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ABSTRACT

In previous studies, we found radial extracorporeal shock wave (rESW), can promote the proliferation of
neural stem cells (NSCs). Emerging evidence suggests that IncRNA NEAT1 can regulate NSCs proliferation.
Whether IncRNA NEATT1 plays a role in the proliferation of NSC induced by shock waves is unclear. Cell
Counting Kit-8 ( CCK 8) method was used to detect the proliferation of NSCs, and the relative protein and
mRNA expression of related genes of Nestin, Cyclin D1 and P21 were detected by Western Blot and
Quantitative real-time PCR (RT-qPCR) respectively. Immunofluorescence staining was used to observe
the changes in the number of BrdU/nestin positive cells. Overexpression of NEAT1 and let 7 b in cells
were used to explore whether rESW can rescue the decreased number of NSCs.We found that the optimal
dose of R15 transmitter promoting NSCs proliferation is 1.5 bar, 500 pulse, 2 Hz. 1.2—1.5 bar showed a
dose-dependent effect on the proliferation of NSCs, but it was negatively correlated with the proliferation
effect of NSC when it was more than 1.5 bar. We revealed that let 7 b-P21 axis was involved in regulating
the inhibition of NSC proliferation which was activated by NEAT1 in NSCs. In addition, we demonstrated
that rESW treatment resulted in the decrease of NEAT1 expression, which was accompanied by the
improved biological function including proliferation. Our results confirm that low-intensity rESW
(1.5 bar , 500 pulse , 2 Hz) can promote the proliferation of NSCs through NEAT1-let 7 b-P21 axis.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

common feature after injury is the loss of neurons [1,2]. It is
believed that the nerve cells of the CNS of mammals lose their

Central nervous system (CNS) injuries are mainly caused by
cerebrovascular accidents or mechanical contusions (for example,
traumatic brain injury, TBI). Although the etiology is different, the
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ability to regenerate shortly after birth, and the neuron loss caused
by various reasons such as trauma and tumor can only be replaced
by the proliferation of glial cells due to intracellular and extracel-
lular factors that hinder neural regeneration [3,4]. This long hold
concept has greatly restricted the development of treatment
methods for neurological diseases. Currently, the available treat-
ment options for CNS injury are limited, to palliative care [5]. The
discovery of neural stem cells (NSCs) provides new possibilities for
the treatment of CNS injury. NSCs could differentiate into neurons
and glial cells under specific conditions [6,7]. Adult NSCs in
mammalian brains are mainly distributed in two areas——the
subventricular zone (SVZ) of the anterior horn of the lateral
ventricle and the subgranular layer (SG) of the dentate gyrs in the
hippocampus [8]. These cells could be used as source cells for
regeneration by in situ induction with foreign factors.
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Radial extracorporeal shock wave (rESW), as a kind of me-
chanical wave, has been widely used in rehabilitation medicine and
orthopedics. Its therapeutic effects on bedsores, fractures, tendon
injuries, aseptic inflammation and other diseases have been
extensively confirmed by basic research and clinical trials [9—12].
Currently, rESW has achieved significant results in the field of
regenerative medicine. In osteoarthritis ( OA ), rESW combined
with adipose-derived mesenchymal stem cells (ADMSCs) exhibited
increased trabecular thickness and bone volume. The reduction of
caspase-3 and platelet-derived growth factor (PDGF)-BB were also
observed [13]. In a model of cultured fetal rat metatarsals, Sowmya
R, etc. demonstrated that rESWT increased longitudinal bone
growth by locally inducing chondrogenesis [14]. Our previous
studies have found that rESW can promote the proliferation and
differentiation of NSCs, but the specific molecular mechanism
needs to be further clarified [15].

Recently, some studies have indicated that epigenetic modifi-
cations, such as DNA methylation, histone modification and non-
coding RNA (ncRNA) are important factors affecting the develop-
ment of the nervous system [16]. As a target gene of P53, IncRNA
nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-
coding RNA (IncRNA) essential for regulating the fate of stem
cells [17,18]. Previous studies have shown that let 7 b prolongs the
cell cycle by inhibiting the expression of Cyclin D1—presumably
due to increased expression of Pten, which is a negative regulator of
Cyclin D1, thereby inhibiting the proliferation of NSCs [19]. At
present, although some studies used dual luciferase reporter gene
experiments have shown that NEAT1 and let 7 b can interact with
each other [10]; whether the interaction between NEAT1 and let 7 b
regulates the proliferation of NSCs is not fully understood. Similarly,
researchers have found that there is an interaction between let 7 b
and P21 in liver cancer cells [20]; but they still cannot clearly
explain how the two regulate the proliferation of NSCs. P21 is an
important member of the Cyclin-dependent kinase inhibitor family.
It regulates cell cycle, DNA replication and repair by inhibiting the
activity of Cyclin-dependent kinases (Cyclin-dependent kinases
CDKs) complex, and then regulating cell fate [21,22].

Therefore, based on our previous experiment, the current
explored whether the IncRNA NEAT1-let 7 b-P21 axis mediates the
promotion of NSCs proliferation by rESW.

2. Methods
2.1. Cell culture

NE-4C (Procell CL-0660) were provided by Procell Life Science &
Technology Co.Ltd (Wuhan, China). Mouse NSCs were grown in
Dulbecco's minimal essential medium with high glucose (DMEM),
supplemented with 10% fetal bovine serum. Cells were cultured
according to culture method guidelines and incubated at 37 °C, 5%
CO2. NE-4C cells were dissociated with 0.05% trypsin—EDTA and
resuspended in the incubator supplemented DMEM described
above. Cells from passage levels 4—5 were used in the present
study. The cell culture medium was refreshed every 1-2 days.

2.2. Cell proliferation test

To investigate the possible impact of rESWT on the viability/
proliferation of NE-4C cells, different doses of rESWT (R15, from 1.2
bar to 1.6 bar, 500 impulses, and 2 Hz) were used in the cultures.
The proliferation of NE-4C cells was analyzed by Cell Counting Kit-8
(CCK 8, Sevenbio, Beijing, China) proliferation assay. After being
treated with rESWT, 5 x 10> cells were seeded into 96-well plates
to grow for 12 h,24 h,36 h,48 h, 60 h, and 72 h. Then, 10 pL of CCK 8
was added to each well, and culture plates were incubated at 37 °C
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for 1 h. The absorbance was measured by photometry at 450 nm.
We chose 1.5 bar, 500 impulses, 2 Hz as a therapeutic dose.

2.3. TESWT treatment

To evaluate the influence on cell proliferation in vitro, rESWT
(R15 transmitter, STORZ MEDICAL AG, Switzerland) was applied to
the cultures at a dose of 1.5 bar, 500 impulses, and 2 Hz, which
maximized the therapeutic effects without significant reduction of
the cell viability. NE-4C cells were dissociated with 0.05%
trypsin—EDTA and resuspended in the tube supplemented DMEM
described above. Transferred the cell suspension filled with the
complete medium to a 2 mL EP tube. After removing the air in the
tube, then embedded the EP tube into a 50 mL centrifuge tube filled
with coupling agent. Coupling was used to minimize the loss of
shock wave energy at the interface between the transmitter and
tube. The transmitter of rESWT acted vertically on the upper part
(Fig. 1TA—C). The control group was maintained under the same
culture conditions, but without rESWT exposure.

2.4. Cell transfection

The mimic targeting let 7 b and the negative control were ob-
tained from General Biol Co., Ltd (Anhui, China). The NEAT1 over-
expression plasmid vector was constructed by HanBio Co., Ltd
(Shanghai, China). Transient transfection of mimics (100 nM) and
plasmid vector (10 nM) was performed using Lipofectamine 2000
(Thermo Fisher, CA, USA) according to the manufacturer's in-
structions. The empty vector and negative control of siRNA were
also used as control. Transfected cells were harvested at 48 h after
transfection for subsequent analysis and detection.

2.5. Experiment grouping

To explore whether NEAT1 mediates rESW regulation of NSCs
proliferation, we divided the experiment groups into blank control
group ( Control ), negative control group (Blank , plasmid, BP),
overexpressing IncRNA NEAT1 (NEAT1) group, shock wave treat-
ment group (rESW), shock wave + negative control group (rESW +
BP), shock wave + overexpressing IncRNA NEAT1 group (rESW +
NEAT1). Similarly, for let 7 b, we divided the experiment groups
into: blank control group (Control), negative control group (nega-
tive mimic, NM), shock wave treatment group (rESW), shock wave
+ negative control group (rESW + NM), shock wave + over-
expression let 7 b group (rESW + let 7 b).

2.6. Quantitative real-time PCR

Total RNA was isolated from the NE-4C using TRIzol (TransGen
Biotech, Beijing, China) according to the manufacturer's in-
structions. Then, 1 ug of total RNA was used for reverse transcrip-
tion using a One-Step gDNA Removal and cDNA Synthesis SuperMix
(TransGen Biotech) according to manufacturer's instructions. Green
qPCR SuperMix (TransGen Biotech) was used to qualify the
expression levels of Nestin, Cyclin D1, and P21. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) and B-actin were respectively
used as endogenous controls (Sangong Biotech, Shanghai, China).
Next, quantitative RT-PCR was performed using mmu-miR-let 7 b-
specific probes and specific gene primers (Sangong Biotech,
Shanghai, China). All qRT-PCR reactions were performed using the
Step ONE Plus RT-PCR System (Applied Biosystems, USA). The
relative quantification 2-AACt method was applied to calculate the
gene expression values. Primers and probes used in this study are
shown in Table 1.
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Fig. 1. Representative images showing the protocols (A) NE-4C cells are dissociated with 0.05% trypsin—EDTA and resuspended in the tube supplemented DMEM (B) The cell
suspension filled with the complete medium was transferred to a 2 mL EP tube (C) After the air is removed in the tube, the EP tube is embedded into a 50 mL centrifuge tube filled

with coupling agent. The transmitter of rESWT acts vertically on the upper part.

2.7. Western Blot

Total protein was extracted from cells using ice-cold radio-
immunoprecipitation assay (RIPA) buffer (Sevenbio, Beijing, China)
supplemented with protease inhibitors (10 mg/mL aprotinin, 10
mg/mL phenyl-methylsulfonyl fluoride [PMSF], and 50 mM sodium
orthovanadate). The BCA protein assay kit (Beyotime Institute of
Biotechnology) was used to determine the protein concentration of
the supernatant. Equal amounts of protein samples (30 ug) were
separated by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and electrically transferred onto poly-
vinylidene difluoride (PVDF) membrane (Millipore, Shanghai,
China). Non-specific binding was blocked by incubation with 5%
fat-free milk in Tris-buffered saline containing 0.1% Tween-20
(TBST) at room temperature for 2 h.

The membranes were subsequently incubated with primary
antibodies as follows: Nestin (1:500; Proteintech, Chicago, IL, USA),
P21 (1:500; Proteintech), Cyclin D1 (1:5000; Proteintech), and
GAPDH (1:3000; Affinity, Cincinnati, OH, USA) at 4 °C overnight.
The membranes were washed and incubated with HRP-conjugated
secondary antibodies (Sevenbio, Beijing, China), diluted at 1:3000
at room temperature for 2 h. Immunoblots were visualized using an
enhanced chemiluminescence kit (ECL; Sevenbio, Beijing, China)
and detected by Bio-Rad Chemi-Doc (Bio-Rad, CA, USA) and then
normalized to that of GAPDH or B-actin.

2.8. Immunofluorescence staining

Add BrdU working solution 1 h before cell fixation. Cells grown on
coverslips were fixed with 4% paraformaldehyde, followed by treat-
ment with 0.1 M glycine for 20 min at 25 °C and 0.1% Triton X-100 for
additional 5 min at 25 °C to permeabilize. Cells were then incubated

Table 1
Primers and probes used in this study.

Neat 1-F 5'- GGCAGGTCTAGTTTGGGCAT-3’

Neat 1-R 5'- CCTCATCCCTCCCAGTACCA-3'

let 7 b-F 5'-GCGCGCTATACAACCTACTGC-3'

let 7 b-R 5'- AGTGCAGGGTCCGAGGTATT -3’
Nestin-F 5'-CAACCACAGGAGTGGGAACT-3’
Nestin-R 5'-TCTGGCATTGACTGAGCAAC-3'

P21-F 5'-CCTGGTGATGTCCGACCTG-3'

P21-R 5'-CCATGAGCGCATCGCAATC-3'

Cyclin D1-F 5'-CAGACCTCTTAACCTTATAG-3’

Cyclin D1-R 5'-TTCCCAAGCACCTCATACTACCAGC- 3/;
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alternatively with the following primary antibodies: Nestin (1:500,
Abcam, USA), Brdu (1:200, Abcam, USA), The primary antibodies
were washed with PBS, and the cells incubated with goat anti-rat
IgG-Dylight 594 (1:100 in PBS; A23440, Amylet Scientific, Wuhan,
China) and goat anti-rabbit IgG-FITC (1:150; Abcam, USA) for 30 min
at 25 °C. The cell nuclei were counterstained with Hoechst 33,342
(1:500; C0030, Solarbio, Beijing, China). Coverslips were finally
mounted with Mowiol in PBS for observation. Images were taken
with an Olympus BX51 microscope. Observations were made in 10
microscopic fields randomly taken from three different experiments.

2.9. Single-cell clone

To clarify the stemness of NSCs after rESW treatment, we choose
to single-cell clone which culture cells at a density of 1/well in a 96-
well plate. The cloned cells were then subjected to immunofluo-
rescence staining (Detailed protocols are provided in Supplemen-
tary Methods).

2.10. Statistical analysis

Quantitative data were presented as mean + standard deviation
(SD). GraphPad Prism 8 (GraphPad, La Jolla, CA, USA) software was
used for statistical analysis. Student's t-test (two-tailed), one-way
ANOVA or two-way ANOVA was employed to evaluate all statisti-
cal analyses. Differences were considered statistically significant
when P < 0.05.

3. Results
3.1. rESW promotes the proliferation of NSCs

To clarify the optimal dose of rESW that affects NSCs proliferation,
firstly, we used Cell Counting Kit-8 (CCK 8) to detect the effect of
different rESW excitation pressure on NSCs. Compared with the
control group, rESW at a dose of 1.5 bar, 500 points, and 2 Hz
significantly increased the number of NSCs 72 h after rESW treatment
(Fig. 2A—D and Supp 1). Between 1.2 bar and 1.5 bar, the proliferation-
promoting effect of rESW on NSCs was positively correlated with the
dose. Interestingly, when the dose was over 1.5 bar, the opposite ef-
fect was observed, and the Western Blot experiment confirmed the
observation (Fig. 2B and C). Therefore, the dose we used in this study
was 1.5 bar, 500 points, 2 Hz. At the same time, at 72 h, we used RT-
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gPCR to detect the expression of NSCs specific protein Nestin mRNA
and used 5-Bromodeoxyuridine (BrdU) labeling method to detect cell
proliferation. We observed that compared with the control group, the
excitation pressure of 1.5 bar can significantly promote the prolifer-
ation of NSCs, showed by the number of BrdU+/nestin + positive
cells, which were increased significantly (Fig. 2E and F). In addition, to
clarify more clearly that rESW can promote the self-renewal of NSCs,
we performed single-cell cloning experiments, which showed that 72
h after rESW treatment, NSCs still expressed the NSC-specific protein
Nestin (Supp 1).

3.2. rESW inhibits the expression of IncRNA NEAT1 and let 7 b

In order to determine how rESW affects the expression of NEAT1
and let 7 b, we used RT-qPCR to detect the expression of NEAT1 and
let 7 b within 72 h after rESW treatment on NSC. It was found that
rESW had the most significant inhibitory effect on the expression of
NEAT1 at 48 h after the treatment on NSC of rESW. Similarly, the

Regenerative Therapy 21 (2022) 139—147

expression of let 7 b was the lowest at 48 h after treatment (Fig. 3A
and B). The expression of Nestin mRNA was highest at 48 h after the
treatment (Fig. 3C). Interestingly, we used CCK 8 to detect the
proliferation of NSC at 48 h after the treatment of different exci-
tation pressures of rESW and found that 1.5 bar had the most
obvious effect on the proliferation of NSC, there was a statistically
significant difference between 1.5 bar and 1.6 bar. But there was no
statistically significant difference between 1.5 bar and 1.4 bar (Fig.

D). Thence, we chose to complete our subsequent experiments
at 48 h after rESW treatment.

3.3. rESW mediates NSC proliferation through the IncRNA-let 7 b
axis

As the self-renewal ability of NSC decreases, let 7 b expression
increases. In a study with the proliferation of liver cancer cells, Liu Q et
al. used the dual luciferase reporter gene experiment to show that
there was an interaction between NEAT1 and let 7 b [10]. Therefore,
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we wanted to know whether the NEAT1-let 7 b axis regulates NSC
proliferation.

We overexpressed the NEAT1 in NSC by transfecting plasmid into
the NSC (Fig. 4A) and found that rESW mediates NSCs proliferation
through the NEAT1 (Fig. 4G). RT-qPCR and Western blot were used to
detect the expression of Nestin mRNA and relative protein, and the
results obtained were consistent with the results of CCK 8 (Fig. 4B, E).
Furthermore, by using BrdU to display NSCs proliferation, we found
the number of BrdU+/Nestin + positive cells were increased signif-
icantly, and the results were consistent with that of CCK 8 (Fig. 5A).

At the same time, we overexpressed let 7 b by transfecting let 7
b mimics into the NSC (Fig. 4C). We found that rESW mediates NSCs
proliferation through the let 7 b (Fig. 4H). The results from RT-qPCR
and Western blot were consistent with that of CCK8 (Fig. 4D, F), so
did that of BrdU (Fig. 5B).

Interestingly, when we overexpressed NEAT1, the expression of
let 7 b was increased. But overexpression of let 7 b did not change
the expression of NEAT1 (Fig. 41 and ]).

3.4. Let 7 b regulates the proliferation of NSCs by promoting the
expression of P21

As a member of the tumor suppressor gene family, P21 can
regulate cell senescence, self-renewal, etc. Recently, it has been
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widely reported in research centered on NSCs proliferation. Hui L et
al. have predicted and verified that let 7 b and P21 can bind to each
other in liver cells by using a dual luciferase reporter gene experi-
ment [20]. Therefore, we speculate that let 7 b and P21 can interact
with each other to affect NSCs proliferation.

We observed an increase in the expression of P21 by over-
expression of let 7 b in NSCs. At the same time, we detected the
expression of Cyclin D1 and found that the expression of let 7 b was
negatively correlated with the expression of Cyclin D1. Moreover,
rESW can rescue the increase in P21 expression and the decrease in
Cyclin D1 expression caused by let 7 b overexpression (Fig. 6A—E).

4. Discussion

The recovery of the CNS is very slow after injury, and it is not
easy to regenerate. The patient feels painful and causes great
distress to their quality of life. After the cerebrovascular accident,
even if the systemic thrombolytic treatment within 4.5 h at the first
time, 2/3 of the patients still have neurological dysfunction and
disability [23]. Therefore, promoting the repair of the central ner-
vous system after injury is the current research focus on neurology
and rehabilitation medicine. In recent years, because NSCs are able
to promote repair after brain injury, increasing studies have focused
on NSCs, providing new treatment ideas for repair after TBI. The
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Fig. 3. Relative expression of NEAT1(A), let 7 b (B) and nestin (C) within 72 h after rESW treatment in NSCs (D) The effect of different excitation pressures on the proliferation of
NSCs at 48 h after rESW treatment. The data are shown as the mean + SD *p < 0.05, **p < 0.01, ***p < 0.001.
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increasing evidence indicates the existing of post-injury cell pro- NSCs, which brings new ideas to the limited repair of CNS after
liferation in SVZ [24,25] and SGZ [26]; where the NSCs originate. injury (Fig. 2 and Supp 1).

However, the time window for NSCs proliferation is narrow, and After treatment by rESW 72 h, the single-cell cloning NSC could
aging reduces SVZ cell proliferation and migration of neuroblasts also express Nestin, the specific protein the NSCs express. That is to
after injury, even though neurogenesis is still observed [27]. As a say, rESW could promote the self-renew of NSCs (Supp 1).
non-invasive treatment, rESW has been proven to promote the At present, the cognition of NEAT1 is mainly focused on its

proliferation of bone stem cells. In the current study with rESW, we regulation of the progress of cancer cells, and little is known about
found that low energy rESW (1.5 bar, 2 Hz, 500 points) not only whether it affects the development of the central nervous system.
does not cause cell damage, but also promotes the proliferation of Interestingly, we found that rESW could promote the proliferation
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Fig. 6. Let 7 b inhibits the expression of Cyclin D1 (A, B, Western Blot) (C, RT-qPCR), and promotes the expression of P21 (A, D, Western Blot) (E, RT-qPCR). Treatment with rESW
rescues the reduction. The data are shown as the mean + SD *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 7. Let 7 b mediates the regulation of the expression of Cyclin D1 and P21 caused by IncRNA NEAT1, and then regulating the proliferation of NSCs. rESW can regulate NSCs

proliferation through NEAT1-let 7 b-P21 axis.

of NSCs inhibited by the expression of NEAT1. Our results were also
in line with previous studies. Cui Y et al. found that the over-
expression of NEAT1 in spinal cord neural progenitor cells
(SC—NPCs) can cause SC-NPC to differentiate like neurons and
inhibit apoptosis after spinal cord injury [28]. On the contrary, the
loss of NEAT1 will reduce the differentiation and migration of
neurons. Let-7 family continuously and dynamically express during
neurogenesis with various functions [29]. Our further exploration
found that let 7 b is the downstream target of NEAT1 to inhibit the
proliferation of NSCs. rESW could regulate NSCs proliferation
through inhibiting NEAT1-let 7 b axis. Thus, our results also indi-
cated that NEAT1 may have some connections in regulating cell
behavior under pathological and physiological conditions.

miRNA is thought to regulate the proliferation of stem cells to
ensure proper cell fate transition [30]. As an important molecule
that regulates the proliferation of NSCs, P21 can arrest the cell cycle
and can also achieve the effect of inhibiting the proliferation of
NSCs [31,32]. We therefore hypothesized that let 7 b might mediate
NSCs proliferation through P21. In our research, we proved that let
7 b not only inhibits the expression of Cyclin D1, but also promotes
the expression of P21, enriching the mechanism of let 7 b inhibiting
the proliferation of NSCs. In other words, our study identified P21 as
a key target of let-7b in NSCs. Therefore, we concluded that let 7 b
can inhibit the proliferation of NSCs not only because it can inhibit
the expression of Cyclin D1 to prolong the cell cycle, but partly
because it can promote the expression of P21 to arrest the cell cycle.
These studies, including ours, suggest that let-7b plays a role in NSC
proliferation across a spectrum of developmental stages through
targeting distinct key molecules. We can rescue the reduction of
NSCs proliferation because of the overexpression of let 7 b by low
energy rESW.

However, our research currently has some limitations. How
rESW, as an exogenous mechanical signal, was transformed into an
endogenous chemical signal should be clearly verified. And the
specific mechanism of excitement of cells caused by rESW should
be explored. Meanwhile, the NSCs were cultured in vitro, which
may not represent the in vivo status. Moreover, the mechanisms of
in vivo experiments still need further exploration and validation.

There is no doubt that, however, rESW as a non-invasive and
safe therapy can effectively activate NSCs compared to other
treatments. It is certain that rESW as an innovative treatment for
CNS injuries has far-reaching translational prospects. It continues
to stimulate scientists and clinicians to explore specific mecha-
nisms and provide a theoretical basis for future clinical
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applications. In addition, our results further verify the critical role
of radial shockwave energy on biological effects, and the results
provide a reference for clinical therapy.

5. Conclusion

In the present study, we demonstrated that radial shockwave is
capable of enhancing the self-renewal capacity of NSC in vitro, and
we screened out the optimized parameters in our experimental
system. Moreover, we identified that the activation of NEAT1-let 7
b-P21 axis contributed to this promising effect mediated by radial
shockwave (Fig. 7).
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