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Drug abuse poses great physical and psychological harm to humans, thereby attracting scholarly attention. It often requires
experience and time for a researcher, just entering this field, to find an appropriate method to study drug abuse issue. It is crucial
for researchers to rapidly understand the existing research on a particular topic and be able to propose an effective new research
method. Text mining analysis has been widely applied in recent years, and this study integrated the text mining method into a
review of drug abuse research. .rough searches for keywords related to the drug abuse, all related publications were identified
and downloaded from PubMed. After removing the duplicate and incomplete literature, the retained data were imported for
analysis through text mining. A total of 19,843 papers were analyzed, and the text mining technique was used to search for
keyword and questionnaire types. .e results showed the associations between these questionnaires, with the top five being the
Addiction Severity Index (16.44%), the Quality of Life survey (5.01%), the Beck Depression Inventory (3.24%), the Addiction
Research Center Inventory (2.81%), and the Profile of Mood States (1.10%). Specifically, the Addiction Severity Index was most
commonly used in combination with Quality of Life scales. In conclusion, association analysis is useful to extract core knowledge.
Researchers can learn and visualize the latest research trend.

1. Introduction

Because of the rapid development of information technol-
ogy, information regarding various issues has been widely
dispersed. Academia has long synthesized existing infor-
mation and literature to acquire new knowledge by using a
large amount of data. .is is currently done by first inte-
grating analytical results from individual studies through
systematic reviews and meta-analyses and then conducting
statistical analyses to develop general conclusions. .e
present method may elicit discussions about the causal
relationships and descriptions in studies as well as proposals
of alternating treatment design to extend the implications of
the literature. For example, a systematic review of drug
literature in 2008 intended to determine the prevalence of
illicit drug injection among people aged 15–64 years and the

prevalence of HIV among injecting drug users [1]. A pre-
vious study reviewed 11,022 questionnaires to estimate the
prevalence of illicit drug use in 61 countries. .e obtained
results revealed that 77% of the population worldwide aged
15–64 years used illicit drugs, with China, the United States,
and Russia having the most users. In addition, the study
indicated that approximately 3.0 million people (range
0.8–6.6 million people) worldwide who use illicit drugs
might be HIV positive. Another meta-analysis explored the
relationship between drug use and the high prevalence of
skin and soft tissue infection. Data of 20 papers involving
9,502 patients presented a high correlation between the two
[2]. In addition to improving statistical methods, ad-
vancements in information technology have facilitated the
development of artificial intelligence and big data algo-
rithms, both of which have been extensively applied in
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various fields, particularly the fields of public health and
biomedical information [3]. One of the numerous appli-
cations of big data is text mining. Based on natural language
processing, this technique uses keyword matching and the
connections between keywords to identify potentially useful
information. Text mining has also been applied to bio-
medical research, rapidly extracting crucial information
from a large amount of biomedical literature studies. Be-
cause automated screening makes reviews more efficient,
numerous new tools have been introduced for text mining in
biomedical research [4–6]. Nevertheless, this method is
feasible only under the premise that researchers are profi-
cient in determining the usability, applicability, adaptability,
interoperability, and comparative accuracy of current text
mining resources [7]. .e existing research shows that text
mining can reduce 30%–70% of the workload of literature
review [8].

Text mining has various applications. For example, to
facilitate the development of precision medicine, text
mining has been applied to examination of electronic
medical records. .e extensive use of electronic medical
records provides clinicians and researchers with large
amounts of data, which can be transferred to effective
clinical care tools [9]. Another example text mining ap-
plication is the use of narrative text analysis of electronic
medical records to explore adverse drug reactions (ADRs)
[10]. Researchers also applied text mining to clinical
progress notes of cardiovascular diseases; text mining
enabled them to calculate the probability of developing
said diseases. .e said study reviewed 282,569 echocar-
diography reports to identify patients with trileaflet aortic
stenosis (TAS) or coronary artery disease (CAD). .e
results revealed a positive predictive value of 0.95 com-
pared with the standard of 0.53 by the International
Classification of Diseases, Ninth Revision, Clinical
Modification for TAS diagnosis and a positive predictive
value of 0.97 compared with the standard of 0.86 for CAD
diagnosis [11]. ADRs of using aesthetic medicine, ranging
from severe morbidity to mortality, indicate the impor-
tance of drug safety. In the past, the lifecycle of a drug was
monitored from drug development to clinical trials to
detect safety problems at an early stage. .e drug was
continued to be monitored after marketing approval. .e
study also used text mining to identify potential safety
concerns of drugs from source articles, including bio-
medical literature, articles posted by consumers on social
media platforms, and narrative electronic medical records
[12].

Applications of text mining can also be observed in
drug and drug abuse research [13, 14]. For example, the
study [15] developed a series of text mining procedures for
designing new drugs. Using data from the DrugBank
database, the said study aimed to determine how the
chemical and protein compositions of drugs are related to
disease-related genes and pathways to ultimately help
develop new drugs [15]. In another study, text mining was
employed to explore the relationship between drug abuse
and depression among young adults using 17,723 ab-
stracts downloaded from PubMed. During the text mining

process, keywords from these abstracts were organized,
and a keyword cloud was used to present the topic content
directly and demonstrate the term distribution for each
topic. .e results demonstrated that the association be-
tween drug abuse and depression among young adults lies
in the links between keywords—such as sexual experience
and violence—as well as risk factors of substance use
among young adults. Text mining is also commonly
employed in neurological drug abuse research [16]. .e
National Institute of Statistics and Censuses of Argentina
investigated the prevalence of psychoactive substances in
the country to estimate their consumption of psychoactive
substances [17]. A study in the UK employed text mining
and big data techniques to investigate the effectiveness of
varenicline as a pharmaceutical aid for smoking cessation.
.e aforementioned study employed association rule
mining to analyze 46,685 individuals’ data from the UK
Health Improvement Network database. .e results
revealed that varenicline was most commonly prescribed
to heavy smokers aged 31–60 years and those diagnosed
with chronic obstructive pulmonary disease; varenicline
was rarely prescribed to healthy people, people older than
60 years, light smokers, and smokers with mental illness
or dementia [18]. Application of big data techniques to
social networking data can also be used for drug abuse and
addiction research [19]. A study examining the associa-
tion between young adults and their nonmedical use of
prescription medications analyzed 2,417,662 posts on
Twitter. .e said study discovered that 75.72% of tweets
with URLs contained a hyperlink to an online affiliate
marketer that links directly to illegal online pharmacies
where Valium can be bought without a prescription [20].

.e aforementioned literature demonstrates that big
data techniques in various forms have already been ap-
plied to academic research regarding drug abuse. .is
study applied text mining to organize drug abuse litera-
ture with the objective of understanding the current
trends of drug abuse research using big data and asso-
ciation analysis. .e results may serve as references for
researchers to quickly understand large amounts of
existing knowledge within their field.

2. Materials and Methods

.is study used the following keywords to search for and
download drug abuse articles published till 2018 in PubMed:
detoxification, addiction, drug abuse, substance, methadone,
drug addiction, and therapy. EndNote, bibliographic man-
agement software, was employed to organize the collected
literature. A total of 28,488 articles were collected. After
filtering out duplicate articles, those without an abstract
(title, keyword, year, and author), nonjournal articles, and
those with general terms (e.g., background, objectives,
methods, results, conclusions, stop words, and numbers),
19,843 articles remained. .e bibliographic data were stored
in Excel files. Article data included the journal name, article
title, abstract, keywords, authors, and year of publication.
Dissertation data were analyzed using PolyAnalyst (Mega-
puter Intelligence, Inc., Bloomington, IN, USA). .e main
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computing functions of PolyAnalyst include data importing,
data sorting, charting, classification, estimation, prediction,
correlation, and clustering..e computing functions used in
this study are text mining and link analyses [21]. .e text
mining tool has capability for scalability, visual creation of
analysis, interactive visualization, drill-down analysis, and
execution of reports. It also includes automatic spelling
correction, search for words and terms, detection of
unpredicted issue, and a dictionary editor for synonyms and

abbreviations. It has several steps for data analysis, which are
as follows:

(1) Data loading: software process commands are
written for text mining, functional nodes are con-
nected to import the Excel files into PolyAnalyst, and
the parameter types of the data are adjusted.

(2) Spell check: the spelling correction is conducted to
improve the accuracy of the data content, thereby
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Figure 1: Experiment flowchart.

Figure 2: Keyword cloud.

Computational and Mathematical Methods in Medicine 3



reducing the deviation of the data mining result from
the actual situation. .is procedure belongs to data
cleaning, data transformation, and text segmentation.

(3) Keyword extraction: this step comprises two tabs.
.e first tab is for keyword extraction that comprises
the investigated documents. It displays all records for
a selected keyword with the word being highlighted.
On the second tab, extraction is done to find phrases
and stable combinations of words.

(4) Link terms: after completing the preprocessing task,
keyword extraction and link analysis are conducted.
A huge amount of correlated keywords and phrases
is connected with a graph by a given connection
tension threshold. As we modified the threshold,
low-tension relations are hidden and the graph
updates to only display the remaining links. By in-
creasing the minimum tension threshold, we filter
out a small number of records where there is relation
between two words.

(5) Creating taxonomy: the term “taxonomy” is generally
defined as a classification system. In the taxonomy, all
custom categories are created by users underneath the
root category.

(6) Visualizing the categorization result: during analysis,
we can see some results in the taxonomy following
visualization.

.e full analysis process to determine the distributions of
academic drug research is illustrated in Figure 1. .e names
of questionnaires commonly used in drug addiction treat-
ment were extracted for text mining.

3. Results

.e distribution of collected keywords was visualized with
a keyword cloud (Figure 2). More frequently a keyword
appeared, the larger the area it occupied. In addition to the
most frequently appearing keywords—treatment, study,

Table 1: Top 30 keywords and corresponding article numbers.

Ranking 1–10 No. Ranking 11–20 No. Ranking 21–30 No.
Treatment 11194 Alcohol 3793 .erapy 2794
Study 10138 Opioid 3647 Behavior 2751
Addiction 8134 Dependence 3236 Response 2598
Drug 7857 Day 3220 Time 2520
Patient 7278 Finding 3178 Change 2510
Amyotrophic lateral sclerosis 6833 Cocaine 2996 Dose 2475
Use 6727 Level 2969 Model 2475
Effect 6037 Outcome 2956 Research 2472
Result 4973 Receptor 2887 Rat 2425
Group 3844 Detoxification 2806 Role 2404
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Figure 3: Publication distribution (by year).
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addiction, drug, and patient—other terminologies related
to drug addiction appeared. .e numbers of dissertations
in which these keywords appear are presented in Table 1.
Arranging these publications by year resulted in the graph
shown in Figure 3. Since 2013, the number of publications
each year has exceeded 1,000, with the largest number of
dissertations (1,393 papers) been published in 2016.
Moreover, the number has increased with time, indicating
that drug addiction treatment has received increasing
attention from academia and suggesting the growth of
future research. Analysis results revealed that, among all

publications, 2,992 utilized questionnaires and scales.
Sections discussing these measurement instruments were
excerpted and organized. Questionnaires or scales used in
more than 10 papers are presented in Table 2, which shows
that the most commonly employed assessment tools were
the Addiction Severity Index (ASI, 16.44%), Quality of
Life (QoL, 5.01%) scales, and the Beck Depression In-
ventory (BDI, 3.24%). Figure 4 shows a diagram of the link
analysis of the questionnaires. Visualization of the asso-
ciation analysis reveals that two clusters formed, with the
ASI and QoL scales as the respective cluster centroids.

Table 2: Questionnaire distribution.

Questionnaire Publication no. Ratio (%)
1 Addiction Severity Index 492 16.44
2 Quality of Life 150 5.01
3 Beck Depression Inventory 97 3.24
4 Addiction Research Center Inventory 84 2.81
5 Profile of Mood States 33 1.10
6 Craving Questionnaire 23 0.77
7 Brief Symptom Inventory 21 0.70
8 General Health Questionnaire 18 0.60
9 Severity of Dependence Scale 18 0.60
10 Brief Pain Inventory 18 0.60
11 Minnesota Multiphasic Personality Inventory 15 0.50
12 Short Opiate Withdrawal Scale 13 0.43
13 Opiate Treatment Index 13 0.43
14 SF-36 12 0.40
15 Young Mania Rating Scale 11 0.37
16 Hospital Anxiety and Depression Scale 11 0.37
17 Pittsburgh Sleep Quality Index 11 0.37
18 Neuropsychiatric Inventory 11 0.37
19 Temperament and Character Inventory 10 0.33
20 State-Trait Anxiety Inventory 10 0.33
21 Mini International Neuropsychiatric Interview 10 0.33
22 Childhood Trauma Questionnaire 10 0.33
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Figure 4: Associations pattern between questionnaires.
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After further analysis of the association between ques-
tionnaires and the ASI as the cluster centroid, the most
common questionnaires used in combination with the ASI
were compiled into data shown in Table 3. Questionnaire

combinations of the ASI with the QoL scale or the BDI
were the most common assessment tools and the research
direction most commonly approved by academia and
clinical practitioners. For the second cluster with the QoL

Table 3: Commonest combinations of questionnaires.

Questionnaire A Questionnaire B Tension Support
1 Addiction Severity Index Quality of Life 1.00 28
2 Addiction Severity Index Beck Depression Inventory 0.99 22
3 Addiction Research Center Inventory Profile of Mood States 0.88 19
4 Addiction Severity Index Brief Symptom Inventory 0.67 11
5 Beck Depression Inventory Quality of Life 0.26 11
6 Quality of Life Brief Pain Inventory 0.39 7
7 Quality of Life SF-36 0.33 7
8 Addiction Severity Index Mini International Neuropsychiatric Interview 0.35 6
9 Quality of Life General Health Questionnaire 0.35 5
10 Quality of Life Brief Symptom Inventory 0.14 5
11 Addiction Severity Index Craving Questionnaire 0.14 4
12 Addiction Severity Index SF-36 0.11 4
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Figure 5: Publications with use of the ASI/ARCI by year.

Table 4: Combinations of the ASI or ARCI with other questionnaires and publication distributions.

First published year Median published year Latest published year
ASI
1 Quality of Life 1998 2009 2018
2 Beck Depression Inventory 1991 2000 2018
3 Brief Symptom Inventory 1995 2006 2018
4 Mini International Neuropsychiatric Interview 2005 2012 2015
5 Craving Questionnaire 2007 2009 2017
6 SF-36 2003 2004 2018
ARCI
1 Profile of Mood States 1982 1998 2012
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scale as the centroid, some of the questionnaires linked to
it were also linked to the ASI cluster, whereas others were
evidently linked to only the QoL cluster, such as studies
utilizing the Brief Pain Inventory, General Health
Questionnaire, and Brief Symptom Inventory.

4. Discussion

Although this article is implemented by packaged software
POLY, it does not prevent others from using the ideas
presented in this article. .ere are a variety of commercial
software programs available to implement text mining, and
one can also encode text mining by itself using a pro-
gramming language such as R or Python. In addition, text
mining for organizing references has numerous benefits,
particularly speed. Visualization of data quickly gives re-
searchers a comprehensive understanding of the develop-
ment of academic research. Furthermore, link analysis
reveals the associations between keywords and hidden in-
formation, both of which are unavailable through other
standard research methods. .is study chose to focus on the
questionnaires used in drug addiction research. Researchers
performing text mining may focus on other subject matter
according to their needs. However, text mining does not
guarantee notable results; results may also be ineffective. In
addition, preprocessing to remove redundant text before text
mining analysis is vital. Inadequate preprocessing may result
in invalid keyword associations, leading to useless infor-
mation. Conversely, excessive preprocessing can also
remove useful information, which will not be presented in
subsequent analyses. One research limitation of this study is
the possibility of undiscovered questionnaires.

.e assessment questionnaires adopted by most studies
were the ASI and Addiction Research Center Inventory
(ARCI). Developed in 1980 [22], the ASI examines seven
dimensions—the potential medical, employment/support
status, alcohol, drug, legal, family/social, and psychiatric
problem dimensions—and requires an interview lasting
50–70 minutes. .e ARCI was developed in 1966 [23] and
contains 550 true/false items. .e numbers of publications
with respective use of these two questionnaires are presented
in Figure 5. Before 1995, the clinical use rates of the two were
similar, but the use of the ASI has become more frequent
than that of the ARCI since 1996. In addition to detecting the
severity of drug addiction, the current research focuses
on the physical and mental status, psychiatric assessments,
sleep, and QoL of those addicted to drugs. Table 3 indi-
cates that the six commonest questionnaires applied in
combination with the ASI were QoL scales (n� 28), the BDI
(n� 22), the Brief Symptom Inventory (n� 11), the Mini
International Neuropsychiatric Interview (n� 6), the
Craving Questionnaire (n� 4), and the SF-36 survey (n� 4).
.e first publication year, median publication year, and
latest publication year of papers containing such ques-
tionnaire combinations are presented in Table 4. For ex-
ample, the first publication year, median publication year,
and most recent publication year of papers containing the
combination of the ASI and the QoL scale (with the highest
number compared with papers adopting other

combinations) are 1998, 2009, and 2018, respectively. .is
shows that the aspects evaluated by QoL remain a topic of
interest in academia. By contrast, the median publication
year of papers containing the combination of the ASI and
BDI is 2000, implying that the dimensions evaluated by the
BDI are outdated, and therefore, it has received less attention
in recent years. .e questionnaire combination with the
most recent median publication year (2012) was the ASI with
the Mini International Neuropsychiatric Interview. How-
ever, this combination appeared in only six papers and was
therefore deemed less pervasive than other combinations.
.e link analysis diagram in Figure 4 demonstrates that the
Profile of Mood States was the assessment tool most fre-
quently used in conjunction with the ARCI; this combi-
nation appeared in 19 papers. .e first publication year,
median publication year, and latest publication year of
papers containing this combination are 1982, 1998, and
2012, respectively. .is shows that the said combination was
regarded as an effective assessment tool used in the early
stage of relevant research and is currently rarely adopted by
academia. Another drug addiction assessment questionnaire
is the Severity of Dependence Scale (n� 18), which was
frequently used in combination with the Mini International
Neuropsychiatric Interview, but its use rate was 4% lower
than that of the ASI.

5. Conclusion

.is study used text mining to explore the use of ques-
tionnaires in drug addiction research. .e visualization
techniques used with text mining enable researchers to
rapidly determine how frequently each questionnaire type
appears in all relevant research and the numbers of
employed assessment tools by year. Future studies may
leverage this method to select promising assessment tools to
explore topics of their interest.
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