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Oral bioavailability of a drug compound is the significant property for potential drug candidates. Measuring this property can
be costly and time-consuming. Quantitative structure-property relationships (QSPRs) are used to estimate the percentage of oral
bioavailability, and they are an attractive alternative to experimentalmeasurements. A data set of 217 drug and drug-like compounds
with measured values of the percentage of oral bioavailability taken from the small molecule ChemBioBase database was used to
develop and test aQSPRmodel. Descriptors were calculated for the compounds usingCodessa 2.1 tool. Nonlinear general regression
neural network model was generated using the DTREG predictive modeling program software. The calculated percentage of oral
bioavailability model performs well, with root-mean-square (rms) errors of 4.55% oral bioavailability units for the training set,
14.32% oral bioavailability units for the test set, and 19.12% oral bioavailability units for the external prediction set. Given the
structural diversity and bias of the data set, this is a good first attempt at modeling oral bioavailability using QSPR methods. The
model can be used as a potential virtual screen or property estimator. With a larger data supply less biased toward the high end
values of the percentage of oral bioavailability, a more successful model could likely be developed.

1. Introduction

Rational drug discovery requires early methods of all factors
influencing on the likely success of a drug candidate in the
subsequent stages of the drug development. The study of
absorption, distribution, metabolism, excretion, and phar-
macokinetics (ADME/PK) has become a major discipline in
drug discovery through the application of well-established in
vitro and in vivo methodologies [1]. PK plays a crucial role in
the pharmaceutical research and development and, because
of themajor role of drugmetabolism, drug discovery research
in this area is covered by groups coalesced around the
name drug metabolism and pharmacokinetics (DMPKs) [2–
6]. Elimination is the product of metabolism and excretion.
Pharmacokinetics describe how the body reacts to a specific

drug after administration. Pharmacokinetic properties of
drugs may be affected by factors such as the administration
site and the administered drug dose; these may influence
the rate of absorption. One more process, liberation, plays
an important role in pharmacokinetics: liberation means the
release of drug from the formulation [7].

The primary goal of the drug discovery and develop-
ment process is to find a molecule possessing both good
pharmacodynamics and good pharmacokinetic properties
[8]. Ideally, a new drug should be efficacious and selective,
target tissue(s) specific, and orally absorbed, cause minimal
or no adverse effects due to metabolite activity or toxicity,
and be distributed/excreted in such a fashion as to permit
dosage once a day. Successful optimization of all these prop-
erties is an extremely challenging task. QSPR methods have
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Figure 1: AlogP versus PSA.

Table 1: Statistics results of𝑅2, RMSE,MAE, and standard deviation
for training set, test set, external prediction set.

𝑅
2 RMSE MAE Standard deviation

Training set 0.98 4.55 2.90 37.68
Test set 0.77 14.32 12.16 22.64
External prediction set 0.86 19.14 14.76 37.20

successfully been used to model physicochemical properties
of organic compounds. Several computational models have
also been reported for such biopharmaceutical properties
as %HIA, blood-brain barrier, skin and ocular permeation,
pharmacokinetics andmetabolism.However, all these studies
involved sets of closely related structural analogues, and
models based on limited chemical space generally lack
predictive value outside their structural classes. Broadly
applicable QSPR models of biopharmaceutical properties
must be built using compounds which cover both a wide
range of the property beingmodeled aswell as of the chemical
structure space [9].

Bioavailability is a key pharmacokinetic parameter which
expresses the proportion of a drug administered by any
nonvascular route that gains access to the systemic circulation
[10]. It was found that 30% of drugs fail during the drug
discovery process. Therefore, there is a need of a robust
and accurate computational model (QSAR/QSPR) which
can predict the oral bioavailability of compounds without
carrying out any experiments.

2. Materials and Methods

Development of model using linear and nonlinear multivari-
ate statistics to predict the oral bioavailability of a compound.

2.1. Quantitative Structure Property Relationship. The QSPR
methodology used in this project consists of threemain parts:
representation of molecular structure, feature selection, and
mapping. The general assumption in QSPR modeling is that
molecular structure causes the observed behavior of a com-
pound, linking a series of chemical structures to properties
of interest; in this case, oral bioavailability should provide a
method formodeling the property. General regression neural

network method present in DTREG was used to generate the
oral bioavailability model. This neural network has 3 layers
and 1 hidden layer, and it uses kernel function.

2.2. Preparation of Data Set. The set of 217 drug and drug-like
compounds and their experimentally derived percentage of
oral bioavailability values used in this project were gathered
from the literature sources. The 217 compounds in the
working data set were classified by using sphere exclusion
algorithm [11] into a training set of 159 compounds, test
set of 50 compounds, and an external prediction set of
8 compounds. The external prediction set was chosen in
such a way as to cover the range of percentage of oral
bioavailability values in the data set, and it spans the range
of 0%–100%. The compounds in the external prediction set
were never used during the model development process but
were reserved to validate potential models. The structures of
the 217 compounds were extracted from the small molecule
ChemBioBase [12] database with ISIS which consists of
kinase, protease inhibitors, and GPCR antagonists. Accu-
rate geometries are necessary for the calculation of certain
descriptors thought to be necessary for modeling physical
and chemical properties. As a result, LigPrep [13] tool was
used to generate accurate three-dimensional geometries, and
conformational analysis was performed in order to get the
local minima structure which is necessary for calculating
geometric descriptors.

2.3. Descriptor Generation and Analysis. A total of 11 descrip-
tors were generated for each of the 217 compounds using
Codessa 2.1 tool [14]. The descriptors fall into three general
categories: topological, electronic, and geometric. Topolog-
ical descriptors like number of single bonds, number of
aromatic bonds, number of oxygen atoms, nitrogen atoms,
relative number of oxygen atoms, and relative number of
nitrogen atoms are derived from the information of the two-
dimensional structure of the molecule.

Electronic descriptors were calculated by MOPAC using
the AM1 Hamiltonian electronic descriptors include maxi-
mum partial charge for hydrogen atoms. Geometric descrip-
tors include cube root of gravitational index, SAAA (surface
area of hydrogen bond acceptor atoms/number of hydrogen
bond acceptor atoms), and normalized 2D projection on
YZ plane. Accurate three-dimensional geometries of the
molecules are necessary to calculate descriptors of this nature.
A fourth class of descriptors can be derived by combining
electronic and geometric information to formhybrid descrip-
tors. By combining the molecular surface area with partial
atomic charges, charged-partial surface area (CPSA) descrip-
tors can be calculated. This includes HASA-2, area-weighted
surface charge of hydrogen bonding acceptor atoms. Eleven
descriptors span the following ranges: number of single
bonds (26–90), number of aromatic bonds (0–12), YZ shadow
(29.9–110.46), GRAV-3 (25.97–42.16), SAAA (28.38–32.14),
number of oxygen atoms (0–7), number of nitrogen atoms
(1–8), relative number of oxygen atoms (0–0.12), relative
number of nitrogen atoms (0.02–0.17), maximum partial
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Node 1
(Entire group)
𝑁 = 326

Bioavailability = poor
Misclassification = 9.51%

Node 2
AlogP ≤−1.7
𝑁 = 5

Bioavailability = good
Misclassification = 20%

Node 3
AlogP >−1.7
𝑁 = 321

Bioavailability = poor
Misclassification = 8.41%

Node 4
PSA ≤50.95
𝑁 = 69

Bioavailability = poor
Misclassification = 15.94%

Node 5
PSA >50.95
𝑁 = 252

Bioavailability = poor
Misclassification = 6.35%

Node 6
PSA ≤49.75
𝑁 = 64

Bioavailability = poor
Misclassification = 12.5%

Node 7
PSA >49.75
𝑁 = 5

Bioavailability = good
Misclassification = 40%

Figure 2: Single decision tree method.

Table 2: Correlation matrix for descriptors.

Variable G. index S. bonds SAAA YZ shadow HASA-2 P. charge O. atoms R. O. atoms N. atoms R. N. atoms A. bonds
G. index 1
S. bonds 0.26798 1
SAAA 0.41483 −0.0544 1
YZ shadow 0.50115 0.31235 0.21755 1
HASA-2 0.13998 −0.05302 −0.02074 0.18598 1
P. charge −0.03232 −0.1199 0.03092 0.03528 0.30933 1
O. atoms 0.11838 0.09889 0.04789 −0.00181 0.12292 0.13269 1
R. O. atoms −0.02622 −0.31383 0.05442 −0.14418 0.11698 0.16337 0.58024 1
N. atoms 0.21829 0.27275 0.02458 0.21158 0.50736 −0.10747 −0.11228 −0.29378 1
R. N. atoms 0.02254 −0.32032 0.05143 −0.01294 0.43585 −-0.10581 −0.24878 −0.1698 0.52116 1
A. bonds 0.2846 0.2069 0.00138 0.33825 0.14602 0.159 0.01585 −0.1204 −0.02972 −0.24046 1

charge for a hydrogen atom (0.03–0.1), and HASA-2 (2.89–
32.2). First two descriptors indicate amount of structural
flexibility; next two descriptors encode molecular size, shape,
and bulk properties. Remaining descriptors are all hydrogen
bonding descriptors.

2.4. Descriptors

(1) Topological descriptors include number of single
bonds, number of oxygen atoms, relative number of
oxygen atoms, number of nitrogen atoms, relative
number of nitrogen atoms, and number of aromatic
bonds [15].

(2) Geometric descriptors include the following:

(a) GRAV-3: cube root of gravitational index [16],
(b) SAAA-2: surface area of hydrogen bond accep-

tor atoms/number of hydrogen bond acceptor
atoms; these two are calculated using java pro-
gram,

(c) SHDW-6: normalized 2D projection of mole-
cule on YZ plane [16],

(3) maximum partial charge for hydrogen atoms [17],
(4) HASA-2: area-weighted surface charge of hydrogen

bonding acceptor atoms [18].
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Figure 3: Actual percentage of oral bioavailability values versus
predicted values.

The NSB descriptor is encoding single bonds, and this
may be an indication of the amount of structural flexibility
[19]. The SHDW-6 and GRAV-3 descriptors are encoding
molecular size, shape, and bulk properties [17]. These size
descriptors may be important with respect to the ability of
the drug to penetrate cell membranes. The three remaining
descriptors are all hydrogen bonding descriptors (Table 2).

3. Results and Discussion

3.1. Absorption Ellipse Model. In this model, Alogp and PSA
descriptors were used as predictor variables. Well-absorbed
and poor-absorbed compounds were plotted against AlogP
versus PSA. A 95% confidence ellipse for the well-absorbed
dataset was also computed and plotted. The 95% confidence
ellipse represents the region of chemical space where we can
expect to find well-absorbed compounds (90%) 95 out of 100
times (Figure 1).

CIMPL 1.0 [19] version tool was used to generate 95%
confidence ellipse model. It gives more than 60% of mis-
classification; from this, we conclude that the Alogp and
PSA (polar surface area) descriptors are not enough for
this dataset to classify well-absorbed and poor-absorbed
molecules. Calc prop tool was used to calculate Alogp and
PSA. 95% confidence means that we get 95 times out of 100
molecules having good absorption inside the ellipse. So, it is
called 95% confidence ellipse.

DTREG [20] software was used to generate single deci-
sion tree (Figure 2); this model also gives a lot of misclassifi-
cation (more than 40%). Both absorption ellipse method and
single decision tree methods show a lot of misclassification.
Alogp and PSA descriptors are not enough to classify well-
absorbed and poor compounds.
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Figure 4: Actual percentage of oral bioavailability values versus
predicted values (external prediction set).

3.2. General Regression Neural Network Method (DTREG
Software). Partial least square method and multiple linear
regression present in CIMPL tool were employed to get good
linear models; none of the models found was satisfactory.
It became evident that the diversity of this data set and
the number of data points possessing greater than 50%
absorption values are largely responsible for producing poor
quality linear models. Therefore, this data set became a good
candidate for developing nonlinear neural network model.

3.3. Neural Network Analysis. 11-member reduced pool of
descriptors was fed to the general regression neural network
method for the purpose of developing a nonlinear model.
The original regression data set was split randomly into a
neural network training set of 159 compounds and a test set of
50 compounds using sphere exclusion method. The original
8-member external prediction set was used to validate any
neural network models. The test set was used to monitor
overtraining of the network, and the training set was used to
actually train the network (Figures 3 and 4).

To decrease the possibility of chance effects influencing
neural network training, the ratio of observations to total
adjustable parameters should be at or above 2.0. A neural
network consisting of 11 input neurons (descriptors), 3 hidden
neurons, and 1 output neuron (target and percentage of
bioavailability), thus producing an 11-3-1 architecture, was
used since it produced the maximum number of adjustable
parameters recommended for a dataset of this size. For this
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11-3-1 architecture, the ratio of training set observations to
adjustable parameters F was 67/33 or 2.03 (Table 1). Table 1
refers to statistics results of 𝑅2, RMSE, MAE, and standard
deviation for training set, test set, external prediction set.

4. Conclusion

11-descriptor general regression neural network model has
been developed for the estimation of the percentage of oral
bioavailability values for a data set of 217 drug and drug-
like compounds. The training set rms error was 4.55% oral
bioavailability units, and the test set rms error was 14.32% oral
bioavailability units. Based on the rms errors of the training
and test sets, it is clear that a link between the structure and
the percentage of oral bioavailability does exist. However, the
strength of that link is best measured by the quality of the
external prediction set. With rms error of 19.0% HIA units
and a good visual plot, the external prediction set ensures
the quality of the model. Given the structural diversity and
bias of the data set, this is a good first attempt at modeling
oral bioavailability using QSPR methods. The optimization
of individual properties along the absorption process must
be integrated in a multiobjective scenario for studying oral
bioavailability behavior in the early drug discovery and
development [21].

The model can be used as a potential virtual screen or
property estimator. With a larger data supply less biased
toward the high end values of the percentage of oral
bioavailability, a more successful and reviling model can be
developed. This study illustrates the potential of using QSPR
methods to aid in the drug development process.

Abbreviations

CIMPL: Chemo informatics platform tool
ADME/Tox: Absorption, distribution, metabolism,

excretion, and toxicity
QSPR: Quantitative structure property

relationship
HIA: Human intestinal absorption
PSA: Polar surface area
RMSE: Root mean square error
MAE: Mean absolute error
IV: Intravenous.

Acknowledgments

The authors thank Jubilant Biosys Company, Department
of Computational Chemistry, Bangalore, for the support
and infrastructure provided and also TOCE and the PES
institute of technology, Bangalore, for their undiminished
encouragement and valuable inputs in presenting the work.

References

[1] P. J. Eddershaw, A. P. Beresford, and M. K. Bayliss, “ADME/PK
as part of a rational approach to drug discovery,”DrugDiscovery
Today, vol. 5, no. 9, pp. 409–414, 2000.

[2] M. S. Alavijeh and A. M. Palmer, “The pivotal role of drug
metabolism and pharmacokinetics in the discovery and devel-
opment of new medicines,” IDrugs, vol. 7, no. 8, pp. 755–763,
2004.

[3] S. A. Roberts, “Drugmetabolism and pharmacokinetics in drug
discovery,” Current Opinion in Drug Discovery & Development,
vol. 6, pp. 66–80, 2003.

[4] R. J. Riley, I. J. Martin, and A. E. Cooper, “The influence of
DMPK as an integrated partner in modern drug discovery,”
Current Drug Metabolism, vol. 3, no. 5, pp. 527–550, 2002.

[5] J. Lin, D. C. Sahakian, S. M. de Morais, J. J. Xu, R. J. Polzer, and
S.M.Winter, “The role of absorption, distribution, metabolism,
excretion and toxicity in drug discovery,” Current Topics in
Medicinal Chemistry, vol. 3, no. 10, pp. 1125–1154, 2003.

[6] P. J. Eddershaw, A. P. Beresford, and M. K. Bayliss, “ADME/PK
as part of a rational approach to drug discovery,”DrugDiscovery
Today, vol. 5, no. 9, pp. 409–414, 2000.

[7] W. A. Ritschel, “The LADMER system: liberation, absorp-
tion,distribution, metabolism, elimination and response,” in
Handbook of Basic Pharmacokinetics Including Clinical Appli-
cations., W. A. Ritschel, Ed., pp. 19–24, Drug Intelligence,
Hamilton, Canada, 1992.

[8] D. P. Nicolau, “Pharmacokinetic and pharmacodynamic prop-
erties of meropenem,” Clinical Infectious Diseases, vol. 47,
supplement 1, no. 1, pp. S32–S40, 2008.

[9] W. Tong, D. R. Lowis, R. Perkins et al., “Evaluation of quan-
titative structure-activity relationship methods for large-scale
prediction of chemicals binding to the estrogen receptor,”
Journal of Chemical Information and Modeling, vol. 38, no. 4,
pp. 669–677, 1998.

[10] P. L. Toutain and A. Bousquet-Me’lou, “Bioavailability and its
assessment,” Journal of Veterinary Pharmacology andTherapeu-
tics, vol. 27, pp. 455–466, 2004.

[11] A. Gobbi and M. L. Lee, “DISE: directed sphere exclusion,”
Journal of Chemical Information and Computer Sciences, vol. 43,
no. 1, pp. 317–323, 2003.

[12] ChemBioBase, November 2012, http://www.jubilantbiosys
.com/index.php/services/functional-discovery-services/dis-
covery-informatics.

[13] Suite: LigPrep, Version 2.5, Schrödinger, LLC, New York, NY,
USA, 2012.

[14] A. R.Katritzky,M.Karelson, andR. Petrukhin, “Comprehensive
descriptors for structural and statistical,” Tech. Rep. CODESSA
PRO Project, 2002.

[15] D. M. Mudie, G. L. Amidon, and G. E. Amidon, “Physiological
parameters for oral delivery and in vitro,” Molecular Pharma-
ceutics, vol. 7, no. 5, pp. 1388–1405, 2010.

[16] M. D. Wessel, P. C. Jurs, J. W. Tolan, and S. M. Muskal,
“Prediction of human intestinal absorption of drug compounds
frommolecular structure,” Journal of Chemical Information and
Computer Sciences, vol. 38, no. 4, pp. 726–735, 1998.

[17] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney,
“Experimental and computational approaches to estimate sol-
ubility and permeability in drug discovery and development
settings,” Advanced Drug Delivery Reviews, vol. 23, pp. 3–25,
1995.

[18] W. J. Egan, K. M. Merz, and J. J. Baldwin, Prediction of Drug
Absorption UsingMultivariate Statistics Center for Informatics &
Drug Discovery and Pharmacopeia Laboratories, Pharmacopeia,
Princeton, NJ, USA, 2000.

http://www.jubilantbiosys.com/index.php/services/functional-discovery-services/discovery-informatics
http://www.jubilantbiosys.com/index.php/services/functional-discovery-services/discovery-informatics
http://www.jubilantbiosys.com/index.php/services/functional-discovery-services/discovery-informatics


6 International Journal of Medicinal Chemistry

[19] P. Artursson and J. Karlsson, “Correlation between oral drug
absorption in humans and apparent drug permeability,” Bio-
chemical and Biophysical Research Communications, vol. 175, no.
3, pp. 880–885, 1991.

[20] CIMPL 1.0, November 2012, http://www.barissumengen.com/
cimpl/.

[21] M. A. Cabrera-Perez, H. Pham-The, M. Bermejo, I. G. Alvarez,
M. G. Alvarez, and T. M. Garrigues, “QSPR in oral bioavail-
ability: specificity or integrality?” Mini-Reviews in Medicinal
Chemistry, vol. 12, no. 6, pp. 534–550, 2012.

http://www.barissumengen.com/cimpl/
http://www.barissumengen.com/cimpl/

