, although the
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Figure 6. Concentration of the direction estimates in Experiments 1 and 2, averaged across participants. The
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slopes are consistently negative, we only have some evidence in
favor of a nonzero slope in the low-short and high-long conditions.
Note that these inferences are relatively independent of our as-
sumptions about the scale of the prior: adopting a wider prior on
the effect sizes (a value of 1 on the Cauchy r scale parameter)
changed the Bayes Factors very little. In summary, we have some
evidence for information loss, but the evidence is relatively weak
and the effects are clearly small (see also comment in the General
Discussion).

Next we turn to the growth in information with sampling time.
Here we focus on two questions. First, do the rate of growth and
asymptotic concentration depend on the coherence of the pattern?
Second, do the rate of growth and asymptotic concentration change
in the presence of a concurrent memory load (i.e., having to hold
the direction of a previously sampled pattern in mind in Experi-
ment 2)? Note that these analyses are post hoc and exploratory: we
had not fully planned Experiment 2 at the time of running Exper-
iment 1.

To address these questions, we analyzed the growth data from
Experiments 1 and 2 together in a Bayes Factor mixed-design
ANOVA (Rouder, Morey, Speckman, & Province, 2012), with
coherence as a within-subject factor, experiment as a between-
subjects factor, and participant as a random factor. This analysis
compares a succession of more complex models against a null
model that only has a subject-specific intercept. To address the
questions about growth rate, the dependent variable was the fitted
� parameter of the growth curves. To address the questions about
variations in asymptotic concentration, the dependent variable was
the fitted � parameter of the same functions.

The logic of this approach is rooted in the idea of model
selection (Burnham & Anderson, 2002). That is, we compare
models with main effects (and/or interactions) to a simple null
model that contains only a subject-specific intercept. If adding a
predictor helps account for variance in the dependent variable, then
a model that contains this predictor should perform better relative
to the null model, even when penalized for its greater complexity
and flexibility. Likewise, we can compare different models that
contain different main effects and/or interactions with each other
in a similar way. The Bayes Factor tells us how much our prior
beliefs in a pair of models (e.g., null vs. main effects) should shift
in light of the data obtained.

Table 1 lists the Bayes Factors for the three main effects models
and the full main effects � interaction model, against the null
model. Values greater than one indicate support for the alternative
model; values below one indicate support for the null model. For
the growth rate, �, we have no evidence against the null at all. The

Bayes Factors for the four models are all below one. For the two
most complex models (simple main effects model: Experiment �
Coherence; main effects and interaction model: Experiment �
Coherence) there is actually some weak evidence in favor of the
null. In other words, we have no evidence that � varies with
coherence or working memory load.

For asymptotic precision, �, the strongest model is one that
contains both main effects of experiment and coherence, and their
interaction. Of the two main effects, including coherence on its
own clearly accounts for substantial variation in the data. Adding
experiment to this model improves its fit: the Bayes Factor for the
Experiment � Coherence model, relative to Coherence on its own
is just under 6 in favor of the more complex model (divide the
Bayes Factors for Models 3 and 2). This improvement stems from
the overall higher concentration without a concurrent memory load
in Experiment 1. Adding the interaction gives a Bayes Factor of
just over 4 relative to the main effects model, so there is some
relatively weak evidence that the effect of coherence depends on
the experiment. Although it appears that we have some evidence
that a working memory load affects the upper limit of accuracy
that can be achieved, we revisit this issue in Experiment 3.

Experiment 3

In both Experiments 1 and 2, we observed limited growth in the
accuracy of direction judgments with time, with a strong depen-
dence of the asymptote on coherence. Experiment 3 served two
purposes. First, we attempted to distinguish between several alter-
native explanations for the limited growth. Second, this experi-
ment served as an additional check on the higher asymptotes
observed without a working memory load in Experiment 1.

With regard to the limited growth of information, we consider a
number of possible explanations. First, an asymptote would arise
in the presence of a stimulus-independent source of noise that
cannot be “integrated out” by sampling the stimulus for longer.
One example of such a noise source would be motor noise in the
setting of the dial (Green & Swets, 1966; van den Berg, Awh, &
Ma, 2014). We can reject this explanation already on the basis that
we observe different asymptotes for low and high coherence pat-
terns. A stimulus-independent noise source would predict a com-
mon asymptote that does not depend on coherence. Indeed, the
generally much higher concentration observed in the 99% coher-
ence condition of Experiment 1 (see Figures 3B and 6) also
indicates that performance in the low and high coherence condi-
tions was unlikely to be limited by this type of stimulus-
independent noise.

Second, a variation on the first hypothesis is that there are other
sources of internal noise that do depend on the stimulus (i.e.,
greater internal noise the lower the coherence) and that cannot be
integrated out. Low-level observer models of the visual system
sometimes include an “induced noise” component: a source of
internal noise that scales with the amount of external noise in the
stimulus (Burgess & Colborne, 1988; Eckstein, Ahumada, & Wat-
son, 1997; Lu & Dosher, 2008). If this noise source was static over
time, then sampling the stimulus for longer would not diminish its
influence (Ludwig & Davies, 2011). An example of a static inter-
nal source of noise is between-trial noise in the drift rate in
evidence accumulation models (Brown & Heathcote, 2005, 2008;
Ludwig & Davies, 2011; Ratcliff & Rouder, 1998).

Table 1
Bayes Factors on the Information Growth Parameters in
Experiments 1 and 2

Model � �

Experiment .58 1.84
Coherence .56 3.62 � 104

Experiment � Coherence .33 2.04 � 105

Experiment � Coherence .26 8.34 � 105

Note. Bayes factors in favor of the model are in the left-hand column
against a null-model that contains just a subject-specific intercept.
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Third, the limited growth may indicate that participants are
making their direction judgments based on only a subsample of the
sensory evidence. There are several reasons why this inefficiency
might have occurred. (a) The sensory mechanisms that signal the
instantaneous motion direction to an integrator unit may have a
relatively transient impulse response (Adelson & Bergen, 1985).
Such mechanisms would respond vigorously to the onset of the
RDK pattern and some brief period after that. However, the
mechanisms would become increasingly unresponsive to sustained
delivery of motion information. In other words, the integrator
would, after a brief period, no longer be getting new evidence
samples. (b) The sensory mechanisms may be sustained, but par-
ticipants “make up their mind” after some period of time before the
viewing period is over (Ratcliff, 2006). They effectively stop
paying attention to the later evidence samples, perhaps in the belief
that their direction estimate is already good enough. We will refer
to hypotheses (a) and (b) collectively as a ‘primacy gradient,’
because both hypotheses predict that the early evidence samples
carry greater weight (c). Integration of sensory evidence may be
leaky, that is, subject to decay (Teodorescu & Usher, 2013; Usher
& McClelland, 2001). Note that this form of decay is somewhat
different from the information loss probed in Experiment 2. Leaky
integration implies that earlier evidence samples are effectively
replaced by later samples. This mechanism predicts that the later
evidence samples carry greater weight compared to the earlier
sample that have been forgotten (Bronfman, Brezis, & Usher,
2016).

In this experiment we directly tested this third hypothesis that
decisions are based on a subsample of the evidence. If participants do
not use all the available information, we aimed to identify whether
they give a relatively greater weight to the early information (as
predicted by the primacy gradient hypotheses (a) and (b) above) or to
the later information (as predicted by the leaky integration hypothesis
(c)). Our approach was to perturb the quality of information delivered
to the observer briefly, either early or later in time.

Figure 7 illustrates the logic of our approach. Participants
judged the direction of a single RDK, just as in Experiment 1. The
viewing duration was fixed to 1 s (the longest viewing period in
Experiments 1 and 2). On half the trials, we briefly altered the
coherence of the pattern, with a coherence “pulse.” The magnitude
of the pulse was 	 12%, subtracted from a high coherence RDK
and added to a low coherence RDK. The choice of pulse magni-
tude was determined in a pilot experiment to ensure that it would

actually affect the accuracy of people’s direction estimates. In the
same pilot we verified that the pulses themselves could not be
reliably identified. The pulse was delivered either early in the
viewing period or toward the end.

The idea here is that when the coherence is low, a brief increase
in the coherence should improve accuracy, but only to the extent
that participants were sensitive to the sensory evidence delivered
in the early or late pulse epoch. Under the primacy gradient
hypotheses, participants will be more sensitive to early information
compared with later information. Therefore, early (positive) pulses
should be more beneficial than late pulses. Under the leaky inte-
gration hypothesis, early information decays in favor of later
evidence samples. Therefore, a late coherence pulse should be
more beneficial than an early pulse.

For high coherence patterns, the effect of the (negative) pulses
should be opposite (i.e., a brief decrease in coherence should
decrease accuracy). However, the high coherence motion direction
can be estimated with high precision in a relatively short period of
time anyway. As such, we might expect that an early negative
pulse can easily be overcome with (limited) later evidence sam-
ples. Likewise, a late pulse may not detract much from an already
good direction estimate. On this basis, the positive coherence
pulses added to the low coherence patterns are the most diagnostic
with regard to the different hypotheses under investigation. Nev-
ertheless, we included the complementary high coherence (nega-
tive pulse) condition for two reasons. First, the high coherence,
negative pulse condition is used in Experiment 4 to test the
prediction that in free sampling conditions, (un)certainty plays a
role in governing the switch point from one source to another.
Second, inclusion of ‘no pulse’ baseline trials, for both coherence
levels, is a reproducibility check on the asymptotic concentration
levels that can be achieved in the absence of a working memory
load. That is, if the concentration values estimated on these trials
match those of Experiment 1, we may be increasingly confident
that the overall decrease in concentration in Experiment 2 (i.e., in
the presence of a memory load) is real and not just attributable to
the use of a different sample of participants.

Method

Participants. Eight new participants were recruited. They
took part in a single session that lasted approximately 1 hour.
Participants were paid £8 for their help.
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Figure 7. Pulse methodology used in Experiment 3. On pulse trials, the coherence of the RDK is briefly
altered: either from low to high (green traces) or high to low (magenta traces). The pulse either comes early or
late in the viewing period. See the online article for the color version of this figure.
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Materials. The stimuli were created in the same way as in
Experiments 1 and 2. Only a single RDK was presented in the
center of the screen for 1 s. The RDK consisted of white dots on
a black background. Participants viewed the screen through the
hot-plated mirror used in eye tracking, with their head constrained
with chin and forehead rests. Eye movements were not recorded,
but in this way we controlled the viewing distance (at �57 cm) and
matched the viewing conditions to those in all other experiments
reported here. Coherence pulses were delivered either early or late
in the viewing period. The pulse duration was �150 ms (14 frames
at 85 Hz refresh rate). The early pulse started �150 ms into the
animation (on frame 13); the late pulse started �700 ms (on frame
59) into the animation.

Procedure. A trial started with an 800 ms fixation cross,
which was then replaced by the RDK animation for 1 s. The RDK
was followed by the dial and after setting it, participants received
feedback as in previous experiments. The next trial would then
start automatically after a delay of 750 ms. Participants were told
that they could take a break by setting the dial, but withholding the
mouse click. In addition, forced breaks were introduced every 80
trials.

The two coherence levels, crossed with pulse presence/absence
and pulse location (early/late), gives eight experimental condi-
tions. Each condition was repeated 60 times, for a total of 480
trials. The different conditions were randomly intermixed. On
trials in which there was no pulse, a 0% magnitude pulse was
allocated to either the early or late epoch. In this way, we ensured
that the assessment of the pulse effect for each combination of
coherence and pulse location was based on a similar number of
trials.

Results

Figure 8 shows the distributions of direction errors in all eight
conditions for one participant. The different colors in each
panel now correspond to the presence or absence of a coherence
pulse. On the top row, we show the data from the low coherence
conditions. Here we expect a pulse to be beneficial for at least
one of the epochs. A benefit of the pulse should manifest itself
as a narrower distribution with a higher peak. This effect can be
seen quite clearly for both early and late pulses for this partic-
ipant.

The bottom row shows the high coherence data. We were
noncommittal about our expectations here, for reasons given
above. If the pulse was going to affect accuracy at all, we would
expect it to harm performance. Such an effect would manifest itself
as a wider distribution with a lower peak. For this participant, the
early pulse appears to have detrimental effect, but the later pulse
does not appear to affect performance much at all.

Figure 9 shows the concentration estimates from the Von Mises
fits, averaged across participants. Note that within each panel, the
no pulse trials are indistinguishable and should generate similar
concentration estimates. Reassuringly, in both panels, the within-
subject error bars for early and late no pulse trials overlap sub-
stantially.

The benefit of a positive pulse (left-hand panel) should manifest
itself as higher concentration values in the pulse trials. Any de-
crease in performance from a negative pulse (right-hand panel)
should show up as a decrease in the concentration values in the

pulse trials. We simply tested for a pulse effect for each combi-
nation of coherence and pulse location. The Bayes Factors in favor
of the pulse having an effect is given near the top of each panel,
above each pair of bars. There is clear evidence in favor of a
positive effect of an early pulse for low coherence RDKs. It
appears that there is also an effect of the early pulse for high
coherence RDKs, but the variability here is greater and the Bayes
Factor is ambiguous. When the pulse was delivered late, the
evidence is again ambiguous.

Finally, we note that the no pulse concentration values observed
in this experiment are more similar to the 1 s concentration
estimates obtained in Experiment 2 (Figure 6—right-hand panel)
than in Experiment 1 (Figure 6—left-hand panel). This observation
qualifies the effect of working memory load on asymptotic con-
centration values in the comparison of Experiments 1 and 2. It
appears that the concentration values in Experiment 1 were ele-
vated, perhaps because this experiment was part of a larger study
and participants had already performed three sessions in which
they had to make comparative direction judgments between RDKs.
As such, when evaluated across Experiments 1 through 3, we have
little evidence that a concurrent working memory load influences
the integration of sensory evidence.
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Figure 8. Direction judgment error distributions for one participant from
Experiment 3. Solid lines are fits of a Von Mises density. See the online
article for the color version of this figure.
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Experiment 4

Having characterized the way information grows with time
when sampling a source of information, we now turn to the
question whether participants are able to monitor the amount of
information accumulated online and use this to decide when to
switch from one information source to the next. The basic predic-
tion is straightforward: when the first source that is sampled is of
low quality (high noise, low coherence), the observer should
switch later than when that source is of high quality (low noise,
high coherence). In addition, when a low quality source is tempo-
rarily enhanced with good quality information, the participant
should switch earlier compared to when this enhancement is ab-
sent. Likewise, when a good quality source is temporarily de-
graded, participants should delay their switch point. These key
predictions were tested in Experiment 4.

In this experiment, we used the comparative motion discrimi-
nation paradigm of Cassey et al. (2013) and illustrated in Figure 1.
To test the online accrual of information, we embedded an early
coherence pulse in the first RDK on half the trials. That is, if the
coherence of the first pattern was low, it would be increased
briefly, and if the coherence of the first pattern was high, it would
be decreased briefly (as in Experiment 3). If the switch point is
controlled by monitoring the (un)certainty of the motion direction
estimate for that pattern, we would expect the switch point to be
delayed for a negative pulse and to be brought forward for a
positive pulse.

Method

Participants. Eight participants were tested in three sessions,
run on different days with each session lasting approximately one
hour. The first session was used to estimate a fixed, angular offset
between the two patterns that was to be used in the main experi-
ment. The main experiment was then run in two additional sessions
consisting of 6 blocks of 64 trials. Participants were paid £25 upon
completion of all three sessions.

Materials. The equipment used was the same as that in Ex-
periments 1 through 3. The algorithm to generate the RDK patterns
and their spatiotemporal parameters also remained the same.
Again, we used two coherence levels of 12% and 24%. In the main
experiment, a “standard” direction was chosen randomly from the
interval [0..359] and assigned to either the top or bottom pattern.
The other pattern then moved in the standard direction 	 a fixed
angular offset determined by the preliminary measurement of the
directional discrimination threshold.

Procedure. The first session was dedicated to the measure-
ment of a fixed angular offset to be used in the main experiment
between the two patterns. Adapting the offset for each individual
participant was important for two reasons. First, in this way all
participants performed at approximately a similar level of accu-
racy. Second, we needed to find an angular offset where the
variation in coherence actually mattered. That is, if the offset is
really large it may be easy to detect even when the coherence of
the RDKs is low.

Participants viewed two RDKs in sequence, presented at the
center of the display. The patterns always had the same coherence
within a trial, but varied between the low and high coherence
levels. Eye movements were not monitored. Each pattern was
presented for 600 ms with a �750-ms interstimulus interval.
Participants responded whether the first or the second pattern
moved in a relatively more clockwise direction with a button press.
The angular offset between the two patterns in either a clockwise
or anticlockwise direction was controlled by an adaptive staircase
routine (Watson & Pelli, 1983) to target a performance level of
75% correct. We interleaved separate staircases for the low and
high coherence levels, with 80 trials/staircase. Participants were
given the opportunity to practice until they felt comfortable with
the task (typically between 30 and 60 practice trials). The 160
staircase trials were run with a break halfway. The required direc-
tional offset for the high coherence patterns is typically much
smaller than that for the low coherence patterns. The offset used in
the main experiment was set exactly midway through the low and
high offsets (typically, across many such experiments in our lab,
the offset averages around 40°).

The main experiment involved the same direction comparison,
but now participants were free to sample the two patterns with
active gaze, as shown in Figure 1. A fixation point appeared in the
center of the display, which was used to check for accurate fixation
and recalibration of the eye tracker if necessary. An up or down-
ward pointing arrow replaced the fixation point and two stationary
dot patterns appeared �5.8° above and below central fixation. The
arrow remained visible for �330 ms. The offset of the arrow was
the cue for the participant to shift gaze to the cued pattern. We
cued the first pattern in this way to ensure that the top and bottom
patterns were fixated first equally often (otherwise people have a
tendency to fixate the top pattern first). From the moment the
arrow disappeared, participants had �1.5 s to freely sample both
patterns.

The activation of a RDK was gaze contingent: if the eyes
crossed a vertical distance of 1.8° from the fixation, the pattern in
the corresponding visual field was turned ‘on.’ We gave no in-
structions about the number of switches or the strategy that par-
ticipants should follow. With a predictable offset of the arrow,
participants frequently anticipated its disappearance and shifted
their gaze around the time of arrow offset. If the eyes were already

low coherence high coherence

0

5

10

15

early late early late
pulse timing

m
ea

n 
co

nc
en

tra
tio

n

no pulse
pulse

BF  =15.0110 BF  =0.7010 BF  =0.8810 BF  =0.4710

 κ

Figure 9. Mean concentration estimates (	 within-subject SEMs) for all
eight conditions in Experiment 3. The Bayes Factors for each paired
comparison quantify the evidence in favor of an effect of the coherence
pulse (i.e., values greater than 1 suggest an effect).
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on the pattern before the full presentation time of the arrow, the
RDK would only move upon arrow offset. We did not exclude
these trials.

When the whole sampling period was over, participants had to
indicate whether the top or bottom pattern moved relatively clock-
wise by pressing the left or right button (respectively) on a stan-
dard game pad. There was no deadline for the manual response.
Auditory feedback was given with 500 and 750 Hz. tones indicat-
ing error and correct decisions respectively. The tone was played
for 100 ms.

The full design of the main experiment is as follows. The
coherence of the first pattern (the one cued at fixation) can be low
or high. The coherence of the second pattern was low or high,
independently from the first pattern coherence. Either the top or
the bottom pattern was cued first with equal probability. The
“standard” was allocated to either the top or bottom pattern and the
other pattern moved in a direction either clockwise or anticlock-
wise from the standard. On half the trials a coherence pulse was
inserted while the participant sampled the first pattern. The pulse
magnitude was 	 12%, subtracted from a high coherence RDK
and added to a low coherence RDK. Full factorial combination of
these factors results in a block of 64 trials which were randomly
intermixed. The intertrial interval was �750 ms.

Trials were rejected if participants failed to sample both patterns
and if they switched away from the first pattern before the pulse
was complete (i.e., fixation durations less than 306 ms). We
applied the same duration criterion for no pulse control trials. The
proportion of rejected trials varied between 3–12% across all eight
participants. Our results did not change qualitatively or statistically
without rejecting any trials.

The eye tracker was calibrated using a grid of 9 points at the
start of each block of trials. The calibration target was a ‘�’ with
each leg measuring 0.5° � 0.1°. The calibration target was also
used as the fixation point at the start of each trial.

Saccades and fixations were parsed offline using velocity and
acceleration criteria of 30°s�1 and 8000°s�2. The onset of a
fixation on a pattern was determined by the offset of the saccade
that shifted gaze onto that pattern. The offset of a fixation was the
onset of the saccade that took gaze away from that pattern (typi-
cally back to the central region before moving on to the other
RDK). The critical outcome measure is the fixation duration on the
pattern sampled first. Note, that this period may encompass several
fixations within the same pattern. Therefore, we refer to this
measure as the switch time.

To facilitate comparison with previous work from Cassey et al.
(2013), we report three additional variables. The total fixation time

on a pattern (including return visits) corresponds to the ‘gaze time’
for that pattern. The gaze time on the first pattern is not indepen-
dent from the total gaze time on the second pattern, due to the fixed
trial duration. We express the gaze time on the first pattern as a

proportion of the total gaze time over the trial (i.e.,
GT1

GT1 � GT2
). We

also examined the number of switches on each trial and we report
the proportion of trials in which only one switch occurred. Finally,
we checked the overall accuracy of the perceptual decisions.

Results

Table 2 summarizes the mean (	95% confidence intervals)
gaze time (proportion of time spent on the first pattern), proportion
of 1-switch trials and perceptual accuracy across the sample of
eight participants, separately for the four combinations of two
coherence levels. The no pulse control conditions are directly
comparable with the data from Cassey et al. (2013, their “un-
known” condition) and replicates the results reported by those
authors. We highlight some salient findings, although these are not
of primary interest here.

First, the overall gaze time on the first pattern (i.e., including
refixations) was clearly affected by the coherence of that first
pattern, with the low coherence pattern being fixated for longer. It
is also notable that more than half the available gaze time was
allocated to the first pattern (all proportions are above 0.5), even
when the quality of both patterns was the same.

Second, there is a modulation of the gaze time by the coherence
of the second pattern. That is, participants spent relatively less time
sampling the first pattern when the quality of the second pattern
was low. This was the critical effect of Cassey et al. (2013). Note
that any effect of the quality of the second pattern has to be
mediated through refixation. That is, participants cannot know
what the coherence of the second pattern is before they have
switched, so on single-switch trials the gaze time on pattern 1
cannot reflect the unknown quality of the second source. The small
magnitude of the effect is attributable to the large proportion of
single-switch trials.

Third, the majority of trials involved just a single switch to the
second pattern and the participant then kept fixating that pattern
until the end of the trial. The proportion of such trials is slightly
lower when the second coherence is high, similar to Cassey et al.
(2013).

Fourth, perceptual accuracy was close to the 75% level targeted
with our titration of the angular offset between the two patterns.
Participants could clearly do the task, yet it was still challenging.
In addition, the variation in coherence mattered. Performance was

Table 2
Gaze Time Allocation, Switch Frequency and Accuracy of Perceptual Decisions in Experiment 4 (95% Within-Subject Confidence
Intervals in Parentheses)

Performance
measure

No pulse Pulse

LL LH HL HH LL LH HL HH

Gaze time .57 (	.02) .58 (	.02) .53 (	.01) .54 (	.01) .56 (	.01) .56 (	.02) .55 (	.01) .55 (	.01)
P(1 switch) .82 (	.03) .79 (	.03) .80 (	.03) .77 (	.06) .79 (	.04) .79 (	.02) .78 (	.05) .77 (	.04)
Perceptual accuracy .61 (	.04) .69 (	.04) .65 (	.03) .79 (	.04) .67 (	.04) .75 (	.04) .70 (	.04) .80 (	.02)

Note. The two-letter strings in the table header denote the coherence of the first and second pattern, respectively (L � low; H � high).
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worst when the coherence of both patterns was low and it was best
when the coherence of both patterns was high. The “mixed”
conditions fell between these extremes.

The critical outcome measure for the present purposes is the
switch time. Figure 10 shows the mean switch times in the four
conditions created by crossing the coherence of the first patch (low
or high) with the presence or absence of the coherence pulse (note
that the coherence of the second patch cannot influence the switch
time). On no pulse trials, the coherence of the first pattern pre-
dictably influenced the switch time, with observers switching later
if the coherence was low. However, delivery of a positive pulse in
this case brought the switch point forward. Delivery of a negative
pulse when the coherence is high delayed the switch point.

Statistically, the primary effect of interest is an interaction
between coherence of the first patch and the presence of the pulse.
We therefore compared two general linear models. The null model
only contains a random effect of participant and fixed effects of the
first pattern coherence and presence of a pulse. The “interaction”
model contains the same random and fixed effects, as well as the
critical interaction. The Bayes Factor quantifies the relative evi-
dence in favor of the interaction model (Rouder et al., 2012). This
interaction model was well over 3000 times more likely than the
null model. An evidence ratio of this magnitude is considered very
strong evidence in favor of the critical interaction (Raftery, 1995).

General Discussion

The way information is sampled can influence choice behavior
in perceptual tasks, value-based decision making and experiential
risky choice paradigms (Glaholt & Reingold, 2009, 2011; Hills &
Hertwig, 2010; Krajbich et al., 2010, 2015; Krajbich & Rangel,
2011; Noguchi & Stewart, 2014; Russo & Leclerc, 1994; Shimojo
et al., 2003). Computational models of decision making typically
focus on the overall choice, given that a certain amount of infor-
mation is available to the decision maker. Our work aims to
elucidate the mechanisms that drive the acquisition of information
itself. That is, when different sources of information have to be
sampled to come to some overall decision, how do observers
allocate time to these different sources? How does the time allo-

cation depend on the quality of those information sources? Does
the timing of a switch from one source to another tell us something
about cognitive processing preceding the switch?

We conducted a series of experiments to test an information
foraging framework of the way sensory evidence is sampled in the
process of making a perceptual decision. We focused on three key
components of this framework: (a) Information about a source
grows with time as it is being sampled; (b) Once a new source is
being sampled, information about the previously sampled source
may degrade; and (c) The point at which the observer switches
from one source to another is governed by online monitoring of his
or her degree of (un)certainty about the sampled source. We deal
with each of these components in turn.

Information Growth

Experiments 1 and 2 characterized in detail how information—
the degree of certainty about motion direction—grows with time.
Several features of the results are noteworthy. First, information
grows to an asymptote. Second, the asymptotic precision depends
on the quality of the source, with the lower quality source having
a lower asymptote. Third, the rate of information growth is invari-
ant to changes in coherence and memory load. Fourth, there is little
evidence that keeping the direction of a previously sampled pattern
in mind influences the extraction of information from a subse-
quently sampled pattern.

One reasonable question is whether the limited growth in infor-
mation is somehow inherent in the stimulus. It is not self-evident
that for RDK patterns the concentration of directional errors
should increase linearly with viewing time. The Appendix de-
scribes a set of simple simulations that demonstrates that the
concentration of directional errors does indeed increase linearly,
and that it reflects the average pattern of information growth within
a trial (a point we will return to below).

We put forward a number of explanations for the limited growth
in information: (a) stimulus-independent static noise (e.g., motor
noise); (b) induced (stimulus-dependent), static internal noise; (c)
a primacy gradient, where early evidence samples are weighted
more heavily than later evidence samples; and (d) leaky integra-
tion, where early evidence samples are replaced by newer infor-
mation. Experiment 3 demonstrates that the growth of accuracy is
limited at least partly because not all evidence samples are used
equally. That is, early samples are more influential when giving a
direction estimate than later samples. These findings are most
consistent with the primacy gradient hypothesis (c). The primacy
gradient may stem from transience in the impulse response of the
motion-sensitive sensory mechanisms, participants deciding on the
direction before the viewing period is over, or a combination of
both.

Information Loss

We probed the loss of information in Experiment 2, where
participants had to view two patterns in sequence and were asked
to report the direction of either the first or the second pattern.
When they were probed for the first pattern, the viewing time of
the second pattern acted as a (filled) delay interval in which new
information from a different source was extracted. On the whole,
our measured time constants of information loss were large (for the
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Figure 10. Switch time in the comparative motion direction discrimina-
tion task of Experiment 4 (mean of means across eight participants). Error
bars are within-subject SEMs.
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sample fits shown in Figure 6 the time constants ranged between
3 and 18 s). As such, the amount of information lost even in the
largest, 1-s delay period was relatively small.

It could be argued that the delay interval is actually much longer
than simply the viewing time of pattern 2. There is a brief interval
between the offset of the motion of the first pattern and the onset
of the motion of the second pattern, attributable to the instructed
saccade from one pattern location to another. In addition, once the
second pattern has been shown, there is a RT associated with
setting the dial and submitting the response. To a first approxima-
tion, however, including these additional delays would simply shift
all the data points rightward along the abscissa, increasing the time
constants to even larger values.

Two further issues are worth noting. In the absence of new
information, some loss of information seems all but inevitable.
That is, it is unlikely that people’s direction estimates would
become more accurate in the absence of new information (al-
though some sequential sampling models assume that decision
making is served by sampling from a memory representation; e.g.,
Smith & Ratcliff, 2009). Therefore, at best one might expect no
loss of information (zero slope in Figure 6). A zero slope is
achieved by having a very large time constant, but even if every
participant had such large time constants, the distribution of slopes

(� 1
�

in our regression analysis) would still be negative. As such,
it is fair to say that the slope analysis in this experiment is biased
against 0.

In addition, it may be argued that the concurrent memory load
here is rather minimal. People do not need to maintain a visual
working memory representation of the whole, temporally extended
pattern they viewed first. They just need to encode that pattern
with a single direction estimate (e.g., a visual or verbal represen-
tation of a “clock face”). It is possible that the working memory
load here effectively corresponds to just one unit or “chunk” (Luck
& Vogel, 1997). Such a low load may be relatively easy to
maintain, even in the face of processing new visual information.

On the whole then, it is fair to say that the gradual loss of
information from working memory was minimal. As such, we
have little evidence that return visits in a free sampling paradigm
(Experiment 4 and Cassey et al., 2013) to previously sampled
information sources are driven by a need to “refresh” previously
gathered information. It is possible that these revisits form some
kind of verification step (Russo & Leclerc, 1994; Glaholt &
Reingold, 2011) or that they occur on trials in which the observer
switched before a good estimate of the first source was acquired,
on the basis that the overall time is limited.

Online Monitoring of Information Accrual

A critical hypothesis of the information foraging framework is
that when participants have to sample multiple sources of infor-
mation, the point at which they leave a source is governed by
applying some criterion amount of certainty about the task-
relevant variable. We tested this hypothesis in Experiment 4, in
which we modified the comparative direction discrimination task
of Cassey et al. (2013). This paradigm has all the key features of
an information foraging task, as outlined in the Introduction. We
see this paradigm as a bridge between classic perceptual decision
making tasks (e.g., left-right random dot motion discrimination;
Gold & Shadlen, 2001), value-based preferences (Krajbich et al.,

2010; Krajbich & Rangel, 2011) and risky choice situations that
involve active sampling of pay-off distributions (Camilleri &
Newell, 2013; Hertwig & Erev, 2009).

This experiment provides two contributions. First, the no pulse
data replicated the results reported by Cassey et al. (2013). Second,
the pulse manipulation tested whether the switch was driven by
online monitoring of the information extracted. The results were
clear-cut: the timing of the first switch was strongly influenced by
altering the quality of information even just briefly during the
fixation (see Figure 10).

These data provide strong evidence against any model that
assumes that the switch point is not controlled in an online manner
by the incoming evidence. For example, indirect control models
assume that fixation durations are effectively random (Hooge &
Erkelens, 1996; Vaughan, 1982; Vitu et al., 1995), and this as-
sumption is a core feature of the fixation-dependent drift diffusion
model used to account for value-based decision making (Krajbich
et al., 2010; Krajbich & Rangel, 2011). This form of indirect
control can already be rejected based on the no pulse data in
Experiment 4: participants switched earlier from a high quality
source of information compared to a low quality source. Never-
theless, that effect may be accounted for without necessarily as-
suming online monitoring of the information accrued. Only ever
two coherence levels are used in our comparative direction dis-
crimination task. It is possible that participants pick up on this
feature and that they learn to classify the first pattern as low or
high coherence early on in the trial. This early classification may
be used to set a temporal deadline or switch point for that partic-
ular trial. Participants may then monitor some internal timing
mechanism (Engbert et al., 2005; Ivry & Hazeltine, 1995; Ivry &
Spencer, 2004; Nuthmann et al., 2010; Trukenbrod & Engbert,
2014) to this deadline.

Models in which a temporal deadline is set based on early
evidence cannot account for the influence of the pulse, unless they
assume that the early evidence is computed in a window of �300
ms (over this window the average coherence in the positive and
negative pulse conditions was equal). Of course, given limitless
flexibility in the window over which the timer or deadline is set, it
becomes difficult to distinguish such a model from the online
monitoring hypothesis. However, online monitoring of the accrued
information appears a less post hoc and more natural explanation
of the switch time results.

Information Foraging in Perceptual Decision
Making (Revisited)

With the new empirical findings in hand, we now return to the
information foraging framework sketched in Figure 2. Suppose for
the moment that the growth curves we have measured (see Figure
6) are representative of the information accrual during an individ-
ual trial, as illustrated in Figure 2. Clearly it is possible to impose
some criterion on the degree of certainty and, in line with the
foraging framework, it would take longer to reach that criterion for
the low coherence pattern compared to the high coherence pattern.
In that sense, the foraging framework is qualitatively consistent
with the growth curves we have measured.

However, if we push this model further, the asymptotic growth
curves pose a problem. That is, suppose we placed a criterion on,
say, a concentration value of 10 (imagine a horizontal line at �c �
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10 in Figure 6—left and right panels). It is clear that this criterion
will never be reached for a low coherence pattern. Therefore, a
common criterion would be constrained by the upper limit of
accuracy attainable for the poorest quality information source (e.g.,
a criterion at �c � 4). This criterion would be exceeded extremely
swiftly for a better quality source, even though for that source there
would still be plenty of room for further information growth.

An apparently logical alternative would be to impose a criterion
that is set relative to the maximum accuracy attainable for a source
(e.g., �c � c�, where 0 � c � 1 is the relative criterion, and � is
the asymptotic concentration that depends on the quality of the
source). However, if accept our finding that the time constant of
information growth is the same for low and high coherence pat-
terns, it follows that the time at which this relative criterion is
reached will not depend on coherence. This prediction is clearly
inconsistent with our switch time results (see Figure 10).

Another alternative, one that is at least superficially more
closely related to classic models of animal foraging (Charnov,
1976; Stephens, 2008), is that there is a criterion on the rate of
information growth. This would make intuitive sense: there is no
point staying in a patch when you are no longer gaining very much
information from that patch (and, presumably, more information
could be gained from a different patch). This mechanism would
involve monitoring the slope of the tangent of the growth curve
and switching when this slope drops below some criterion value
(formally: a criterion on the derivative of the growth curves).
However, given equal time constants and differences in asymptotic
accuracy, it actually turns out that this slope criterion is exceeded
more quickly for the low coherence source, again in contrast to the
switch time data.1

However, we would caution against interpreting our empirical
growth curves as directly equivalent to the (average) information
accrual experienced in real-time during a sampling epoch on any
one individual trial in the free sampling paradigm. First, these
curves were derived under conditions in which the viewing time
was limited, but the subsequent response time was not. The pattern
may have been presented for, say, �500 ms, but the participants
may have taken several seconds to set the dial. Although no new
information is presented during this interval, it is possible that the
deliberation afforded by this intervening period distorts whatever
degree of certainty existed at 500 ms in real time. For instance,
participants may continue to sample evidence from a memory
representation of the pattern (Pleskac & Busemeyer, 2010) and use
this to alter their representation of the motion direction.

Second, we have quantified the degree of certainty as the con-
centration of a Von Mises density fit to the distribution of errors
across a number of trials. To map this on to what happens within
an individual trial requires at least two assumptions: (a) The
concentration of errors across trials at time t represents the average
precision with which the mean direction is estimated from the
samples observed up until t within individual trials; (b) The metric
that participants use to track their (un)certainty is closely related to
our estimate of their (un)certainty in the form of the concentration
of a Von Mises distribution.

With regard to the first assumption, the Appendix outlines the
logic of our approach and confirms the validity of this logic
through simulation. This simulation demonstrates that the concen-
tration of errors across trials is a good approximation of the
average precision around the estimated mean direction within

trials. With regard to the second assumption, it is clearly not
necessarily the case that the actual metric of information used by
participants in real time matches the one we have estimated in our
experiments.

In this regard, the idea that an individual sampling episode is
like a perceptual decision, but one that involves estimating a
continuous value, is worth revisiting. As stated earlier, standard
models of (perceptual) decision making, such as the drift diffusion
model (Smith & Ratcliff, 2004) or accumulator models (Brown &
Heathcote, 2008; Smith & Vickers, 1988) that explicitly represent
a small number of discrete decision alternatives are not well suited
to this more continuous estimation problem. However, one can
think of the decision as the parallel accumulation of evidence in
favor of a large number of different directions, for example, as a
1D decision field with many accumulators representing different
motion directions with relatively fine granularity (Ludwig et al.,
2007; Wilimzig et al., 2006). In a similar vein, Smith (2016) has
extended the drift diffusion model to continuous report tasks on a
circular scale, such as those frequently used in the visual working
memory literature (e.g., Zhang & Luck, 2008).

It is possible that such models may be used to account for the
sampling behavior seen in our particular task involving direction
judgments of random dot motion patterns. However, the generality
of such mechanisms to other decision problems between options
specified by continuous values (e.g., value-based judgments and
risky choices in decisions from experience; Camilleri & Newell,
2013; Hertwig & Erev, 2009; Krajbich et al., 2010; Krajbich &
Rangel, 2011; Lejarraga, Hertwig, & Gonzalez, 2012), remains to
be seen. The fundamental claim made in this article is that tracking
(un)certainty is online is a useful generic mechanism for governing
sampling behavior in a wide variety of decision problems. Evi-
dence accumulation in a continuous decision field is one way to
achieve this implicitly, because dynamic noise in the accumulation
process is integrated out gradually (Ludwig & Davies, 2011),
resulting in more precise responses as time goes by. However,
more explicit measures of uncertainty may also be used. For
example, participants may use confidence as a proxy measure of
their (un)certainty, where confidence may or may not be based on
the same information that drives the accuracy of their responses
(Macmillan & Creelman, 2004; Pleskac & Busemeyer, 2010;
Vickers, 1979; Zylberberg, Barttfeld, & Sigman, 2012). Alterna-
tively, the Appendix tests a simple algorithm which updates a
running mean estimate and compares the updated value with its
predecessor. If the estimated direction has not changed much, then
the observer can be reasonably confident that the direction esti-
mate is accurate, or at least stable. With a criterion on the absolute
magnitude of the moment-to-moment change, this scheme ac-
counts for saturating information growth functions consistent with
a primacy gradient and later switch times for poor quality infor-
mation.

In summary, the foraging framework makes the assumption that
observers monitor some measure of (un)certainty around the vari-

1 To see why this is the case, note that the derivative of the growth curve
d�
dt � �

�
e�

t
�. Adopting a criterion of �, we set d�

dt � �. Solving for t gives

t � � � ln ��
�

. As asymptotic concentration, �, increases, the fraction
inside the logarithm approaches 0 (assuming � 
 ��), resulting in increas-
ingly negative numbers that are multiplied by ��.
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able of interest (motion direction in this specific instance) and use
this to drive their sampling strategy. We sought to test this as-
sumption. We showed that certainty increases with time, up to a
plateau. When we experimentally manipulated observers’ (un)cer-
tainty, by varying coherence and inserting coherence pulses, we
were able to measure the consequences both in terms of the
accuracy of direction report (Experiments 1–3) and in terms of
their active sampling strategy (Experiment 4). These findings
support the idea that some online measure of (un)certainty is
computed by observers, but its algorithmic implementation in real
time is an open question.
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Appendix

Estimating Within-Trial Precision From Across-Trial Errors

In the main article, we measure the distribution of direction
errors to infer how the (un)certainty of the estimated direction
changes with time. The foraging model shown in Figure 1 is
concerned with the sampling strategy on an individual trial. The
model makes the assumption that the decision to switch to a new
source of information is governed by some criterion level of
precision of the estimated variable (i.e. direction). Therefore, it is
important to understand the relation between the information ac-
crual within an individual trial and our measure of the concentra-
tion of directional errors across trials at different time points.

The following analogy helps to clarify our logic. Imagine we
want to know how the accuracy with which we can estimate a
mean IQ depends on the number of participants we test. Clearly we
can estimate this by testing N participants, computing the mean IQ
and the standard error around that mean, for various values of N.
An alternative, laborious approach would be to compute the mean
IQ separately for M independent groups of N subjects, drawn
randomly from the population of interest (and repeat this for
various values of N). The standard deviation of the distribution of
M means provides an estimate of the expected error with which the
mean IQ from any one group of N participants approximates the
population mean.

Now let us apply this logic to the motion direction judgements
of Experiments 1 through 3, with a simulation. In these experi-
ments we control viewing time, or the number of samples within
a trial (N). We think of a ‘sample’ as a global, average direction
estimate across a number of dots (not necessarily all of them)
across a number of frames. We will refer to these as ‘direction
samples.’ As the samples come in, the simulated participant com-
putes a running (circular) mean over all the samples seen so far. In
addition, (s)he estimates the (circular) standard error of the mean.
We convert this into a precision measure by taking the reciprocal
of the squared standard error. As the samples come in, the standard
error goes down and the precision increases (approximately lin-
early once sufficient samples are available). At the end of the
viewing epoch, the observer reports the final value of the running
mean. Across M trials, we have a distribution of errors around the
true motion direction. The question is: how does spread of this

distribution across trials relate to the average precision within
trials?

We performed some simple simulations to assess this relation-
ship. These simulations also addressed the question whether the
limited growth in the concentration values is somehow inherent in
the informational content of the RDK patterns. The specific as-
sumptions of the simulation were as follows. (a) The signal direc-
tion was always 0° (horizontal right). The directions of noise dots
were drawn in the same way as for the patterns in our experiments.
(b) The observer computes a circular mean of the direction over all
or a random sub-set of dots across successive frames. This estimate
constitutes one direction sample. (c) After the final frame N, the
reported direction is the circular mean of all the direction samples
from that trial. (d) The precision is computed as the reciprocal of
the squared standard error around that mean after N frames. (v)
After M trials (M � 10000), the distribution of errors is fit with a
Von Mises density. The concentration parameter of that distribu-
tion measures the reciprocal spread of that distribution, analogous
to the precision around the mean measured on individual trials.

Figure A1A and A1B show the results of this simulation for low
and high coherence patterns. We averaged the within-trial preci-
sion over M trials; these values are shown as ‘within-trial preci-
sion.’ These precision estimates are not very well estimated for the
shortest viewing duration (N � 6), where only 5 direction samples
are available. However, for longer viewing times the within-trial
precision increases linearly. Importantly, the concentration param-
eter computed from the across-trial error distributions also in-
creases linearly with viewing time, and is typically very close to
the within-trial precision. We think the discrepancy for the short
viewing durations is down to a bias in the estimated standard error
of the mean on individual trials after 6 frames. However, the
concentration parameter for this duration is estimated from a
relatively well-defined distribution of errors across trials. Note that
the overall concentration values attained in the high coherence
condition are much larger than in the low coherence condition.
This is consistent with the rate-of-rise effect shown in Figure 2 in
the main text.

(Appendix continues)
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The concentration values achieved by the simulated observer are
much larger than those measured in our human participants. The
model we simulate here is clearly not realistic in that it ignores any
spatiotemporal filtering by the early visual system and higher-level

motion sensitive mechanisms. There are clearly various sources of
inefficiency and noise in human participants that are not taken into
account here. One example of inefficiency is that humans are
unlikely to compute the global direction across all the dots. Figure
A1C shows a simulation in which the coherence was high, but
the subject samples a random subset of half the dots on every
frame (Dakin, Mareschal, & Bex, 2005). Unsurprisingly, this form
of inefficiency reduces the overall concentration values that are
achieved. Nevertheless, the linearity with viewing time and the
close relation between across-trial concentration and within-trial
precision, is preserved.

Finally, we simulated the information growth for low and high
coherence patterns at various viewing durations, with a criterion on
the absolute change in the running mean across two successive
direction samples. This comparison was meant to implement a
simple heuristic for monitoring uncertainty: if a new direction
sample does not alter the estimated direction very much, then this
estimated direction is likely to be relatively stable. One way to
think of this algorithm is in terms of a predictive coding mecha-
nism. That is, the observer uses the samples observed so far to
generate a prediction about a new, incoming sample. If that sample
is highly consistent with the prediction (small prediction error),
then arguably the direction estimate is sufficiently accurate. If the
incoming sample is inconsistent with the prediction and would
result in a change in the mean direction estimate, then it is worth
continuing to sample more information.

The consequence of this simple heuristic is that frequently—
particularly for the longer viewing times—the observer has already
decided on the motion direction before the viewing period is over
(cf. Ratcliff, 2006). The later direction samples are ignored and the
reported direction is whatever the estimated mean direction was at
the time when |mt � mt�1| 	 �, where m is the mean of all the
direction samples observed until the time indicated in the sub-
script. In this simulation � � 5 � 10�4 radians. Figure A1D shows
that this simple mechanism can account for the saturating concen-
tration values for the longer viewing durations, which is a conse-
quence of a primacy gradient. In addition, this mechanism—if
used to determine a switch point in the comparative task—predicts
that a high coherence pattern will be left sooner than a low
coherence pattern, with a single criterion in place.
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Figure A1. RDK simulation results. A – Low coherence, with all dots
taken into account. B – High coherence with all dots taken into account.
C – High coherence with only half the dots taken into account. D –
Information growth for low and high coherence patterns, with a fixed
criterion on the absolute change in the running mean estimated direction.
Integration of information stops as soon as the change in the running
average drops below the criterion. In this simulation, the criterion was set
to 5 � 10�4 radians. The resulting direction estimates are fit with Von
Mises densities. Here we show that with this mechanism in place, sampling
stops prematurely, which leads to asymptotic growth in the concentration
of the direction estimates. Note the data are plotted on double-log coordi-
nates to allow both low and high coherence data to be shown in the same
panel. See the online article for the color version of this figure.
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