
INTERNATIONAL JOURNAL OF ONCOLOGY  59:  88,  2021

Abstract. The present study aimed to explore the role of 
the long noncoding RNA cytoskeleton regulator (CYTOR) 
in non‑small cell lung cancer (NSCLC) radiosensitivity 
by manipulating the microRNA (miR)‑206/prothymosin α 
(PTMA) axis. First, 58 pairs of NSCLC and paracancerous 
tissues, normal human lung epithelial cells and NSCLC cells 
were collected to analyze CYTOR expression and the relation‑
ship between CYTOR and NSCLC prognosis. Subsequently, 
CYTOR expression in radioresistant cells was assessed. 
Radioresistant cells with low CYTOR expression and 
parental cells with high CYTOR expression were established. 
Functional assays were then performed to assess changes in 
cell radiosensitivity after irradiation treatment. Subsequently, 
the downstream mechanism of CYTOR was explored. The 
binding interactions between CYTOR and miR‑206 and 
between miR‑206 and PTMA were predicted and certified. 
Xenograft transplantation was applied to confirm the role 
of CYTOR in the radiosensitivity of NSCLC. CYTOR was 
overexpressed in NSCLC and was associated with poor prog‑
nosis. CYTOR was further upregulated in NSCLC cells with 
radioresistance. CYTOR knockdown enhanced the radiosen‑
sitivity of NSCLC cells, while overexpression of CYTOR led 
to the opposite result. Mechanistically, CYTOR specifically 
bound to miR‑206 and silencing CYTOR promoted miR‑206 
to enhance the radiosensitivity of NSCLC cells. PTMA is a 
target of miR‑206 and silencing CYTOR inhibited PTMA 

expression via miR‑206, thus promoting radiosensitivity of 
NSCLC cells. CYTOR knockdown also enhanced NSCLC 
cell radiosensitivity in vivo. CYTOR was highly expressed 
in NSCLC, while silencing CYTOR potentiated NSCLC cell 
radiosensitivity by upregulating miR‑206 and suppressing 
PTMA. The present study preliminarily revealed the role of 
CYTOR in radiotherapy sensitivity of NSCLC and provided 
a novel potential target for the clinical treatment of NSCLC.

Introduction

Lung cancer (LC) is the most fatal type of malignancy world‑
wide and non‑small cell LC (NSCLC) accounts for 85% of 
patients with LC (1). NSCLC may be a predominant cause of 
the increasing number of deaths resulting from tumors in all 
countries (2,3). Older individuals (age, >65 years) constitute the 
most susceptible group to NSCLC, with a rapidly increasing 
risk of morbidity and death (4). The known causes of NSCLC 
include excessive smoking, air contamination and exposure to 
radon (5). Supportive care, immunologic and biological thera‑
pies, chemotherapy and radiotherapy are all promising choices 
for NSCLC treatment (6). However, resistance derived from 
a long‑term use of chemotherapy markedly hinders its effi‑
ciency (7). In addition, the clinical repercussions and survival 
rate of individuals with NSCLC have merely improved (8). To 
date, biomarkers have been utilized in the diagnosis, prognosis 
and attenuation of NSCLC (9). With this background and 
the requirement to identify reliable biomarkers of NSCLC 
and possible interventions to induce cell radiosensitivity in 
NSCLC, the present study was performed to determine the 
underlying mechanisms of NSCLC.

Long noncoding RNAs (lncRNAs) and microRNAs 
(miRNAs/miRs) are being widely studied to identify 
medical solutions targeting radioresistance involved in 
radiotherapies for NSCLC (10). lncRNAs are the gold stan‑
dard for cancer diagnosis and prevention due to their wide 
range of carcinogenic or antitumoral effects on the occur‑
rence and progression of tumors (11). Initially, the lncRNA 
cytoskeleton regulator (CYTOR) was documented to be 
sufficiently expressed in NSCLC and associated with cell 
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biological activities and frustrating survival rates (12). In addi‑
tion, CYTOR overexpression is associated with unsatisfactory 
clinical results and leads to aggravated cancer cellular mobility, 
aggressiveness and the epithelial‑mesenchymal transition 
(EMT) of neoplasms, including breast cancer, gastric cancer 
and colon cancer (13,14). Of note, CYTOR is also responsible 
for the escalated relapse and resistance of various cancer 
types, including oral squamous cell carcinoma and breast 
cancer (15,16). Since CYTOR affects most malignancies by 
participating in competing endogenous RNA (ceRNA) inter‑
actions (17‑19), the present study sought to investigate miRs 
that hold promise in alleviating NSCLC. Similarly, alterations 
in certain miRNAs significantly influence cellular growth, the 
EMT, metabolic pathways, apoptosis and radioresistance in 
NSCLC (20). According to certain previous studies, miR‑206 
is repeatedly acknowledged as a major cytokine in the ceRNA 
network involved in cancer progression (21,22). miR‑206 
is expressed at low levels in NSCLC, resulting in the active 
aggressiveness, invasiveness and dissemination of cells (23). 
However, Samaeekia et al (24) revealed that miR‑206 
suppresses breast tumor stemness and metastasis by inhibiting 
both self‑renewal and invasion. Furthermore, miR‑206 was 
demonstrated to reduce the resistance of LC toward effective 
drugs (25). When miRNAs are sponged in NSCLC during the 
treatment process, certain downstream mRNAs may also be 
regulated (26). Prothymosin α (PTMA) is activated in several 
cancer types (such as esophageal cancer and ovarian cancer), 
suggesting that it may represent a target (27,28). Based on 
these findings, the present study aimed to elucidate the effect 
of CYTOR on NSCLC radiosensitivity by manipulating the 
miR‑206/PTMA axis.

Materials and methods

Expression analysis of CYTOR. The online tool Starbase 
(http://starbase.sysu.edu.cn/) (29) was employed for expression 
analysis of CYTOR on LUSC (n=501) and LUAD (n=526) data 
from TCGA.

Collection of clinical tissues. Between February 2013 and 
June 2015, 58 pairs of NSCLC and paracancerous tissue 
specimens (≥5 cm away from tumor tissue) were excised 
from patients with NSCLC during surgery at Yantaishan 
Hospital (Yantai, China); clinically diagnosed and histo‑
pathologically confirmed. None of these patients were 
treated by radiotherapy or chemotherapy prior to surgery. 
After the operation, each patient underwent radiotherapy 
and follow‑up for at least 60 months and their survival 
was recorded. If the tumor recurred or the patient died, the 
follow‑up ended; otherwise, the data were recorded up to 
the last follow‑up. The patients who relapsed or died within 
60 months were classified as the radiotherapy‑resistant group 
(n=28), and the remaining patients were classified as the 
radiotherapy‑sensitive group (n=30). The present study was 
approved by the Ethics Committee of Yantaishan Hospital 
(Yantai, China; accession no. for approval, YSLZ2021037). 
All study procedures conformed to the Declaration of 
Helsinki. Written informed consent was obtained from each 
patient. Supplementary Table SI provides the general infor‑
mation of the clinically included patients.

Cell culture and transfection. A normal human lung epithe‑
lial cell line (BEAS‑2B) and NSCLC cell lines (H1650, 
H460 and A549; all from the China Infrastructure of Cell 
Line Resource) were cultured in RPMI‑1640 basic medium 
containing 10% fetal bovine serum, 100 mg/ml streptomycin 
and 100 U/ml penicillin (all from Gibco; Thermo Fisher 
Scientific, Inc.) in an incubator with 5% CO2 at 37˚C.

Short hairpin RNA targeting CYTOR (sh‑CYTOR), 
miR‑206 mimics, miR‑206 inhibitor, mimics‑negative 
control (NC), inhibitor‑NC, overexpression vector for PTMA 
(pcDNA3.1‑PTMA) and NC (empty pcDNA3.1 vector; 
Shanghai GenePharma Co., Ltd.) were transfected with 
Lipofectamine® 3000 (Invitrogen; Thermo Fisher Scientific, 
Inc.) following the manufacturer's protocol to generate stably 
transfected cells (30). The plasmids and sequence information 
are provided in Table SII.

Establishment of radioresistant cells. Radioresistant cells 
were established as previously described (31). H460 and A549 
cells were cultured to 90% confluence and then irradiated at 
a dose of 0‑8 Gy. After the X‑ray irradiation, the medium was 
replaced with fresh medium and the cells were allowed to grow 
in a 37˚C incubator. For the generation of radioresistant cells, 
the radiation dose applied to the cells (90% confluence) was 
gradually increased at a rate of 2.0 Gy/fraction until the final 
dose of 64 Gy was reached. The cells were subcultured 5 times 
at the same dose and the radiation dose was then increased. 
The produced radioresistant cell lines were named H460R and 
A549R and their viability after radiation was tested by the Cell 
Counting Kit‑8 (CCK‑8) method.

Reverse transcription‑quantitative PCR (RT‑qPCR). 
According to a previous protocol (30), the total RNA was 
isolated from the tissues or cells using TRIzol® reagent 
(Thermo Fisher Scientific, Inc.). Following the instructions of 
the PrimeScript RT kit (Takara Bio Inc.), the extracted RNA 
was reverse‑transcribed into cDNA, which was subsequently 
amplified by real‑time qPCR (Perfect Real Time; Takara Bio 
Inc.) to quantify the levels of CYTOR, miR‑206 and PTMA. 
The PCR amplification procedure was set as two steps: The first 
step was pre‑denaturation at 95˚C for 10 min; the second step 
was PCR for 40 cycles with denaturation at 95˚C for 10 sec and 
annealing/extension at 60˚C for 30 sec, and each sample was set 
up in three wells. The expression of CYTOR and PTMA was 
standardized to that of 18S RNA and GAPDH, respectively, 
and that of miR‑206 was standardized to that of U6. The rela‑
tive expression of each cytokine was attained using the 2‑ΔΔCq 
method (32). The primer sequences are listed in Table I.

CCK‑8 assay. Based on the instructions of the CCK‑8 kit 
(cat. no. HY‑K0301; MedChemExpress), differentially treated 
cells (2x104 cells/well) were seeded into 96‑well plates and 
irradiated at 0, 2, 4, 6 or 8 Gy, followed by 24 h of culture at 
37˚C. Subsequently, the supernatant was discarded and 20 µl 
CCK‑8 solution in 180 μl fresh medium was added to each 
well, followed by culture at 37˚C for 1 h. The optical density of 
each well at 450 nm was attained using a spectrophotometer.

Colony formation assay. The assay was performed as previ‑
ously described (31). The 5,000 cells in each group were 
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cultured for 14 days after X‑ray irradiation at 4 Gy. The 
colonies were subjected to 15 min of fixation with 4% para‑
formaldehyde and 10 min of staining with 1% crystal violet 
at room temperature. Colonies with >50 cells were scored 
and counted under the microscope (Olympus Corporation), 
followed by counting the number of colonies in five randomly 
selected areas. Each procedure was performed 3 times per 
group.

Comet assay. A comet assay was applied to differently treated 
cells according to a previous study (33). Specifically, the cell 
suspension (1x106 cells/ml) was mixed with low melting 
point agarose and dripped onto precoated slides (1% normal 
melting point agarose) incubated with lysis solution (pH 10.0) 
and electrophoresis buffer (pH >13.0) for 40 min and electro‑
phoresed for 40 min (25 V, 280 mA) (33). Subsequently, the 
slides were placed in a neutralization solution (pH 7.5) for 
10 min, covered with sufficient staining solution (20 µg/ml 
ethidium bromide) for 10 min and immersed twice in PBS 
(10 min each time) and distilled water. Subsequently, comets 
under a 510‑560 nm excitation filter and a 590 nm blocking 
filter were observed and analyzed under a fluorescence micro‑
scope. All phases of the comet assay were performed under 
at 4˚C in the dark and all solutions were freshly prepared and 
cooled for use.

γ‑H2AX analysis. Cells with different treatments were 
cultured in 8‑well slides for 24 h, fixed/permeabilized in 
cold (4˚C) methanol for 5 min and blocked with 1% BSA 
(Thermo Fisher Scientific, Inc.) in PBS containing Tween‑20 
for 30 min at 37˚C. Subsequently, the cells were incubated 
with γ‑H2AX antibody (1:250 dilution; cat. no. ab81299; 
Abcam) overnight at 4˚C, followed by immunoglobulin G 
(1:250 dilution; cat. no. ab205781; Abcam) for 1 h. The cells 
were stained with DAPI prior to mounting with coverslips. 
Finally, images were captured and analyzed under a fluores‑
cence microscope.

Bioinformatics. The downstream target miRNAs of 
lncRNA CYTOR and the downstream target genes of 
miR‑206 were predicted through the online websites 
Starbase (http://starbase.sysu.edu.cn/) (29), DIANA 
tools (http://carolina.imis.athena‑innovation.gr/diana_
tools/web/index.php?r=lncbasev2%2Findex‑predicted) (34), 
miRcode (http://www.mircode.org/?gene=HOTAIR&mirfam
=&class=&cons=&trregion=) (35), Targetscan (http://www.
targetscan.org/vert_71/?tdsourcetag=s_pcqq_aiomsg) (36) 
and miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.
php) (37).

RNA fluorescence in situ hybridization (FISH). In order 
to detect the localization of CYTOR in cells, RNA FISH 
was performed using a green fluorescent‑labeled CYTOR 
probe (Guangzhou RiboBio Co., Ltd.). The cells were fixed 
with 4% paraformaldehyde for 15 min, permeated with 
0.5% Triton X‑100 on ice for 10 min and then treated with 
prehybridization buffer at 37˚C for 30 min. Next, the cells were 
hybridized with the fluorescent probe. After 12 h at 37˚C, they 
were stained with DAPI. Finally, FISH results were obtained 
by confocal microscopy (Sp8; Leica Microsystems).

Dual‑luciferase reporter gene assay. CYTOR or PTMA frag‑
ments containing the miR‑206 binding site were cloned into the 
pmirGLO dual oligosaccharase vector (Promega Corporation) 
to construct the pmirGLO‑CYTOR‑wild‑type (WT), 
pmirGLO‑PTMA‑WT, pmirGLO‑CYTOR‑mutant type 
(MUT) and pmirGLO‑PTMA‑MUT reporter vectors. 
After the cells (6x104 cells/well) were seeded into 24‑well 
plates, pmirGLO‑CYTOR‑WT, pmirGLO‑CYTOR‑MUT, 
pmirGLO‑PTMA‑WT and pmirGLO‑PTMA‑MUT were 
cotransfected with miR‑206 mimics or mimics‑NC for 
24 h. Subsequently, luciferase activity was assessed using 
dual‑luciferase assay kits (Promega Corporation). The relative 
firefly luciferase activity was determined by normalisation to 
Renilla luciferase activity.

RNA pull‑down assay. To clarify the binding relationship 
between CYTOR and miR‑206 (38), biotinylated CYTOR 
and CYTOR‑NC probes (Thermo Fisher Scientific, Inc.) 
were dissolved in washing/binding buffer according to the 
manufacturer's protocol and then cultivated with streptav‑
idin‑conjugated magnetic beads (Thermo Fisher Scientific, 
Inc.) for 2 h, followed by cultivation for 2 h with cell lysates 
supplemented to the buffer to remove RNA complexes conju‑
gated to magnetic beads. Subsequently, miR‑206 expression 
was determined by RT‑qPCR.

Xenograft tumors in nude mice. After a week of adaptive feeding 
(20‑22˚C, 50‑60% humidity, 12‑h light/dark cycle; ad libitum 
access to food and water), 3x106 H460R + sh‑NC or H460R + 
sh‑CYTOR cells were subcutaneously inoculated into the right 
flank of BALB/c nude mice (n=24; age, 5 weeks; body weight, 
18‑20 g; Beijing Vital River Laboratory Animal Technology 
Co., Ltd.), with 12 mice per group. The tumor dimensions 
were measured with calipers every 3 days and the volume was 
calculated as follows: Tumor volume = (length x width2)/2. 
When the tumor volume reached 250‑300 mm3, pentobarbital 
(50 mg/kg) was administered via intraperitoneal injection and 

Table I. Primer sequences used for PCR.

Gene Primer sequence

18S RNA F: 5'‑CGTTCTTAGTTGGTGGAGCG‑3'
 R: 5'‑CCGGACATCTAAGGGCATCA‑3'
U6 F: 5'‑CGCTTCGGCAGCACATATAC‑3'
 R: 5'‑AATATGGAACGCTTCACGA‑3'
GAPDH F: 5'‑GGGAGCCAAAAGGGTCAT‑3'
 R: 5'‑GAGTCCTTCCACGATACCAA‑3'
miR‑206 F: 5'‑GCTTCCCGAGGCCACATGCT‑3'
 R: 5'‑CACTTGCCGAAACCACACAC‑3'
CYTOR F: 5'‑GCGGTGCCTGAGCCCGTGCC‑3'
 R: 5'‑GGGCGGTTGGAACCAGGCC‑3'
PTMA F: 5'‑ATGTCAGACGCAGCCGTAG‑3'
 R: 5'‑CTAGTCATCCTCGTCGGTC‑3'

F, forward; R, reverse; miR, microRNA; CYTOR, long non‑coding 
RNA cytoskeleton regulator; PTMA, prothymosin α.
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the tumors of the mice were exposed to a single dose of 20 Gy 
ionizing radiation. For the tumor irradiation, the anesthetized 
mice were fixed on a plate with the right hind leg carrying 
the tumor exposed to the radiation field, while the other parts 
were protected by a lead plate. After the single irradiation, 
the tumor volume was examined every 3 days. The health 
and behavior of the mice were monitored every 2 days. The 
humane endpoints were as follows: Weight loss of >15% or the 
nude mice suffering from the tumor load or a tumor length of 
>1.50 cm and short diameter of >1.15 cm. Upon reaching the 
humane endpoints, the mice were euthanized by an intraperi‑
toneal injection of an overdose of pentobarbital (>200 mg/kg). 
Death was confirmed by observation of pupil dilation as well 
as ceasing of breath (absence of chest fluctuation) and the 
heartbeat. Subsequently, tumors were removed and weighed, 
and the tumors from 6 mice per group were washed, and 
paraffin‑embedded sections were prepared for the immunohis‑
tochemical analysis, while the remaining tumors were ground 
into homogenate for the RT‑qPCR analysis. The animal exper‑
iments were performed in accordance with the requirements 
of the guidelines for the use of experimental animals (39), 
with the approval of the Institutional Animal Care and Use 
Committee at Yantaishan Hospital (Yantai, China). The acces‑
sion number for this approval was YSLZ2021026. Significant 
efforts were made to minimize both the number of animals 
used and their respective suffering.

Immunohistochemistry. The tumor sections were deparaf‑
finized, hydrated, incubated with anti‑ki67 (1:200 dilution; 
cat. no. ab16667; Abcam) at 4˚C and reacted with IgG (1:2,000 
dilution; cat. no. ab205718; Abcam) at 37˚C for 2 h. After 
washing with PBS, the sections were developed with diami‑
nobenzidine, sealed and then observed and analyzed under a 
microscope.

Statistical analysis. SPSS 21.0 software (IBM Corporation) 
was used for data analysis. Values are expressed as the 
mean ± standard deviation. The normality of distribution of 
all data was inspected using the Kolmogorov‑Smirnov test. 
The t‑test was applied for comparisons between two groups, 
while one‑way or two‑way ANOVA was used to compare 
different groups, with Tukey's multiple‑comparisons test 
applied for pairwise comparisons after the ANOVA. The 
P‑value was attained using a two‑tailed test and P<0.05 was 
considered to indicate a statistically significant difference.

Results

CYTOR is overexpressed in NSCLC and is responsible for 
the poor prognosis of patients with NSCLC. Analysis with the 
starBase database (http://starbase.sysu.edu.cn/) revealed that 
CYTOR was overexpressed in lung adenocarcinoma and lung 
squamous cell carcinoma (Fig. 1A), suggesting that CYTOR 
may be a possible target for NSCLC treatment. Analysis of the 
58 pairs of NSCLC and paracancerous tissues (average age, 
51.83±7.22 years; males/females, 29/29). The basic informa‑
tion of the cohort is provided in Table SII. It was revealed 
that CYTOR was upregulated in NSCLC tissues (P<0.05; 
Fig. 1B) and after radiotherapy, the patients with high CYTOR 
expression had a worse prognosis than those with low CYTOR 

expression (P<0.05; Fig. 1C). The patients were then divided 
into a sensitive group (n=30) and a resistant group (n=28) 
according to their sensitivity to radiotherapy and the expres‑
sion of CYTOR in the two groups was analyzed. The results 
indicated that the expression level of CYTOR in the resistant 
group was significantly higher than that in the sensitive group 
(P<0.05; Fig. 1D). Next, the expression of CYTOR in different 
cell lines was detected and the results indicated that CYTOR 
expression in the NSCLC cell lines was higher than that in the 
non‑cancerous cell line (P<0.05; Fig. 1E).

Silencing of CYTOR enhances radiosensitivity of NSCLC 
cells. Radiotherapy is used as a prevalent therapy for NSCLC. 
To investigate the role of CYTOR in the radiosensitivity of 
NSCLC, radioresistant NSCLC cell lines (H460R and A549R) 
were established. Compared with the parental cell lines, the 
radioresistant cell lines had a better survival rate under different 
doses of irradiation (P<0.05; Fig. 2A). The dose of 4 Gy, under 
which the survival rate of the parental cells was ~50%, was 
selected for the subsequent experiments. According to the 
RT‑qPCR results, CYTOR was highly expressed in the radio‑
resistant cell lines (P<0.05; Fig. 2B). CYTOR overexpression 
vector was transfected into the parental cell lines (H460 and 
A549) and sh‑CYTOR was transfected into the radioresistant 
cell lines; subsequently, the overexpression and knockdown 
efficiency was verified (P<0.05; Fig. 2B). Furthermore, it was 
revealed that overexpression of CYTOR in the parental cell 
lines impeded cell radiosensitivity (stronger colony forma‑
tion ability, shorter comet assay tailing and lower γ‑H2AX 
fluorescence intensity), while knockdown of CYTOR in the 
radioresistant cell lines enhanced cell radiosensitivity (weak‑
ened colony formation ability, longer comet assay tailing 
and increased γ‑H2AX fluorescence intensity) (P<0.05; 
Figs. 2C, 3 and 4). These results suggest that CYTOR influ‑
ences the radiosensitivity of NSCLC cells.

CYTOR targets miR‑206 expression in NSCLC cells. To 
clarify the specific mechanism of CYTOR to regulate the 
radiosensitivity of NSCLC cells, the subcellular localization 
of CYTOR in the cytoplasm was initially predicted by a 
database (http://lncatlas.crg.eu/?tdsourcetag=s_pcqq_aiomsg) 
and verified by FISH (Fig. 5A and B), indicating that CYTOR 
may affect the radiosensitivity of NSCLC cells via the ceRNA 
mechanism. Thus, multiple databases were employed to search 
for the downstream targets of CYTOR, and miR‑206, the inter‑
secting target, was identified (Fig. 5C). It has been reported 
that miR‑206 improves the radiosensitivity of nasopharyngeal 
carcinoma (40). Therefore, it may be speculated that CYTOR 
affects NSCLC cell radiosensitivity by targeting miR‑206. 
The StarBase database (http://starbase.sysu.edu.cn/) predicted 
the binding site between CYTOR and miR‑206 (Fig. 6A), 
and subsequently, the binding association between CYTOR 
and miR‑206 was confirmed by a dual‑luciferase reporter 
gene assay and an RNA pull‑down assay (Fig. 6B and C). 
Next, compared with the normal adjacent tissues and normal 
cell line, respectively, miR‑206 expression was determined 
to be decreased in both NSCLC tissues and cells, and it was 
even further decreased in the radioresistant cells (P<0.05; 
Fig. 6D and E). Furthermore, miR‑206 expression was reduced 
when CYTOR was overexpressed, while it was promoted 
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Figure 1. CYTOR is overexpressed in NSCLC and high expression of CYTOR is associated with poor prognosis of patients with NSCLC. In total, 58 pairs 
of NSCLC and paracancerous tissues were harvested. (A) CYTOR expression analyzed by the starBase database (http://starbase.sysu.edu.cn/). (B) CYTOR 
expression in NSCLC tissues tested by RT‑qPCR. (C) Survival curve analysis within a 60‑month follow‑up of 58 patients with patients divided into the CYTOR 
high‑ and low‑expression group according to the median CYTOR expression level. (D) RT‑qPCR was used to detect the expression of CYTOR according 
to radiosensitivity with patients stratified into sensitive (n=30) and resistant (n=28) groups. (E) CYTOR expression in normal and NSCLC cells. Values are 
expressed as the mean ± standard deviation. *P<0.05. NSCLC, non‑small cell lung cancer; CYTOR, long noncoding RNA cytoskeleton regulator; RT‑qPCR, 
reverse transcription‑quantitative PCR; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

Figure 2. Silencing of CYTOR enhances the radiosensitivity of non‑small cell lung cancer cells. Radioresistant cell lines were established by gradually 
increasing the doses of irradiation. (A) Cell survival rate under different doses of irradiation as assessed through the Cell Counting Kit‑8 method. (B) CYTOR 
expression in cells as detected by reverse transcription‑quantitative PCR, with CYTOR transfected into the parental cells and sh‑CYTOR transfected into 
the radioresistant cells to determine the overexpression or knockdown efficiency. (C) Colony formation ability of cells under 4 Gy as measured by a colony 
formation assay. Values are expressed as the mean ± standard deviation. *P<0.05. NC, negative control; CYTOR, long noncoding RNA cytoskeleton regulator; 
sh‑CYTOR, short hairpin RNA targeting CYTOR; A549R, A549 with radioresistance.
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when CYTOR was inhibited (P<0.05; Fig. 6E). In summary, 
the results suggested that CYTOR directly targets miR‑206 in 
NSCLC cells.

miR‑206 knockdown neutralizes the inhibitory effect of 
CYTOR on radiosensitivity of NSCLC cells. To further validate 
the role of miR‑206 in the CYTOR‑regulated radiosensitivity 
of NSCLC cells, a miR‑206 inhibitor was utilized to degrade 
miR‑206 expression in H460R cells (P<0.01; Fig. 7A); subse‑
quently, miR‑206 inhibitor was combined with sh‑CYTOR for 
joint application. The results suggested that the radiosensitivity 
of the H460R cells induced by sh‑CYTOR was moderately 
inhibited (P<0.01; Figs. 7B and 8A and B), indicating that 
CYTOR suppressed the radiosensitivity of NSCLC cells by 
targeting miR‑206.

miR‑206 targets PTMA expression. Subsequently, the intersec‑
tion among the target genes downstream of miR‑206 predicted 
from multiple databases was attained (Fig. 9A) and PTMA 
was identified. PTMA was reported to be highly expressed 
in a radiation‑resistant colorectal cancer cell line (41). PTMA 
expression in the NSCLC tissues and cell lines was measured 
and it was indicated that the level of PTMA mRNA was 

elevated in both the NSCLC tissues and radioresistant cell 
lines (P<0.05; Fig. 9B). The target binding relationship between 
miR‑206 and PTMA was verified by a dual‑luciferase reporter 
gene assay (P<0.05; Fig. 9C). In addition, increased intracel‑
lular CYTOR expression led to upregulation of PTMA mRNA 
and knockdown of CYTOR expression led to the opposite 
result; of note, simultaneous CYTOR knockdown and inhibi‑
tion of miR‑206 promoted PTMA mRNA expression (P<0.05; 
Fig. 9D), indicating that miR‑206 targeted PTMA in NSCLC 
cells and that CYTOR competitively bound to miR‑206 to 
upregulate PTMA expression.

PTMA overexpression debilitates the inhibitory effect 
of CYTOR depletion on NSCLC cell radiosensitivity. To 
investigate the role of PTMA in the CYTOR‑regulated 
radiosensitivity of NSCLC cells, pcDNA3.1‑PTMA was 
constructed and transfected into H460R cells to upregulate 
PTMA expression (P<0.05; Fig. 10A). It was indicated that 
overexpression of PTMA partially reversed the reduced 
radioresistance of the sh‑CYTOR‑treated H460R cells as 
demonstrated by the enhanced clonogenic ability of the 
cells (Fig. 10B), shorter comet assay tailing (Fig. 11A) and 
diminished γ‑H2AX immunofluorescence (Fig. 11B). These 

Figure 3. Effect of CYTOR on radiosensitivity of non‑small cell lung cancer cells detected by the comet assay. DNA damage to cells under 4 Gy tested via a 
comet assay (longer tailing indicates more severe damage; scale bar, 100 µm). Values are expressed as the mean ± standard deviation.*P<0.05. Cell experiments 
were repeated three times. NC, negative control; CYTOR, long noncoding RNA cytoskeleton regulator; sh‑CYTOR, short hairpin RNA targeting CYTOR; 
A549R, A549 with radioresistance.
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results suggested that overexpression of PTMA retarded the 
inhibitory role of sh‑CYTOR on NSCLC cell radiosensi‑
tivity.

CYTOR knockdown in vivo enhances the radiosensitivity of 
xenograft tumors in mice. Xenograft tumors were established 
in mice by subcutaneous injection of differently treated H460R 
cells. After the tumors were treated by irradiation, compared 
with the H460R + sh‑NC group, the H460R + sh‑CYTOR group 
exhibited a reduced tumor weight and size and ki67‑positive 
rate (P<0.05; Fig. 12A‑C), decreased expression of CYTOR 
and PTMA in the tumors and enhanced miR‑206 expression 
(P<0.05; Fig. 12D). The above results indicated that CYTOR 
enhances NSCLC radioresistance by competitively binding 
miR‑206 to upregulate PTMA at the posttranscriptional level 
in vivo.

Discussion

Although significant advances have been achieved in the field 
of medicine targeting LC, the prognostic repercussions and 
survival rate of NSCLC remain disappointing and mortality 
is high, partially due to escalated chemoresistance (42). 
lncRNAs may serve as tumor promotors or inhibitors by 
modulating the growth and development of a variety of cancer 
types, such as NSCLC (43). Although the specific regulatory 
mechanisms of CYTOR in NSCLC have yet to be clarified, 
studies have indicated that CYTOR is activated in multiple 
malignancies, including gastric cancer, renal cell carcinoma 
and hepatocellular carcinoma, and predicts metastatic tumors 
and unfavorable prognosis (44). Therefore, CYTOR is an 
oncogenic factor and marker of neoplasms. Hence, the present 
study attempted to uncover the role of CYTOR in NSCLC, 

Figure 4. Effect of CYTOR on radiosensitivity of non‑small cell lung cancer cells determined by detection of γ‑H2AX. Cell radiation damage as detected by 
a γ‑H2AX fluorescence assay (stronger fluorescence indicates more severe radiation damage; scale bar, 100 µm). Values are expressed as the mean ± standard 
deviation. *P<0.05. Cell experiments were repeated three times. CYTOR, long noncoding RNA cytoskeleton regulator; NC, negative control; sh‑CYTOR, short 
hairpin RNA targeting CYTOR; A549R, A549 with radioresistance.
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including the molecular signaling involved in the relevant 
axis.

The most important finding of the present study was that 
CYTOR was overexpressed in NSCLC and high expression of 
CYTOR was associated with poor prognosis of patients with 
NSCLC. Early studies discovered that CYTOR functions as a 
promoter of various neoplasms, including LC, kidney cancer, 
gastric cancer, gallbladder cancer and colon cancer, as it 
expedites cellular metastasis, invasiveness and motility (45). 
CYTOR acts as a driving factor in a considerable number 
of malignancies by regulating cell biological behaviors, 
facilitating lymph node metastasis and incurring relapse, 
consequently being associated with poor prognosis (46,47). Of 
note, proactively expressed CYTOR was commonly observed 
in tumors that received no treatment, with large tumor 
volume and advanced stage NSCLC (48). However, CYTOR 
is a well‑acknowledged therapeutic target and biomarker in 
NSCLC and CYTOR knockdown causes cell inactivation and 
even death (49). Furthermore, silencing of CYTOR enhanced 
the radiosensitivity of NSCLC cells (50). In a previous study, 
high CYTOR expression was inextricably linked to limited 
apoptosis and enhanced drug resistance (13). In addition, 
CYTOR knockout was able to restore chemosensitivity and 
enhance the apoptotic rate in epithelial ovarian cancer (51). 

In summary, silencing CYTOR may represent a strategy for 
treating NSCLC from the perspective of strengthening cell 
sensitivity to drugs or radiotherapy.

Of note, CYTOR targeted miR‑206 expression in NSCLC 
cells. CYTOR is involved in ceRNA mechanisms and sponges 
miR‑497 in thyroid tumors, which increases tumor progres‑
sion and metastasis, while CYTOR depletion, in turn, restrains 
cancer cell growth, viability and aggressiveness (52). CYTOR 
functions as an upstream gene to sponge miR‑193a/b‑3p, 
augmenting hepatocellular carcinoma (53). In a relevant study, 
CYTOR was determined to be potent in sponging miR‑195 in 
NSCLC, therefore enhancing malignancy and impaired radio‑
sensitivity of NSCLC (50), suggesting that CYTOR mediates 
NSCLC development by acting as a sponge in ceRNA inter‑
actions. Similarly, miR‑206, a crucial cytokine connecting 
homeobox transcript antisense intergenic RNA and cyclin D1 
in the ceRNA network, was reduced in ovarian cancer and cata‑
lyzed cell survival, motility and proliferation (54). In addition, 
when miR‑206 was competitively bound by metastasis‑asso‑
ciated lung adenocarcinoma transcription 1, cyclin‑dependent 
kinase 9, a direct target of miR‑206, was activated to stimulate 
osteosarcoma augmentation (55), strengthening the feasibility 
of proceeding with research concerning miR‑206 in NSCLC. 
Subsequently, it was uncovered that miR‑206 knockdown 

Figure 5. CYTOR targets miR‑206 expression in non‑small cell lung cancer cells. (A) Subcellular localization of CYTOR predicted by a database (http://
lncatlas.crg.eu/?tdsourcetag=s_pcqq_aiomsg). (B) CYTOR was located in the cytoplasm as observed by fluorescence in situ hybridization (scale bar, 25 µm). 
Cell experiments were performed as three repeats. (C) miRs downstream of CYTOR according to various databases compared in a Venn diagram, with 
blue representing Starbase (http://starbase.sysu.edu.cn/), yellow representing DIANA tools (http://carolina.imis.athena‑innovation.gr/diana_tools/web/index.
php?r=lncbasev2%2Findex‑predicted) and green representing miRcode (http://www.mircode.org/?gene=HOTAIR&mirfam=&class=&cons=&trregion=). 
CYTOR, long noncoding RNA cytoskeleton regulator; miR, microRNA; RCI, relative concentration index; C, cytoplasmic; N, nuclear.
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Figure 6. CYTOR targets miR‑206. (A) The binding site between CYTOR and miR‑206 predicted via starBase (http://starbase.sysu.edu.cn/). (B) The transfec‑
tion of miR‑206 mimics was confirmed by RT‑qPCR and the binding association between CYTOR and miR‑206 was verified by a dual‑luciferase reporter 
assay. (C) The binding relationship between CYTOR and miR‑206 in H460 cells was confirmed by an RNA pull‑down assay. (D and E) miR‑206 expression 
in (D) patients with NSCLC and (E) NSCLC cell lines as detected by RT‑qPCR. Values are expressed as the mean ± standard deviation. Cell experiments 
were performed as three repeats. *P<0.05. RT‑qPCR, reverse transcription‑quantitative PCR; NSCLC, non‑small cell lung cancer; CYTOR, long noncoding 
RNA cytoskeleton regulator; NC, negative control; CYTOR, long noncoding RNA cytoskeleton regulator; sh‑CYTOR, short hairpin RNA targeting CYTOR; 
A549R, A549 with radioresistance; miR/miRNA, microRNA; lincRNA, long intergenic non‑coding RNA; WT, wild‑type; MUT, mutant; hsa, Homo sapiens.

Figure 7. miR‑206 regulates the clonal ability of non‑small cell lung cancer cells. miR‑206 inhibitor was transfected into H460R cells, with inhibitor‑NC as a 
control. (A) Knockdown efficiency was examined by reverse transcription‑quantitative PCR. miR‑206 inhibitor was combined with sh‑CYTOR for the joint 
experiments. (B) Colony formation ability of cells under 4 Gy as measured by a colony formation assay. Values are expressed as the mean ± standard devia‑
tion. Cell experiments were performed as three repeats. *P<0.05. NSCLC, non‑small cell lung cancer; CYTOR, long noncoding RNA cytoskeleton regulator; 
sh‑CYTOR, short hairpin RNA targeting CYTOR; NC, negative control; inhi, inhibitor; miR, microRNA; H460R, H460 cells with radioresistance.
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neutralized the inhibitory effect of CYTOR on NSCLC cell 
radiosensitivity. miR‑206 contributes to quenching various 
types of carcinoma, such as thyroid cancer, prostate cancer 
and ovarian cancer, by restricting cellular pathogenesis, 
viability and motility (56‑58). miR‑206 was also beneficial in 
preventing drug resistance and inducing necrocytosis in papil‑
lary thyroid carcinoma (59). In addition, miR‑206 inhibited 
aerobic glycolysis to ameliorate NSCLC (60). Subsequently, 
the present study indicated that, as a target of miR‑206, PTMA 
overexpression debilitated the inhibitory role of CYTOR 
depletion in NSCLC cell radiosensitivity, as evidenced by 
the improved Ki67‑positive rate. As a downstream factor in 
the ceRNA network, the upregulation of PTMA caused the 
outgrowth of exacerbated colorectal cancer (61). Furthermore, 

PTMA exhibited a negative association with the radio‑
sensitivity of colorectal cancer (41). In addition, Ki67 is a 
dependable indicator of cancer cellular duplication and migra‑
tion (62). Studies have suggested that in diverse cancers, Ki67 
activation usually concurs with upregulated CYTOR, low 
expression of miR‑206 or promoted PTMA (63‑65), which is 
consistent with the results of the present study. Based on the 
above, the CYTOR/miR‑206/PTMA axis may be valuable in 
NSCLC research.

In conclusion, the present study illustrated that silencing 
CYTOR potentiated NSCLC cell radiosensitivity by 
upregulating miR‑206 and suppressing PTMA. This suggests 
therapeutic implications for NSCLC alleviation. Experimental 
revelations and realistic applications in medical practice 

Figure 8. miR‑206 regulates radiation damage of non‑small cell lung cancer cells after radiotherapy. miR‑206 inhibitor and sh‑CYTOR were transfected into 
H460R cells for the joint experiments. (A) DNA damage to cells under 4 Gy as tested via a comet assay (longer tailing indicates more severe damage; scale bar, 
100 µm). (B) Cell radiation damage detected by a γ‑H2AX fluorescence assay (stronger fluorescence indicates more severe radiation damage; scale bar, 100 µm). 
Values are expressed as the mean ± standard deviation. Cell experiments were performed as three repeats. *P<0.05. CYTOR, long noncoding RNA cytoskeleton 
regulator; sh‑CYTOR, short hairpin RNA targeting CYTOR; NC, negative control; inhi, inhibitor; miR, microRNA; H460R, H460 cells with radioresistance.
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require extensive validation. It is esteemed that the present 
results contribute to NSCLC research.

There are certain limitations to the present study. First, 
since the role of CYTOR in the radiosensitivity of NSCLC cells 
was discussed, patients who did not receive any radiotherapy 
were not included. This is also a limitation of the present 
study. This point will also be considered for investigation 
in the future. Furthermore, due to limitations regarding the 
sample volume, other possible miRs or mRNAs downstream of 
CYTOR that may affect NSCLC radiosensitivity were not fully 
investigated. Future research by our group will aim to further 

identify the possible downstream genes or axes of PTMA and 
in‑depth experiments targeting other miRs related to CYTOR 
will be designed. Finally, the present study mainly focused on 
the effect of CYTOR on the radiosensitivity of NSCLC and 
its downstream mechanism. Therefore, the present results were 
all obtained with the background of radiation and the role 
of CYPOR in common NSCLC cell lines was not explored. 
Certain studies have reported the effect of CYPOR on NSCLC. 
One previous study investigated the mechanism of CYTOR in 
the migration and invasion of NSCLC cells and revealed that 
CYTOR promoted cell proliferation, migration and invasion 

Figure 9. miR‑206 targets PTMA expression. (A) Target genes downstream of miR‑206 were analyzed using various databases and their overlapping results were pre‑
sented in a Venn diagram, with yellow representing starBase (http://starbase.sysu.edu.cn/), green representing DIANA tools (http://carolina.imis.athena‑innovation.gr/
diana_tools/web/index.php?r=lncbasev2%2Findex‑predicted), blue representing TargetScan (http://www.targetscan.org/vert_71/?tdsourcetag=s_pcqq_aiomsg) and 
red representing miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php). (B) Level of PTMA mRNA in 58 pairs of non‑small cell lung cancer tissues and cell 
lines as detected by RT‑qPCR. (C) The binding site between miR‑206 and PTMA was predicted via starBase (http://starbase.sysu.edu.cn/) and their binding interac‑
tion was verified by a dual‑luciferase reporter assay. (D) The level of PTMA mRNA in differently treated cells as verified by RT‑qPCR. Values are expressed as the 
mean ± standard deviation. Cell experiments were performed as three repeats. *P<0.05. RT‑qPCR, reverse transcription‑quantitative PCR; miR, microRNA; PTMA, 
prothymosin α; MUT, mutant; WT, wild‑type; hsa, Homo sapiens; CYTOR, long noncoding RNA cytoskeleton regulator; sh‑CYTOR, short hairpin RNA targeting 
CYTOR; NC, negative control; inhi, inhibitor; miR, microRNA; H460R, H460 cells with radioresistance.
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Figure 11. Overexpression of PTMA attenuates radiation injury of non‑small cell lung cancer cells after radiotherapy. pcDNA3.1‑PTMA was combined with 
sh‑CYTOR for the joint experiments. (A) DNA damage to cells treated with pcDNA3.1‑PTMA under 4 Gy tested via a comet assay (longer tailing indicates 
more severe damage; scale bar, 100 µm). (B) Radiation damage in cells treated with pcDNA3.1‑PTMA as detected by a γ‑H2AX fluorescence assay (stronger 
fluorescence indicates more severe radiation damage; scale bar, 100 µm). Values are expressed as the mean ± standard deviation. Cell experiments were 
performed as three repeats. *P<0.05. CYTOR, long noncoding RNA cytoskeleton regulator; sh‑CYTOR, short hairpin RNA targeting CYTOR; NC, negative 
control; PTMA, prothymosin α; H460R, H460 cells with radioresistance.

Figure 10. PTMA overexpression enhances the clonal ability of non‑small cell lung cancer cells. pcDNA3.1‑PTMA was constructed and transfected into H460R 
cells, with pcDNA3.1 empty vector serving as a control (NC). (A) Transfection efficiency examined by reverse transcription‑quantitative PCR. pcDNA3.1‑PTMA 
was combined with sh‑CYTOR for the joint experiments. (B) Colony formation ability of cells treated with pcDNA3.1‑PTMA at 4 Gy as measured by a colony for‑
mation assay. Values are expressed as the mean ± standard deviation. Cell experiments were performed as three repeats. *P<0.05. CYTOR, long noncoding RNA 
cytoskeleton regulator; NC, negative control; PTMA, prothymosin α; sh‑CYTOR, short hairpin RNA targeting CYTOR; H460R, H460 cells with radioresistance.
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ability, and induced radioresistance in NSCLC cells (50). 
Another study assessed the role of CYTOR in NSCLC, 
including the cell cycle and apoptosis and found that CYTOR 
knockdown also promoted cell apoptosis and induced cell cycle 
arrest in G1 phase (12). Our group aims to further explore the 
role of the CYPOR/miR‑206/PTMA axis in the malignant 
behavior of NSCLC cells and cancer metastasis in the future.
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