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Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the

activation of immune responses. In various malignancies, these immunostimulatory

properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor

immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of

DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a

proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of

a stromal compartment, and the suppressive tumor microenvironment (TME), thereby

leading to the development of resistance. In order to circumvent tumor-induced

suppressive mechanisms and unleash the full potential of DC-therapy, considerable

efforts have been made to combine DC-therapy with chemotherapy, radiotherapy

or with checkpoint inhibitors. These combination strategies could enhance tumor

immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve

infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive

cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells.

In this review, different strategies of combining DC-therapy with immunomodulatory

treatments will be discussed. These strategies and insights will improve and guide DC-

based combination immunotherapies with the aim of further improving patient prognosis

and care.

Keywords: DC-therapy, combination therapy, chemotherapy, radiotherapy, immune checkpoint inhibitors

INTRODUCTION

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) and mediate a critical
role in the interface between the innate and adaptive immune system. DCs can be subdivided in
different subsets including conventional DCs (cDCs) and plasmacytoid DCs (pDCs) that arise in
the bone marrow and reside in peripheral tissues in an immature state. In addition, monocytes are
able to differentiate into monocyte-derived DCs (moDCs) upon inflammatory conditions (1–4).
Activation and maturation of DCs are induced upon exposure to environmental stimuli including
damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns
(PAMPs), leading to enhanced expression of co-stimulatory molecules, cytokine production,
reduced phagocytosing capacity, and improved T- and B-cell activation (5, 6). DC-mediated T-cell
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activation is initiated by antigen presentation on major
histocompatibility class (MHC) I and II and further guided by
co-stimulation and secretion of cytokines (7–9). In addition
to T-cell activation, DCs can activate natural killer (NK)
cells by cell-cell contacts and secretion of pro-inflammatory
cytokines such as type I interferons (IFNs) (10). However, in
a tumor setting, DC functionality is often compromised as, for
example, oncogenic mutations limit DC migration (11–14). In
addition, factors secreted by cancer cells limit DC maturation by
inducing overexpression of signal transducer and activation of
transcription 3 (STAT-3) (15). This leads to insufficient antigen
presentation, T-cell anergy and decreased T-cell proliferation,
thereby restricting effective anti-tumor immunity (16–18).

Therefore, administering mature ex vivo-activated DCs
loaded with tumor antigens may circumvent suppressive
tumor-derived signals, thereby inducing effective anti-tumor
immunity upon vaccination. For the past two decades, DC-
therapy has shown to be safe, well-tolerated and capable of
inducing anti-tumor immunity (19). However, response rates
to DC-therapy are limited, with objective responses rarely
exceeding 15% (20). Several mechanisms may contribute to
the limited clinical efficacy besides suboptimal DC-therapy
design, including downregulation of tumor-associated antigens
(TAAs) and MHC molecules by tumor cells, restricted migration
of DCs to lymph nodes (LN) and the inherent immune
suppressive tumor microenvironment (TME) (21–26). The
TME harbors a complex network of tumor tissue, stroma and
immune cells including tumor-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSCs), and regulatory
T-cells (Tregs). These suppressive cells inhibit activation,
proliferation and effector functions of infiltrating immune cells
by the expression of co-inhibitory molecules and secretion of
immunosuppressive cytokines (27–29). Conventional therapies,
including chemotherapy and radiotherapy, or more recently
developed immunotherapies such as immune checkpoint
inhibitors are able to counteract the immunosuppressive
environment of the tumor. Therefore, combining these therapies
with DC-therapy could lead to synergistic effects and improve
clinical responses. In this review, we will discuss current
approaches of DC-therapy, promising combinations with
chemotherapy, radiotherapy, and immune checkpoint inhibitors
that are clinically applicable and future perspectives for novel
combination therapies that can improve DC-therapy efficacy.

CURRENT APPROACHES OF
DC-THERAPY

In order to obtain a sufficient number of DCs for administration,
DCs are commonly generated from isolated CD14+ monocytes
or from CD34+ hematopoietic progenitors isolated from
peripheral blood, bone marrow or cord blood (3, 5). Culturing
purified CD14+ monocytes with granulocyte-monocyte derived
growth factor (GM-CSF) and interleukin (IL) 4 will lead to
differentiation into immature moDCs (30). Vaccination with
these immature DCs loaded with tumor antigens characterizes
first-generation DC-therapy and resulted in poor clinical results

with a tumor regression of 3.3% (31). In second-generation
DC-therapy, DCs are additionally matured by ‘maturation
cocktails’ including Toll-like receptor ligands and cytokines
which improved clinical results with objective response rates
of 8–15% (31). Sipuleucel-T, the only US FDA approved DC-
therapy for use in (prostate) cancer patients, can be positioned
at the intersection between first- and second-generation DC-
therapy as maturation is not achieved by maturation cocktails
but rather by the fusion of GM-CSF to prostate antigen (32).
In next generation DC-therapy, naturally-occurring DC (nDCs)
subsets are employed as nDCs are superior over moDCs in
terms of functionality and production costs and time. In
addition, different DC subsets also induce different tumor-
specific immune responses, as vaccination with murine cDC1s
induced a prominent CD8+ T-cell driven anti-tumor immune
response that was beneficial in tumors with abundant Tregs
whereas cDC2s induced a Th17-mediated anti-tumor immune
response that was advantageous in tumors with TAMs (33, 34).
Clinical trials using nDCs have shown that the usage of nDCs
is safe, feasible and associated with promising efficacy, which
indicates that this should be further investigated (35, 36).

DC Loading
DCs can be loaded with different sources of tumor antigens,
such as mRNA, peptides, proteins or whole tumor cell lysate
(5, 37). While peptides bind directly to MHC molecules,
proteins and tumor cells must be phagocytosed and processed
before presentation on MHC molecules can occur. Furthermore,
loading of DCs with tumor-associated peptides enables the
induction of specific T-cell responses, thereby minimizing the
risk on side-effects. However, for most tumor types, TAAs are
still unidentified. Loading the DCs with tumor lysate circumvents
the requirement of identified TAAs and additionally initiates a
broad spectrum of immune responses that is not restricted to
cytotoxic T lymphocyte (CTL) activation. This can improve DC-
therapy efficacy as objective clinical responses observed upon
treatment with DCs loaded with tumor lysate (8.3%) are higher
than treatment with DCs presenting defined antigens (3.6%) in a
meta-analysis of 173 trials (38).

Route of Administration
To induce effective anti-tumor immunity, migration of DCs
to lymph nodes is essential. Therefore, various administration
routes have been exploited (intradermally, intranodally,
intravenously, subcutaneously, and intratumorally), although to
date the superior route of administration is still not established.
Also the percentages of DCs that migrate successfully toward the
lymph nodes is limited, with up to 4% of injected DCs reaching
the lymph node after intradermal injection and 0–56% reaching
the lymph node after intranodal injection (26). The migratory
capacity can be improved by preconditioning the injection site
with a potent recall antigen, tetanus/dipteria toxoid, which
improved overall survival (OS) and progression free survival
(PFS) in glioblastoma patients (39). In addition to improving
migratory capacity, researchers have also targeted apoptotic
pathways by promoting Bcl-2 or inhibiting BAK/BAX signaling
in DCs to increase the lifetime of DCs and thereby enhance
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bioavailability of the injected DCs, which resulted in improved
activation of T-cells (40–43). However, despite these attempts to
improve DC-therapy, combinatorial strategies are essential to
prorogue suppressive mechanisms in the TME and to further
potentiate the clinical efficacy of DC-therapy.

COMBINATION THERAPIES TO ENHANCE
DC-THERAPY EFFICACY

Combination With Chemotherapy
Chemotherapeutics are traditionally designed to eradicate and
eliminate malignant cells to lower tumor burden. However, more
recent insights indicate that chemotherapy also has off-target
immunological effects depending on the type of chemotherapy,
such as immunogenic cell death (ICD) of tumor cells, thereby
enabling the induction of anti-tumor immunity (44). ICD
stimulates emission of DAMPs, including adenosine triphosphate
(ATP), high mobility group box 1 (HMGB1), and calrecticulin
(CALR), which initiates antigen uptake, maturation, activation,
and recruitment of endogenous DCs in the tumor (45, 46).
In addition, specific chemotherapeutics can directly deplete
suppressive immune cells including Tregs and MDSCs (47–49).
Due to the effects on tumor burden and the immunosuppressive
TME, chemotherapeutics could have synergistic effects when
combined with DC-therapy. For instance, tumor reduction
by neo-adjuvant chemotherapy could improve DC-therapy, as
DC-therapy is most effective in cases of low-tumor burden
(31). In addition, depletion of immunosuppressive cells in the
TME renders the TME more receptive for tumor-specific T-
cell infiltration upon DC-therapy. Timing of chemotherapy
administration may be crucial as potential synergistic effects of
combination treatments depend on the interval and sequence
of treatment administration (50). For instance, chemotherapy
applied prior to DC-therapy with substantial intervals aims
at tumor reduction whereas shorter intervals or concurrent
combination therapy allow depletion of suppressive immune
cells. In the following sections, combinations of well-studied
chemotherapeutics with ex vivo antigen-loaded DCs will be
discussed. A summary of the main characteristics of the studies
is presented in Table 1.

Cyclophosphamide
Cyclophosphamide is an alkylating agent that has tumoricidal
effects, thereby reducing tumor burden (72). In addition,
cyclophosphamide initiates ICD and transient lymphoablation
upon high doses, thereby resulting in depletion of suppressive
immune cells and stimulation of anti-tumor T-cell responses. In
contrast, low-dose cyclophosphamide improves tumor-specific
immunity by Treg depletion (Figure 1) (47). In mesothelioma,
melanoma and colon carcinoma murine models, administration
of cyclophosphamide prior to DC-therapy prolonged survival
compared to mice treated with monotherapy. This is likely
caused by a cyclophosphamide-induced decrease in Tregs, and
subsequent increase in T-cells, as observed in these studies
(51, 52). Cyclophosphamide administration 3 days prior to DC-
therapy was shown to induce T-cell responses to 3 melanoma

gp100 antigen-derived peptides G154, G206-2M, and G280-
GV in 6 out of 7 melanoma patients post vaccination (55). A
reduction in Tregs was also observed in mesothelioma patients
treated with concurrent combination of cyclophosphamide and
DC-therapy but remained unaffected in a study with melanoma
patients (56, 57). These differences could be explained by
differences in sampling time, as reduction in Tregs was evaluated
after the first cyclophosphamide treatment in mesothelioma
patients (56), whereas in melanoma patients, these levels were
assessed after 4 and 6 cycles of DC-therapy (57). Combining DC-
therapy with cyclophosphamide also improves clinical efficacy,
as patients with ovarian cancer that received cyclophosphamide
concurrent with DC-therapy and bevacizumab, a VEGF-a
blocking antibody, exhibited significantly prolonged survival
compared to patients without cyclophosphamide treatment (58).
These results were associated with reduced TGF-β levels, a
cytokine that is abundantly produced by Tregs in ovarian cancer.
Contradictory, combined DC-therapy with cyclophosphamide
resulted in poor clinical responses in patients with metastatic
renal cell carcinoma. However, as the DCs administered in this
study were of allogeneic origin, the lack of clinical efficacy could
be explained by the nature of the DCs administered (59). These
results indicate that Treg depletion upon cyclophosphamide
treatment is able to synergistically augment DC-therapy efficacy
both in preclinical and clinical settings, depending on the tumor
type and DCs applied.

Temozolomide
The alkylating agent temozolomide (TMZ) induces
lymphoablation upon high doses whereas at low doses it
primarily targets Tregs (Figure 1) (49). As this compound
effectively crosses the blood-brain barrier, TMZ is mainly
used to treat glioblastoma and melanoma, as the brain is a
frequent metastatic site for melanoma (73, 74). In patients with
advanced melanoma, administration of one TMZ cycle prior to
each DC-therapy decreased circulating Tregs with 60.5% (60).
Simultaneous administration of TMZ andDC/glioma cell fusions
in recurrent and newly-diagnosed glioblastoma patients resulted
inWT-1, gp100, andMAGE-A3-specific CTLs upon vaccination.
In the newly-diagnosed patients, PFS and OS were improved
compared to an international trial of TMZ monotherapy (61).
However, in recurrent glioblastoma patients, where DC-therapy
was followed by TMZ administration, combined treatment failed
to improve 6-month PFS compared to a reference group with
TMZ monotherapy (62). This could be due to reduced CTL
numbers caused by TMZ-induced lymphoablation, thereby
counteracting the effects of DC-therapy, as shown by a recent
study (63). Interestingly, this study also illustrated that, in
contrast to CTL numbers, NK cells in peripheral blood remained
constant after concurrent combinations with TMZ. However,
whether the effects observed on NK cells were associated with
depletion of Tregs remains elusive. Furthermore, this indicates
that TMZ administration before or during DC-therapy could
enhance DC-therapy efficacy, whereas DC-therapy followed
by TMZ may exert negative effects on DC-induced anti-tumor
immunity.
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Gemcitabine
Gemcitabine is able to improve anti-tumor immunity by
depletion of MDSCs and Tregs (Figure 1) (47, 48, 75). Treatment
of mice bearing pancreatic tumors with gemcitabine 2 days
before and after DC-therapy prolonged survival compared to
untreated mice, which was not observed for both monotherapies
(53). Concurrent treatment of DC-therapy and gemcitabine
in a murine pancreatic model delayed tumor growth and
prolonged survival compared to both monotherapies. This could
be dependent on MDSC numbers, as MDSC numbers were
significantly reduced in spleens and tumors of mice treated with
gemcitabine (54). However, in pancreatic cancer patients, despite
decreased PD-1+CTL numbers in responders, the concurrent
combination did not result in decreased MDSC and Treg
numbers in responders vs. non-responders (64). These results
indicate that gemcitabine may enhance DC-therapy efficacy,
however the mechanism of action warrants further investigation.

Combination With Other Chemotherapies
With the aim to reduce tumor burden, Hegmans et al. treated
mesothelioma patients with premetrexed and cisplatin 12 weeks
prior to DC-therapy, which resulted in immunological responses
in all patients against keyhole limpet hemocyanin (KLH), a
protein used to assess T-cell responses initiated by DC-therapy
(65). As this trial has no control arm no conclusions on synergy
can be made. Co-administration of oxiplatin, capecitabine and
DC-therapy in colon cancer patients induced proliferation of
KLH-specific CD4+ T-cells in all patients as well (66). An effect
on CD4+ T-cells was also observed in multiple myeloma patients
wherein treatment with DCs and cytokine-induced killer cells
(CIK) combined with bortezomib and dexamethasone improved
CD4+/CD8+ T-cell ratios compared to baseline and treatment
with chemotherapy alone (67). Specific anti-tumor immunity
with CTLs directed against gp100, tyrosine and NY-ESO was
induced in 67% of the patients with advanced melanoma treated
with the combination of DC-therapy and dacarbazine (68).
In addition, in 44% of the patients with stage IV melanoma,
a specific immune response against WT1 was induced upon
treatment with DC-therapy and carboplatin and paclitaxel (69).
However, combination with docetaxel failed to improve clinical
responses in patients with esophageal cancer and did not result
in improved PFS in patients with prostate cancer compared
to docetaxel monotherapy (70, 71). These results indicate that
combined treatment with chemotherapy and DC-therapy is
feasible and safe, however further research should be conducted
providing insight into the potential synergistical effects.

Combination With Radiotherapy
Ever since radiotherapy was found to affect non-radiated
tumor lesions in a process called the abscopal effect, the
immunomodulatory effects of this therapy have been more
thoroughly appreciated. As radiotherapy induces ICD, one
primary effect is the release of DAMPs and tumor-derived
antigens, thereby initiating the activation and migration of
DCs to the LN where DCs subsequently cross-present these
antigens to T-cells and induce systemic anti-tumor immune
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FIGURE 1 | Immunological effects of chemotherapy, radiotherapy, and checkpoint inhibitors. Cyclophosphamide induces ICD which enhances the recruitment,

activation, maturation, and antigen uptake by DCs. In addition, cyclophosphamide and temozolomide deplete Tregs and induce lymphoablation upon treatment with

low-dose or high-dose, respectively. Immunological functions of gemcitabine entail depletion of Tregs and MDSCs. Radiotherapy induces, besides ICD, enhanced

expression of FAS, MHC class I, and NKG2D ligands on tumor cells and enhanced expression of VCAM-1 on endothelial cells. Furthermore, secretion of CXCL16 by

tumor cells is increased after radiotherapy. Antagonistic CTLA-4 antibodies enhance T-cell activation by the preventing the binding of CD28 with CD80/86. Ipilimumab

(Continued)
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FIGURE 1 | depletes Tregs by ADCC whereas tremelimumab inhibits functions of Tregs upon binding. Anti-PD1 antagonistic antibodies enhance T-cell effector

functions while preventing exhaustion of T-cells. Blockade of PD-1 on DCs improves survival while blockade of PD-L on tumor cells results in improved tumor-cell

infiltration and killing. Ab, antibody; Ag, antigen; ATP, adenosine triphosphate; CALR, calreticulin; CTLA-4, cytotoxic T-lymphocyte-associated antigen; CXCL16,

chemokine ligand 16; DC, dendritic cell; Fas, first apoptosis signal; HMGB1, high mobility group box 1; MDSC, myeloid-derived suppressor cell; MHC class I/II, major

histocompatibility complex class I/II; NKG2D ligand, natural killer group 2 member D; PD-1, programmed death 1; PD-L, programmed death ligand; TCR, T-cell

receptor; Treg, regulatory T cell; VCAM-1, vascular endothelial cell adhesion protein 1.

responses (Figure 1) (76–80). The induction of systemic anti-
tumor immunity was indeed observed when radiotherapy was
combined with GM-CSF as it generated abscopal effects in
some patients (81). In addition, the combination with Flt-
3 ligand in a Lewis lung carcinoma murine model reduced
metastases and prolonged survival (82). However, in settings
of compromised DC functionality, intratumoral injection of
exogenously-prepared unloaded DCs followed by radiotherapy
could be advantageous. Induction of systemic immunity was
observed in a squamous-cell carcinoma murine model, as
combining radiotherapy with intratumoral DC administration
increased the presence of CTLs in the tumor-draining LN
(TDLN) compared to DC-monotherapy (83). In addition,
reduced tumor burden and prolonged survival were observed
compared to monotherapy in multiple preclinical models (84–
88). In clinical trials with patients suffering from hepatocellular
carcinoma and high-risk sarcoma, combining intratumoral
injection of unloaded DCs with radiotherapy induced tumor-
specific immunity in 70 and 52.9% of the cases, respectively (89,
90). In addition to induction of synergistic effects when combined
with unloaded DCs, radiotherapy may also improve efficacy
when combined with loaded DCs as it transforms irradiated
tissue into an immunogenic niche by enhancing the expression
of vascular endothelial cell adhesion protein 1 (VCAM-1) on
endothelial cells, FAS, MHCI and natural killer group 2D
(NKG2D) on tumor cells and increasing CXCL16 secretion,
thereby promoting homing, infiltration and tumor killing by DC-
induced lymphocytes (Figure 1) (91–96). In patients with stage
I esophageal cancer, 1- and 2-year survival were significantly
improved upon treatment with loaded DCs and radiotherapy
as compared to radiotherapy alone. Addition of CIK to this
combination failed to improve survival in patients with stage
III/IV non-small-cell lung cancer (97, 98). These results indicate
that combinatorial treatment has synergistic effects, but these
depend on tumor type and stage, as improved efficacy is most
prominent at early tumor stages.

Combination With Immune Checkpoint
Inhibitors
In cancer, tumor cells and immune cells often overexpress
co-inhibitory molecules, such as PD-1/PD-L1 and CTLA-4,
which suppress anti-tumor immunity. Checkpoint inhibitors
targeting these co-inhibitory molecules improve existing
anti-tumor immunity when administered as monotherapy
(99, 100). Additionally, combinations with DC-therapy
may result in synergistic effects as expression of these co-
inhibitory molecules could also limit durable DC-therapy
effects by inhibiting DC-therapy induced T-cells as well as DCs
directly.

PD-1/PD-L Blocking Antibodies
The PD-1/PD-L-axis exerts negative effects on TME-infiltrating
immune cells by inhibiting T-cell effector functions, NK cells
and inducing T-cell exhaustion (101–104). Additionally, PD-
L1 expression on tumor cells also directly inhibits IFN-γ-
mediated cytotoxicity by a STAT3/caspase 7 dependent pathway
(105). Therapeutically targeting PD-1/PD-L1 could therefore
render the TME more receptive for lymphocyte infiltration and
sensitize tumor cells for cytotoxicity that could act synergistically
upon combination with DC-therapy (Figure 1). Combining DC-
therapy with PD-1 blockade reduced Tregs, induced IFN-γ
secretion, while secretion of IL-10 by CD4+ T-cells was
decreased. In addition, cytotoxicity of CTLs improved when
PD-1 was inhibited in a co-culture of tumor cells and T-
cells isolated from mice treated with DC/myeloma fusions
(106). In vivo investigation of DC-therapy combined with PD-
1 blockade reduced tumor volume of mice with melanoma
(107) and prolonged survival in murine models for glioblastoma
(108) compared to monotherapy. These beneficial effects on
anti-tumor immunity were also observed in a breast cancer
murine model upon combinations with anti-PD-L1 antibodies
(109). Additionally, this study investigated the combination of
specific blockade of PD-L1 on DCs by in vitro incubation with
antagonistic monoclonal antibodies (109).

PD-L1/2 are both expressed on DCs and are associated with
suppression of effector CTLs and CD4+ T-cells and induction
of Treg expansion (110–117). Conversely, the expression of PD-
1 on DCs negatively affects DC survival (118). This indicates
that blockade of PD-1 or PD-L1 on DCs could enhance anti-
tumor immunity in vivo via multiple ways. PD-L1 blockade
on DCs improved maturation and proliferation of DCs during
culture, inhibited tumor outgrowth and prolonged survival
compared to mice treated with DCs on which PD-L1 was
not blocked (109). These results underline the importance of
PD-L1 expression on DCs in inhibiting anti-tumor immunity.
Therefore, efforts are undertaken to establish DC-specific PD-
L1 blockade, primarily by different RNA introducing techniques,
such as small interference RNA (siRNA) or short hairpin
RNA (shRNA). Preclinical data indicate that PD-L1 can
effectively be silenced using these approaches without affecting
viability, maturation or costimulatory molecule expression.
In addition, silencing PD-L1 or PD-L2 specifically on DCs
enhanced proliferation of tumor-specific CTLs and CD4+ T-
cells, augmented production of IFN-γ, tumor-necrosis factor
alpha (TNFα), IL-2, IL-5, and IL-12 and promoted cytolysis of
tumor cells in vitro (119–123). These promising data provide
incentive to further investigate the combination of systemic
PD-(L)1 blockade with DC-therapy and PD-L1 blockade on
DCs.
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CTLA-4
The antagonistic antibodies ipilimumab and tremelimumab are
designed to target CTLA-4, an inhibitory pathway that inhibits
activation of naïve T-cells by preventing the binding of CD28 on
T-cells to CD80/CD86 on APCs, a mechanism widely exploited
by Tregs (124, 125). In various murine models, ipilimumab was
shown to induce antibody-dependent cell-mediated cytotoxicity
(ADCC), thereby facilitating Treg depletion while tremelimumab
inhibits effector functions of Tregs (Figure 1) (126, 127).
However, recent clinical data question the Treg-depleting
capacity of ipilimumab, as treatment with ipilimumab did not
deplete Tregs in the TME of patients with melanoma, prostate
cancer and bladder cancer (128). In a retrospective study with
stage III melanoma patients that progressed after DC-therapy,
administration of ipilimumab induced tumor-specific T-cell
responses in 72% of the cases although this was not associated
with improved OS (129). Clinical and CTL responses were also
not associated in a clinical trial with 16melanoma patients treated
with MART-1 peptide loaded DCs and tremelimumab (130).
However, most promising clinical results were obtained by a
recent study, in which the overall response rate reached 38% in
advanced melanoma patients. These patients were treated with
ipilimumab combined with DCs electroporated with CD40L,
CD70, and constitutively activated TLR-4 encoding mRNA and
one of 4 melanoma-associated antigens (MAGE-A3, MAGE-C2,
tyrosinase, or gp100) fused to an HLA-class II targeting signal
(131). This indicates that combining DC-therapy with CTLA-4
targeting agents could lead to synergistic effects.

Combination With Other
Immunomodulating Therapies
Recently, also other immunomodulatory therapies were
approved that enable depletion of specific immunosuppressive
cell types, such as macrophages that are depleted upon antibody
or tyrosine kinase inhibition of the M-CSF-receptor. In line, we
have previously combined DC-therapy with M-CSFR inhibitor
treatment in murine tumor models and found improved
survival compared to DC-monotherapy. In addition, numbers,
proliferation and exhaustion state of CTLs were improved (132).
Similar results were obtained when combining DC-therapy with
a CD40-agonistic antibody, capable of converting macrophages
to a proinflammatory phenotype, and further stimulating the
CD40+DCs (133). Besides macrophages, selective depletion
of Tregs could enhance anti-tumor immunity. Results in a
preclinical melanoma mouse model showed that depletion of
Tregs using anti-CD25 antibodies prior to DC-therapy elicits

long-lasting anti-tumor immunity, as most mice remained
tumor-free after tumor rechallenge (134). Further investigation
into these combinations in different (pre)clinical models could
lead to promising novel combination strategies.

FUTURE PERSPECTIVES

Despite the clinical success of DC-therapy, clinical efficacy
remains limited to a proportion of patients and integration
of combinatorial approaches are therefore warranted to
improve efficacy. Timing of these combinatorial approaches
should be carefully considered as this will affect the potential
synergistic mode of action. In addition, determining optimal
combination therapies likely depends on multiple factors
including patient’s condition, tumor type, stage and composition
of the TME. Therefore, characterization of tumor cells and
immune cells present in the TME or peripheral blood of
individual patients will help to select immunotherapies that
most likely will work synergistically with DC-therapy. For
example, treatment of tumors enriched with Tregs should
entail combinations with Treg-depleting chemotherapeutics,
whereas DC-therapy should be combined with PD-L1
antagonistic antibodies in tumors with high PD-L1 expression.
Furthermore, careful characterization of the TME, and
peripheral blood could provide novel insights for combination
strategies.

CONCLUSION

Although combinations with DC-therapy have demonstrated
beneficial effects contributing to anti-tumor immunity, the
potential for further improvement remains. Amajor focus should
be on the careful characterization of tumor and peripheral
blood of each individual patient as this will be needed
to tailor treatments and enhance efficacy on a personalized
level. In addition, more controlled clinical trials should be
executed to directly compare efficacy with monotherapy.
Timing of treatment administration should be taken into
consideration in these studies as it could affect the efficacy of
combination therapies.
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